| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347 |
- // Copyright (c) 2018 Google LLC.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASI,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #ifndef SOURCE_OPT_SCALAR_ANALYSIS_NODES_H_
- #define SOURCE_OPT_SCALAR_ANALYSIS_NODES_H_
- #include <algorithm>
- #include <memory>
- #include <string>
- #include <vector>
- #include "source/opt/tree_iterator.h"
- namespace spvtools {
- namespace opt {
- class Loop;
- class ScalarEvolutionAnalysis;
- class SEConstantNode;
- class SERecurrentNode;
- class SEAddNode;
- class SEMultiplyNode;
- class SENegative;
- class SEValueUnknown;
- class SECantCompute;
- // Abstract class representing a node in the scalar evolution DAG. Each node
- // contains a vector of pointers to its children and each subclass of SENode
- // implements GetType and an As method to allow casting. SENodes can be hashed
- // using the SENodeHash functor. The vector of children is sorted when a node is
- // added. This is important as it allows the hash of X+Y to be the same as Y+X.
- class SENode {
- public:
- enum SENodeType {
- Constant,
- RecurrentAddExpr,
- Add,
- Multiply,
- Negative,
- ValueUnknown,
- CanNotCompute
- };
- using ChildContainerType = std::vector<SENode*>;
- explicit SENode(ScalarEvolutionAnalysis* parent_analysis)
- : parent_analysis_(parent_analysis), unique_id_(++NumberOfNodes) {}
- virtual SENodeType GetType() const = 0;
- virtual ~SENode() {}
- virtual inline void AddChild(SENode* child) {
- // If this is a constant node, assert.
- if (AsSEConstantNode()) {
- assert(false && "Trying to add a child node to a constant!");
- }
- // Find the first point in the vector where |child| is greater than the node
- // currently in the vector.
- auto find_first_less_than = [child](const SENode* node) {
- return child->unique_id_ <= node->unique_id_;
- };
- auto position = std::find_if_not(children_.begin(), children_.end(),
- find_first_less_than);
- // Children are sorted so the hashing and equality operator will be the same
- // for a node with the same children. X+Y should be the same as Y+X.
- children_.insert(position, child);
- }
- // Get the type as an std::string. This is used to represent the node in the
- // dot output and is used to hash the type as well.
- std::string AsString() const;
- // Dump the SENode and its immediate children, if |recurse| is true then it
- // will recurse through all children to print the DAG starting from this node
- // as a root.
- void DumpDot(std::ostream& out, bool recurse = false) const;
- // Checks if two nodes are the same by hashing them.
- bool operator==(const SENode& other) const;
- // Checks if two nodes are not the same by comparing the hashes.
- bool operator!=(const SENode& other) const;
- // Return the child node at |index|.
- inline SENode* GetChild(size_t index) { return children_[index]; }
- inline const SENode* GetChild(size_t index) const { return children_[index]; }
- // Iterator to iterate over the child nodes.
- using iterator = ChildContainerType::iterator;
- using const_iterator = ChildContainerType::const_iterator;
- // Iterate over immediate child nodes.
- iterator begin() { return children_.begin(); }
- iterator end() { return children_.end(); }
- // Constant overloads for iterating over immediate child nodes.
- const_iterator begin() const { return children_.cbegin(); }
- const_iterator end() const { return children_.cend(); }
- const_iterator cbegin() { return children_.cbegin(); }
- const_iterator cend() { return children_.cend(); }
- // Collect all the recurrent nodes in this SENode
- std::vector<SERecurrentNode*> CollectRecurrentNodes() {
- std::vector<SERecurrentNode*> recurrent_nodes{};
- if (auto recurrent_node = AsSERecurrentNode()) {
- recurrent_nodes.push_back(recurrent_node);
- }
- for (auto child : GetChildren()) {
- auto child_recurrent_nodes = child->CollectRecurrentNodes();
- recurrent_nodes.insert(recurrent_nodes.end(),
- child_recurrent_nodes.begin(),
- child_recurrent_nodes.end());
- }
- return recurrent_nodes;
- }
- // Collect all the value unknown nodes in this SENode
- std::vector<SEValueUnknown*> CollectValueUnknownNodes() {
- std::vector<SEValueUnknown*> value_unknown_nodes{};
- if (auto value_unknown_node = AsSEValueUnknown()) {
- value_unknown_nodes.push_back(value_unknown_node);
- }
- for (auto child : GetChildren()) {
- auto child_value_unknown_nodes = child->CollectValueUnknownNodes();
- value_unknown_nodes.insert(value_unknown_nodes.end(),
- child_value_unknown_nodes.begin(),
- child_value_unknown_nodes.end());
- }
- return value_unknown_nodes;
- }
- // Iterator to iterate over the entire DAG. Even though we are using the tree
- // iterator it should still be safe to iterate over. However, nodes with
- // multiple parents will be visited multiple times, unlike in a tree.
- using dag_iterator = TreeDFIterator<SENode>;
- using const_dag_iterator = TreeDFIterator<const SENode>;
- // Iterate over all child nodes in the graph.
- dag_iterator graph_begin() { return dag_iterator(this); }
- dag_iterator graph_end() { return dag_iterator(); }
- const_dag_iterator graph_begin() const { return graph_cbegin(); }
- const_dag_iterator graph_end() const { return graph_cend(); }
- const_dag_iterator graph_cbegin() const { return const_dag_iterator(this); }
- const_dag_iterator graph_cend() const { return const_dag_iterator(); }
- // Return the vector of immediate children.
- const ChildContainerType& GetChildren() const { return children_; }
- ChildContainerType& GetChildren() { return children_; }
- // Return true if this node is a can't compute node.
- bool IsCantCompute() const { return GetType() == CanNotCompute; }
- // Implements a casting method for each type.
- // clang-format off
- #define DeclareCastMethod(target) \
- virtual target* As##target() { return nullptr; } \
- virtual const target* As##target() const { return nullptr; }
- DeclareCastMethod(SEConstantNode)
- DeclareCastMethod(SERecurrentNode)
- DeclareCastMethod(SEAddNode)
- DeclareCastMethod(SEMultiplyNode)
- DeclareCastMethod(SENegative)
- DeclareCastMethod(SEValueUnknown)
- DeclareCastMethod(SECantCompute)
- #undef DeclareCastMethod
- // Get the analysis which has this node in its cache.
- inline ScalarEvolutionAnalysis* GetParentAnalysis() const {
- return parent_analysis_;
- }
- protected:
- ChildContainerType children_;
- ScalarEvolutionAnalysis* parent_analysis_;
- // The unique id of this node, assigned on creation by incrementing the static
- // node count.
- uint32_t unique_id_;
- // The number of nodes created.
- static uint32_t NumberOfNodes;
- };
- // clang-format on
- // Function object to handle the hashing of SENodes. Hashing algorithm hashes
- // the type (as a string), the literal value of any constants, and the child
- // pointers which are assumed to be unique.
- struct SENodeHash {
- size_t operator()(const std::unique_ptr<SENode>& node) const;
- size_t operator()(const SENode* node) const;
- };
- // A node representing a constant integer.
- class SEConstantNode : public SENode {
- public:
- SEConstantNode(ScalarEvolutionAnalysis* parent_analysis, int64_t value)
- : SENode(parent_analysis), literal_value_(value) {}
- SENodeType GetType() const final { return Constant; }
- int64_t FoldToSingleValue() const { return literal_value_; }
- SEConstantNode* AsSEConstantNode() override { return this; }
- const SEConstantNode* AsSEConstantNode() const override { return this; }
- inline void AddChild(SENode*) final {
- assert(false && "Attempting to add a child to a constant node!");
- }
- protected:
- int64_t literal_value_;
- };
- // A node representing a recurrent expression in the code. A recurrent
- // expression is an expression whose value can be expressed as a linear
- // expression of the loop iterations. Such as an induction variable. The actual
- // value of a recurrent expression is coefficent_ * iteration + offset_, hence
- // an induction variable i=0, i++ becomes a recurrent expression with an offset
- // of zero and a coefficient of one.
- class SERecurrentNode : public SENode {
- public:
- SERecurrentNode(ScalarEvolutionAnalysis* parent_analysis, const Loop* loop)
- : SENode(parent_analysis), loop_(loop) {}
- SENodeType GetType() const final { return RecurrentAddExpr; }
- inline void AddCoefficient(SENode* child) {
- coefficient_ = child;
- SENode::AddChild(child);
- }
- inline void AddOffset(SENode* child) {
- offset_ = child;
- SENode::AddChild(child);
- }
- inline const SENode* GetCoefficient() const { return coefficient_; }
- inline SENode* GetCoefficient() { return coefficient_; }
- inline const SENode* GetOffset() const { return offset_; }
- inline SENode* GetOffset() { return offset_; }
- // Return the loop which this recurrent expression is recurring within.
- const Loop* GetLoop() const { return loop_; }
- SERecurrentNode* AsSERecurrentNode() override { return this; }
- const SERecurrentNode* AsSERecurrentNode() const override { return this; }
- private:
- SENode* coefficient_;
- SENode* offset_;
- const Loop* loop_;
- };
- // A node representing an addition operation between child nodes.
- class SEAddNode : public SENode {
- public:
- explicit SEAddNode(ScalarEvolutionAnalysis* parent_analysis)
- : SENode(parent_analysis) {}
- SENodeType GetType() const final { return Add; }
- SEAddNode* AsSEAddNode() override { return this; }
- const SEAddNode* AsSEAddNode() const override { return this; }
- };
- // A node representing a multiply operation between child nodes.
- class SEMultiplyNode : public SENode {
- public:
- explicit SEMultiplyNode(ScalarEvolutionAnalysis* parent_analysis)
- : SENode(parent_analysis) {}
- SENodeType GetType() const final { return Multiply; }
- SEMultiplyNode* AsSEMultiplyNode() override { return this; }
- const SEMultiplyNode* AsSEMultiplyNode() const override { return this; }
- };
- // A node representing a unary negative operation.
- class SENegative : public SENode {
- public:
- explicit SENegative(ScalarEvolutionAnalysis* parent_analysis)
- : SENode(parent_analysis) {}
- SENodeType GetType() const final { return Negative; }
- SENegative* AsSENegative() override { return this; }
- const SENegative* AsSENegative() const override { return this; }
- };
- // A node representing a value which we do not know the value of, such as a load
- // instruction.
- class SEValueUnknown : public SENode {
- public:
- // SEValueUnknowns must come from an instruction |unique_id| is the unique id
- // of that instruction. This is so we cancompare value unknowns and have a
- // unique value unknown for each instruction.
- SEValueUnknown(ScalarEvolutionAnalysis* parent_analysis, uint32_t result_id)
- : SENode(parent_analysis), result_id_(result_id) {}
- SENodeType GetType() const final { return ValueUnknown; }
- SEValueUnknown* AsSEValueUnknown() override { return this; }
- const SEValueUnknown* AsSEValueUnknown() const override { return this; }
- inline uint32_t ResultId() const { return result_id_; }
- private:
- uint32_t result_id_;
- };
- // A node which we cannot reason about at all.
- class SECantCompute : public SENode {
- public:
- explicit SECantCompute(ScalarEvolutionAnalysis* parent_analysis)
- : SENode(parent_analysis) {}
- SENodeType GetType() const final { return CanNotCompute; }
- SECantCompute* AsSECantCompute() override { return this; }
- const SECantCompute* AsSECantCompute() const override { return this; }
- };
- } // namespace opt
- } // namespace spvtools
- #endif // SOURCE_OPT_SCALAR_ANALYSIS_NODES_H_
|