| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538 |
- // Copyright (c) 2018 Google LLC.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include <functional>
- #include <map>
- #include <memory>
- #include <set>
- #include <utility>
- #include <vector>
- #include "source/opt/scalar_analysis.h"
- // Simplifies scalar analysis DAGs.
- //
- // 1. Given a node passed to SimplifyExpression we first simplify the graph by
- // calling SimplifyPolynomial. This groups like nodes following basic arithmetic
- // rules, so multiple adds of the same load instruction could be grouped into a
- // single multiply of that instruction. SimplifyPolynomial will traverse the DAG
- // and build up an accumulator buffer for each class of instruction it finds.
- // For example take the loop:
- // for (i=0, i<N; i++) { i+B+23+4+B+C; }
- // In this example the expression "i+B+23+4+B+C" has four classes of
- // instruction, induction variable i, the two value unknowns B and C, and the
- // constants. The accumulator buffer is then used to rebuild the graph using
- // the accumulation of each type. This example would then be folded into
- // i+2*B+C+27.
- //
- // This new graph contains a single add node (or if only one type found then
- // just that node) with each of the like terms (or multiplication node) as a
- // child.
- //
- // 2. FoldRecurrentAddExpressions is then called on this new DAG. This will take
- // RecurrentAddExpressions which are with respect to the same loop and fold them
- // into a single new RecurrentAddExpression with respect to that same loop. An
- // expression can have multiple RecurrentAddExpression's with respect to
- // different loops in the case of nested loops. These expressions cannot be
- // folded further. For example:
- //
- // for (i=0; i<N;i++) for(j=0,k=1; j<N;++j,++k)
- //
- // The 'j' and 'k' are RecurrentAddExpression with respect to the second loop
- // and 'i' to the first. If 'j' and 'k' are used in an expression together then
- // they will be folded into a new RecurrentAddExpression with respect to the
- // second loop in that expression.
- //
- //
- // 3. If the DAG now only contains a single RecurrentAddExpression we can now
- // perform a final optimization SimplifyRecurrentAddExpression. This will
- // transform the entire DAG into a RecurrentAddExpression. Additions to the
- // RecurrentAddExpression are added to the offset field and multiplications to
- // the coefficient.
- //
- namespace spvtools {
- namespace opt {
- // Implementation of the functions which are used to simplify the graph. Graphs
- // of unknowns, multiplies, additions, and constants can be turned into a linear
- // add node with each term as a child. For instance a large graph built from, X
- // + X*2 + Y - Y*3 + 4 - 1, would become a single add expression with the
- // children X*3, -Y*2, and the constant 3. Graphs containing a recurrent
- // expression will be simplified to represent the entire graph around a single
- // recurrent expression. So for an induction variable (i=0, i++) if you add 1 to
- // i in an expression we can rewrite the graph of that expression to be a single
- // recurrent expression of (i=1,i++).
- class SENodeSimplifyImpl {
- public:
- SENodeSimplifyImpl(ScalarEvolutionAnalysis* analysis,
- SENode* node_to_simplify)
- : analysis_(*analysis),
- node_(node_to_simplify),
- constant_accumulator_(0) {}
- // Return the result of the simplification.
- SENode* Simplify();
- private:
- // Recursively descend through the graph to build up the accumulator objects
- // which are used to flatten the graph. |child| is the node currently being
- // traversed and the |negation| flag is used to signify that this operation
- // was preceded by a unary negative operation and as such the result should be
- // negated.
- void GatherAccumulatorsFromChildNodes(SENode* new_node, SENode* child,
- bool negation);
- // Given a |multiply| node add to the accumulators for the term type within
- // the |multiply| expression. Will return true if the accumulators could be
- // calculated successfully. If the |multiply| is in any form other than
- // unknown*constant then we return false. |negation| signifies that the
- // operation was preceded by a unary negative.
- bool AccumulatorsFromMultiply(SENode* multiply, bool negation);
- SERecurrentNode* UpdateCoefficient(SERecurrentNode* recurrent,
- int64_t coefficient_update) const;
- // If the graph contains a recurrent expression, ie, an expression with the
- // loop iterations as a term in the expression, then the whole expression
- // can be rewritten to be a recurrent expression.
- SENode* SimplifyRecurrentAddExpression(SERecurrentNode* node);
- // Simplify the whole graph by linking like terms together in a single flat
- // add node. So X*2 + Y -Y + 3 +6 would become X*2 + 9. Where X and Y are a
- // ValueUnknown node (i.e, a load) or a recurrent expression.
- SENode* SimplifyPolynomial();
- // Each recurrent expression is an expression with respect to a specific loop.
- // If we have two different recurrent terms with respect to the same loop in a
- // single expression then we can fold those terms into a single new term.
- // For instance:
- //
- // induction i = 0, i++
- // temp = i*10
- // array[i+temp]
- //
- // We can fold the i + temp into a single expression. Rec(0,1) + Rec(0,10) can
- // become Rec(0,11).
- SENode* FoldRecurrentAddExpressions(SENode*);
- // We can eliminate recurrent expressions which have a coefficient of zero by
- // replacing them with their offset value. We are able to do this because a
- // recurrent expression represents the equation coefficient*iterations +
- // offset.
- SENode* EliminateZeroCoefficientRecurrents(SENode* node);
- // A reference the analysis which requested the simplification.
- ScalarEvolutionAnalysis& analysis_;
- // The node being simplified.
- SENode* node_;
- // An accumulator of the net result of all the constant operations performed
- // in a graph.
- int64_t constant_accumulator_;
- // An accumulator for each of the non constant terms in the graph.
- std::map<SENode*, int64_t> accumulators_;
- };
- // From a |multiply| build up the accumulator objects.
- bool SENodeSimplifyImpl::AccumulatorsFromMultiply(SENode* multiply,
- bool negation) {
- if (multiply->GetChildren().size() != 2 ||
- multiply->GetType() != SENode::Multiply)
- return false;
- SENode* operand_1 = multiply->GetChild(0);
- SENode* operand_2 = multiply->GetChild(1);
- SENode* value_unknown = nullptr;
- SENode* constant = nullptr;
- // Work out which operand is the unknown value.
- if (operand_1->GetType() == SENode::ValueUnknown ||
- operand_1->GetType() == SENode::RecurrentAddExpr)
- value_unknown = operand_1;
- else if (operand_2->GetType() == SENode::ValueUnknown ||
- operand_2->GetType() == SENode::RecurrentAddExpr)
- value_unknown = operand_2;
- // Work out which operand is the constant coefficient.
- if (operand_1->GetType() == SENode::Constant)
- constant = operand_1;
- else if (operand_2->GetType() == SENode::Constant)
- constant = operand_2;
- // If the expression is not a variable multiplied by a constant coefficient,
- // exit out.
- if (!(value_unknown && constant)) {
- return false;
- }
- int64_t sign = negation ? -1 : 1;
- auto iterator = accumulators_.find(value_unknown);
- int64_t new_value = constant->AsSEConstantNode()->FoldToSingleValue() * sign;
- // Add the result of the multiplication to the accumulators.
- if (iterator != accumulators_.end()) {
- (*iterator).second += new_value;
- } else {
- accumulators_.insert({value_unknown, new_value});
- }
- return true;
- }
- SENode* SENodeSimplifyImpl::Simplify() {
- // We only handle graphs with an addition, multiplication, or negation, at the
- // root.
- if (node_->GetType() != SENode::Add && node_->GetType() != SENode::Multiply &&
- node_->GetType() != SENode::Negative)
- return node_;
- SENode* simplified_polynomial = SimplifyPolynomial();
- SERecurrentNode* recurrent_expr = nullptr;
- node_ = simplified_polynomial;
- // Fold recurrent expressions which are with respect to the same loop into a
- // single recurrent expression.
- simplified_polynomial = FoldRecurrentAddExpressions(simplified_polynomial);
- simplified_polynomial =
- EliminateZeroCoefficientRecurrents(simplified_polynomial);
- // Traverse the immediate children of the new node to find the recurrent
- // expression. If there is more than one there is nothing further we can do.
- for (SENode* child : simplified_polynomial->GetChildren()) {
- if (child->GetType() == SENode::RecurrentAddExpr) {
- recurrent_expr = child->AsSERecurrentNode();
- }
- }
- // We need to count the number of unique recurrent expressions in the DAG to
- // ensure there is only one.
- for (auto child_iterator = simplified_polynomial->graph_begin();
- child_iterator != simplified_polynomial->graph_end(); ++child_iterator) {
- if (child_iterator->GetType() == SENode::RecurrentAddExpr &&
- recurrent_expr != child_iterator->AsSERecurrentNode()) {
- return simplified_polynomial;
- }
- }
- if (recurrent_expr) {
- return SimplifyRecurrentAddExpression(recurrent_expr);
- }
- return simplified_polynomial;
- }
- // Traverse the graph to build up the accumulator objects.
- void SENodeSimplifyImpl::GatherAccumulatorsFromChildNodes(SENode* new_node,
- SENode* child,
- bool negation) {
- int32_t sign = negation ? -1 : 1;
- if (child->GetType() == SENode::Constant) {
- // Collect all the constants and add them together.
- constant_accumulator_ +=
- child->AsSEConstantNode()->FoldToSingleValue() * sign;
- } else if (child->GetType() == SENode::ValueUnknown ||
- child->GetType() == SENode::RecurrentAddExpr) {
- // To rebuild the graph of X+X+X*2 into 4*X we count the occurrences of X
- // and create a new node of count*X after. X can either be a ValueUnknown or
- // a RecurrentAddExpr. The count for each X is stored in the accumulators_
- // map.
- auto iterator = accumulators_.find(child);
- // If we've encountered this term before add to the accumulator for it.
- if (iterator == accumulators_.end())
- accumulators_.insert({child, sign});
- else
- iterator->second += sign;
- } else if (child->GetType() == SENode::Multiply) {
- if (!AccumulatorsFromMultiply(child, negation)) {
- new_node->AddChild(child);
- }
- } else if (child->GetType() == SENode::Add) {
- for (SENode* next_child : *child) {
- GatherAccumulatorsFromChildNodes(new_node, next_child, negation);
- }
- } else if (child->GetType() == SENode::Negative) {
- SENode* negated_node = child->GetChild(0);
- GatherAccumulatorsFromChildNodes(new_node, negated_node, !negation);
- } else {
- // If we can't work out how to fold the expression just add it back into
- // the graph.
- new_node->AddChild(child);
- }
- }
- SERecurrentNode* SENodeSimplifyImpl::UpdateCoefficient(
- SERecurrentNode* recurrent, int64_t coefficient_update) const {
- std::unique_ptr<SERecurrentNode> new_recurrent_node{new SERecurrentNode(
- recurrent->GetParentAnalysis(), recurrent->GetLoop())};
- SENode* new_coefficient = analysis_.CreateMultiplyNode(
- recurrent->GetCoefficient(),
- analysis_.CreateConstant(coefficient_update));
- // See if the node can be simplified.
- SENode* simplified = analysis_.SimplifyExpression(new_coefficient);
- if (simplified->GetType() != SENode::CanNotCompute)
- new_coefficient = simplified;
- if (coefficient_update < 0) {
- new_recurrent_node->AddOffset(
- analysis_.CreateNegation(recurrent->GetOffset()));
- } else {
- new_recurrent_node->AddOffset(recurrent->GetOffset());
- }
- new_recurrent_node->AddCoefficient(new_coefficient);
- return analysis_.GetCachedOrAdd(std::move(new_recurrent_node))
- ->AsSERecurrentNode();
- }
- // Simplify all the terms in the polynomial function.
- SENode* SENodeSimplifyImpl::SimplifyPolynomial() {
- std::unique_ptr<SENode> new_add{new SEAddNode(node_->GetParentAnalysis())};
- // Traverse the graph and gather the accumulators from it.
- GatherAccumulatorsFromChildNodes(new_add.get(), node_, false);
- // Fold all the constants into a single constant node.
- if (constant_accumulator_ != 0) {
- new_add->AddChild(analysis_.CreateConstant(constant_accumulator_));
- }
- for (auto& pair : accumulators_) {
- SENode* term = pair.first;
- int64_t count = pair.second;
- // We can eliminate the term completely.
- if (count == 0) continue;
- if (count == 1) {
- new_add->AddChild(term);
- } else if (count == -1 && term->GetType() != SENode::RecurrentAddExpr) {
- // If the count is -1 we can just add a negative version of that node,
- // unless it is a recurrent expression as we would rather the negative
- // goes on the recurrent expressions children. This makes it easier to
- // work with in other places.
- new_add->AddChild(analysis_.CreateNegation(term));
- } else {
- // Output value unknown terms as count*term and output recurrent
- // expression terms as rec(offset, coefficient + count) offset and
- // coefficient are the same as in the original expression.
- if (term->GetType() == SENode::ValueUnknown) {
- SENode* count_as_constant = analysis_.CreateConstant(count);
- new_add->AddChild(
- analysis_.CreateMultiplyNode(count_as_constant, term));
- } else {
- assert(term->GetType() == SENode::RecurrentAddExpr &&
- "We only handle value unknowns or recurrent expressions");
- // Create a new recurrent expression by adding the count to the
- // coefficient of the old one.
- new_add->AddChild(UpdateCoefficient(term->AsSERecurrentNode(), count));
- }
- }
- }
- // If there is only one term in the addition left just return that term.
- if (new_add->GetChildren().size() == 1) {
- return new_add->GetChild(0);
- }
- // If there are no terms left in the addition just return 0.
- if (new_add->GetChildren().size() == 0) {
- return analysis_.CreateConstant(0);
- }
- return analysis_.GetCachedOrAdd(std::move(new_add));
- }
- SENode* SENodeSimplifyImpl::FoldRecurrentAddExpressions(SENode* root) {
- std::unique_ptr<SEAddNode> new_node{new SEAddNode(&analysis_)};
- // A mapping of loops to the list of recurrent expressions which are with
- // respect to those loops.
- std::map<const Loop*, std::vector<std::pair<SERecurrentNode*, bool>>>
- loops_to_recurrent{};
- bool has_multiple_same_loop_recurrent_terms = false;
- for (SENode* child : *root) {
- bool negation = false;
- if (child->GetType() == SENode::Negative) {
- child = child->GetChild(0);
- negation = true;
- }
- if (child->GetType() == SENode::RecurrentAddExpr) {
- const Loop* loop = child->AsSERecurrentNode()->GetLoop();
- SERecurrentNode* rec = child->AsSERecurrentNode();
- if (loops_to_recurrent.find(loop) == loops_to_recurrent.end()) {
- loops_to_recurrent[loop] = {std::make_pair(rec, negation)};
- } else {
- loops_to_recurrent[loop].push_back(std::make_pair(rec, negation));
- has_multiple_same_loop_recurrent_terms = true;
- }
- } else {
- new_node->AddChild(child);
- }
- }
- if (!has_multiple_same_loop_recurrent_terms) return root;
- for (auto pair : loops_to_recurrent) {
- std::vector<std::pair<SERecurrentNode*, bool>>& recurrent_expressions =
- pair.second;
- const Loop* loop = pair.first;
- std::unique_ptr<SENode> new_coefficient{new SEAddNode(&analysis_)};
- std::unique_ptr<SENode> new_offset{new SEAddNode(&analysis_)};
- for (auto node_pair : recurrent_expressions) {
- SERecurrentNode* node = node_pair.first;
- bool negative = node_pair.second;
- if (!negative) {
- new_coefficient->AddChild(node->GetCoefficient());
- new_offset->AddChild(node->GetOffset());
- } else {
- new_coefficient->AddChild(
- analysis_.CreateNegation(node->GetCoefficient()));
- new_offset->AddChild(analysis_.CreateNegation(node->GetOffset()));
- }
- }
- std::unique_ptr<SERecurrentNode> new_recurrent{
- new SERecurrentNode(&analysis_, loop)};
- SENode* new_coefficient_simplified =
- analysis_.SimplifyExpression(new_coefficient.get());
- SENode* new_offset_simplified =
- analysis_.SimplifyExpression(new_offset.get());
- if (new_coefficient_simplified->GetType() == SENode::Constant &&
- new_coefficient_simplified->AsSEConstantNode()->FoldToSingleValue() ==
- 0) {
- return new_offset_simplified;
- }
- new_recurrent->AddCoefficient(new_coefficient_simplified);
- new_recurrent->AddOffset(new_offset_simplified);
- new_node->AddChild(analysis_.GetCachedOrAdd(std::move(new_recurrent)));
- }
- // If we only have one child in the add just return that.
- if (new_node->GetChildren().size() == 1) {
- return new_node->GetChild(0);
- }
- return analysis_.GetCachedOrAdd(std::move(new_node));
- }
- SENode* SENodeSimplifyImpl::EliminateZeroCoefficientRecurrents(SENode* node) {
- if (node->GetType() != SENode::Add) return node;
- bool has_change = false;
- std::vector<SENode*> new_children{};
- for (SENode* child : *node) {
- if (child->GetType() == SENode::RecurrentAddExpr) {
- SENode* coefficient = child->AsSERecurrentNode()->GetCoefficient();
- // If coefficient is zero then we can eliminate the recurrent expression
- // entirely and just return the offset as the recurrent expression is
- // representing the equation coefficient*iterations + offset.
- if (coefficient->GetType() == SENode::Constant &&
- coefficient->AsSEConstantNode()->FoldToSingleValue() == 0) {
- new_children.push_back(child->AsSERecurrentNode()->GetOffset());
- has_change = true;
- } else {
- new_children.push_back(child);
- }
- } else {
- new_children.push_back(child);
- }
- }
- if (!has_change) return node;
- std::unique_ptr<SENode> new_add{new SEAddNode(node_->GetParentAnalysis())};
- for (SENode* child : new_children) {
- new_add->AddChild(child);
- }
- return analysis_.GetCachedOrAdd(std::move(new_add));
- }
- SENode* SENodeSimplifyImpl::SimplifyRecurrentAddExpression(
- SERecurrentNode* recurrent_expr) {
- const std::vector<SENode*>& children = node_->GetChildren();
- std::unique_ptr<SERecurrentNode> recurrent_node{new SERecurrentNode(
- recurrent_expr->GetParentAnalysis(), recurrent_expr->GetLoop())};
- // Create and simplify the new offset node.
- std::unique_ptr<SENode> new_offset{
- new SEAddNode(recurrent_expr->GetParentAnalysis())};
- new_offset->AddChild(recurrent_expr->GetOffset());
- for (SENode* child : children) {
- if (child->GetType() != SENode::RecurrentAddExpr) {
- new_offset->AddChild(child);
- }
- }
- // Simplify the new offset.
- SENode* simplified_child = analysis_.SimplifyExpression(new_offset.get());
- // If the child can be simplified, add the simplified form otherwise, add it
- // via the usual caching mechanism.
- if (simplified_child->GetType() != SENode::CanNotCompute) {
- recurrent_node->AddOffset(simplified_child);
- } else {
- recurrent_expr->AddOffset(analysis_.GetCachedOrAdd(std::move(new_offset)));
- }
- recurrent_node->AddCoefficient(recurrent_expr->GetCoefficient());
- return analysis_.GetCachedOrAdd(std::move(recurrent_node));
- }
- /*
- * Scalar Analysis simplification public methods.
- */
- SENode* ScalarEvolutionAnalysis::SimplifyExpression(SENode* node) {
- SENodeSimplifyImpl impl{this, node};
- return impl.Simplify();
- }
- } // namespace opt
- } // namespace spvtools
|