| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708 |
- // Copyright (c) 2018 Google LLC.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- // This file implements the SSA rewriting algorithm proposed in
- //
- // Simple and Efficient Construction of Static Single Assignment Form.
- // Braun M., Buchwald S., Hack S., Leißa R., Mallon C., Zwinkau A. (2013)
- // In: Jhala R., De Bosschere K. (eds)
- // Compiler Construction. CC 2013.
- // Lecture Notes in Computer Science, vol 7791.
- // Springer, Berlin, Heidelberg
- //
- // https://link.springer.com/chapter/10.1007/978-3-642-37051-9_6
- //
- // In contrast to common eager algorithms based on dominance and dominance
- // frontier information, this algorithm works backwards from load operations.
- //
- // When a target variable is loaded, it queries the variable's reaching
- // definition. If the reaching definition is unknown at the current location,
- // it searches backwards in the CFG, inserting Phi instructions at join points
- // in the CFG along the way until it finds the desired store instruction.
- //
- // The algorithm avoids repeated lookups using memoization.
- //
- // For reducible CFGs, which are a superset of the structured CFGs in SPIRV,
- // this algorithm is proven to produce minimal SSA. That is, it inserts the
- // minimal number of Phi instructions required to ensure the SSA property, but
- // some Phi instructions may be dead
- // (https://en.wikipedia.org/wiki/Static_single_assignment_form).
- #include "source/opt/ssa_rewrite_pass.h"
- #include <memory>
- #include <sstream>
- #include "source/opcode.h"
- #include "source/opt/cfg.h"
- #include "source/opt/mem_pass.h"
- #include "source/opt/types.h"
- // Debug logging (0: Off, 1-N: Verbosity level). Replace this with the
- // implementation done for
- // https://github.com/KhronosGroup/SPIRV-Tools/issues/1351
- // #define SSA_REWRITE_DEBUGGING_LEVEL 3
- #ifdef SSA_REWRITE_DEBUGGING_LEVEL
- #include <ostream>
- #else
- #define SSA_REWRITE_DEBUGGING_LEVEL 0
- #endif
- namespace spvtools {
- namespace opt {
- namespace {
- constexpr uint32_t kStoreValIdInIdx = 1;
- constexpr uint32_t kVariableInitIdInIdx = 1;
- } // namespace
- std::string SSARewriter::PhiCandidate::PrettyPrint(const CFG* cfg) const {
- std::ostringstream str;
- str << "%" << result_id_ << " = Phi[%" << var_id_ << ", BB %" << bb_->id()
- << "](";
- if (phi_args_.size() > 0) {
- uint32_t arg_ix = 0;
- for (uint32_t pred_label : cfg->preds(bb_->id())) {
- uint32_t arg_id = phi_args_[arg_ix++];
- str << "[%" << arg_id << ", bb(%" << pred_label << ")] ";
- }
- }
- str << ")";
- if (copy_of_ != 0) {
- str << " [COPY OF " << copy_of_ << "]";
- }
- str << ((is_complete_) ? " [COMPLETE]" : " [INCOMPLETE]");
- return str.str();
- }
- SSARewriter::PhiCandidate& SSARewriter::CreatePhiCandidate(uint32_t var_id,
- BasicBlock* bb) {
- // TODO(1841): Handle id overflow.
- uint32_t phi_result_id = pass_->context()->TakeNextId();
- auto result = phi_candidates_.emplace(
- phi_result_id, PhiCandidate(var_id, phi_result_id, bb));
- PhiCandidate& phi_candidate = result.first->second;
- return phi_candidate;
- }
- void SSARewriter::ReplacePhiUsersWith(const PhiCandidate& phi_to_remove,
- uint32_t repl_id) {
- for (uint32_t user_id : phi_to_remove.users()) {
- PhiCandidate* user_phi = GetPhiCandidate(user_id);
- BasicBlock* bb = pass_->context()->get_instr_block(user_id);
- if (user_phi) {
- // If the user is a Phi candidate, replace all arguments that refer to
- // |phi_to_remove.result_id()| with |repl_id|.
- for (uint32_t& arg : user_phi->phi_args()) {
- if (arg == phi_to_remove.result_id()) {
- arg = repl_id;
- }
- }
- } else if (bb->id() == user_id) {
- // The phi candidate is the definition of the variable at basic block
- // |bb|. We must change this to the replacement.
- WriteVariable(phi_to_remove.var_id(), bb, repl_id);
- } else {
- // For regular loads, traverse the |load_replacement_| table looking for
- // instances of |phi_to_remove|.
- for (auto& it : load_replacement_) {
- if (it.second == phi_to_remove.result_id()) {
- it.second = repl_id;
- }
- }
- }
- }
- }
- uint32_t SSARewriter::TryRemoveTrivialPhi(PhiCandidate* phi_candidate) {
- uint32_t same_id = 0;
- for (uint32_t arg_id : phi_candidate->phi_args()) {
- if (arg_id == same_id || arg_id == phi_candidate->result_id()) {
- // This is a self-reference operand or a reference to the same value ID.
- continue;
- }
- if (same_id != 0) {
- // This Phi candidate merges at least two values. Therefore, it is not
- // trivial.
- assert(phi_candidate->copy_of() == 0 &&
- "Phi candidate transitioning from copy to non-copy.");
- return phi_candidate->result_id();
- }
- same_id = arg_id;
- }
- // The previous logic has determined that this Phi candidate |phi_candidate|
- // is trivial. It is essentially the copy operation phi_candidate->phi_result
- // = Phi(same, same, same, ...). Since it is not necessary, we can re-route
- // all the users of |phi_candidate->phi_result| to all its users, and remove
- // |phi_candidate|.
- // Mark the Phi candidate as a trivial copy of |same_id|, so it won't be
- // generated.
- phi_candidate->MarkCopyOf(same_id);
- assert(same_id != 0 && "Completed Phis cannot have %0 in their arguments");
- // Since |phi_candidate| always produces |same_id|, replace all the users of
- // |phi_candidate| with |same_id|.
- ReplacePhiUsersWith(*phi_candidate, same_id);
- return same_id;
- }
- uint32_t SSARewriter::AddPhiOperands(PhiCandidate* phi_candidate) {
- assert(phi_candidate->phi_args().size() == 0 &&
- "Phi candidate already has arguments");
- bool found_0_arg = false;
- for (uint32_t pred : pass_->cfg()->preds(phi_candidate->bb()->id())) {
- BasicBlock* pred_bb = pass_->cfg()->block(pred);
- // If |pred_bb| is not sealed, use %0 to indicate that
- // |phi_candidate| needs to be completed after the whole CFG has
- // been processed.
- //
- // Note that we cannot call GetReachingDef() in these cases
- // because this would generate an empty Phi candidate in
- // |pred_bb|. When |pred_bb| is later processed, a new definition
- // for |phi_candidate->var_id_| will be lost because
- // |phi_candidate| will still be reached by the empty Phi.
- //
- // Consider:
- //
- // BB %23:
- // %38 = Phi[%i](%int_0[%1], %39[%25])
- //
- // ...
- //
- // BB %25: [Starts unsealed]
- // %39 = Phi[%i]()
- // %34 = ...
- // OpStore %i %34 -> Currdef(%i) at %25 is %34
- // OpBranch %23
- //
- // When we first create the Phi in %38, we add an operandless Phi in
- // %39 to hold the unknown reaching def for %i.
- //
- // But then, when we go to complete %39 at the end. The reaching def
- // for %i in %25's predecessor is %38 itself. So we miss the fact
- // that %25 has a def for %i that should be used.
- //
- // By making the argument %0, we make |phi_candidate| incomplete,
- // which will cause it to be completed after the whole CFG has
- // been scanned.
- uint32_t arg_id = IsBlockSealed(pred_bb)
- ? GetReachingDef(phi_candidate->var_id(), pred_bb)
- : 0;
- phi_candidate->phi_args().push_back(arg_id);
- if (arg_id == 0) {
- found_0_arg = true;
- } else {
- // If this argument is another Phi candidate, add |phi_candidate| to the
- // list of users for the defining Phi.
- PhiCandidate* defining_phi = GetPhiCandidate(arg_id);
- if (defining_phi && defining_phi != phi_candidate) {
- defining_phi->AddUser(phi_candidate->result_id());
- }
- }
- }
- // If we could not fill-in all the arguments of this Phi, mark it incomplete
- // so it gets completed after the whole CFG has been processed.
- if (found_0_arg) {
- phi_candidate->MarkIncomplete();
- incomplete_phis_.push(phi_candidate);
- return phi_candidate->result_id();
- }
- // Try to remove |phi_candidate|, if it's trivial.
- uint32_t repl_id = TryRemoveTrivialPhi(phi_candidate);
- if (repl_id == phi_candidate->result_id()) {
- // |phi_candidate| is complete and not trivial. Add it to the
- // list of Phi candidates to generate.
- phi_candidate->MarkComplete();
- phis_to_generate_.push_back(phi_candidate);
- }
- return repl_id;
- }
- uint32_t SSARewriter::GetValueAtBlock(uint32_t var_id, BasicBlock* bb) {
- assert(bb != nullptr);
- const auto& bb_it = defs_at_block_.find(bb);
- if (bb_it != defs_at_block_.end()) {
- const auto& current_defs = bb_it->second;
- const auto& var_it = current_defs.find(var_id);
- if (var_it != current_defs.end()) {
- return var_it->second;
- }
- }
- return 0;
- }
- uint32_t SSARewriter::GetReachingDef(uint32_t var_id, BasicBlock* bb) {
- // If |var_id| has a definition in |bb|, return it.
- uint32_t val_id = GetValueAtBlock(var_id, bb);
- if (val_id != 0) return val_id;
- // Otherwise, look up the value for |var_id| in |bb|'s predecessors.
- auto& predecessors = pass_->cfg()->preds(bb->id());
- if (predecessors.size() == 1) {
- // If |bb| has exactly one predecessor, we look for |var_id|'s definition
- // there.
- val_id = GetReachingDef(var_id, pass_->cfg()->block(predecessors[0]));
- } else if (predecessors.size() > 1) {
- // If there is more than one predecessor, this is a join block which may
- // require a Phi instruction. This will act as |var_id|'s current
- // definition to break potential cycles.
- PhiCandidate& phi_candidate = CreatePhiCandidate(var_id, bb);
- // Set the value for |bb| to avoid an infinite recursion.
- WriteVariable(var_id, bb, phi_candidate.result_id());
- val_id = AddPhiOperands(&phi_candidate);
- }
- // If we could not find a store for this variable in the path from the root
- // of the CFG, the variable is not defined, so we use undef.
- if (val_id == 0) {
- val_id = pass_->GetUndefVal(var_id);
- if (val_id == 0) {
- return 0;
- }
- }
- WriteVariable(var_id, bb, val_id);
- return val_id;
- }
- void SSARewriter::SealBlock(BasicBlock* bb) {
- auto result = sealed_blocks_.insert(bb);
- (void)result;
- assert(result.second == true &&
- "Tried to seal the same basic block more than once.");
- }
- void SSARewriter::ProcessStore(Instruction* inst, BasicBlock* bb) {
- auto opcode = inst->opcode();
- assert((opcode == spv::Op::OpStore || opcode == spv::Op::OpVariable) &&
- "Expecting a store or a variable definition instruction.");
- uint32_t var_id = 0;
- uint32_t val_id = 0;
- if (opcode == spv::Op::OpStore) {
- (void)pass_->GetPtr(inst, &var_id);
- val_id = inst->GetSingleWordInOperand(kStoreValIdInIdx);
- } else if (inst->NumInOperands() >= 2) {
- var_id = inst->result_id();
- val_id = inst->GetSingleWordInOperand(kVariableInitIdInIdx);
- }
- if (pass_->IsTargetVar(var_id)) {
- WriteVariable(var_id, bb, val_id);
- pass_->context()->get_debug_info_mgr()->AddDebugValueForVariable(
- inst, var_id, val_id, inst);
- #if SSA_REWRITE_DEBUGGING_LEVEL > 1
- std::cerr << "\tFound store '%" << var_id << " = %" << val_id << "': "
- << inst->PrettyPrint(SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES)
- << "\n";
- #endif
- }
- }
- bool SSARewriter::ProcessLoad(Instruction* inst, BasicBlock* bb) {
- // Get the pointer that we are using to load from.
- uint32_t var_id = 0;
- (void)pass_->GetPtr(inst, &var_id);
- // Get the immediate reaching definition for |var_id|.
- //
- // In the presence of variable pointers, the reaching definition may be
- // another pointer. For example, the following fragment:
- //
- // %2 = OpVariable %_ptr_Input_float Input
- // %11 = OpVariable %_ptr_Function__ptr_Input_float Function
- // OpStore %11 %2
- // %12 = OpLoad %_ptr_Input_float %11
- // %13 = OpLoad %float %12
- //
- // corresponds to the pseudo-code:
- //
- // layout(location = 0) in flat float *%2
- // float %13;
- // float *%12;
- // float **%11;
- // *%11 = %2;
- // %12 = *%11;
- // %13 = *%12;
- //
- // which ultimately, should correspond to:
- //
- // %13 = *%2;
- //
- // During rewriting, the pointer %12 is found to be replaceable by %2 (i.e.,
- // load_replacement_[12] is 2). However, when processing the load
- // %13 = *%12, the type of %12's reaching definition is another float
- // pointer (%2), instead of a float value.
- //
- // When this happens, we need to continue looking up the reaching definition
- // chain until we get to a float value or a non-target var (i.e. a variable
- // that cannot be SSA replaced, like %2 in this case since it is a function
- // argument).
- analysis::DefUseManager* def_use_mgr = pass_->context()->get_def_use_mgr();
- analysis::TypeManager* type_mgr = pass_->context()->get_type_mgr();
- analysis::Type* load_type = type_mgr->GetType(inst->type_id());
- uint32_t val_id = 0;
- bool found_reaching_def = false;
- while (!found_reaching_def) {
- if (!pass_->IsTargetVar(var_id)) {
- // If the variable we are loading from is not an SSA target (globals,
- // function parameters), do nothing.
- return true;
- }
- val_id = GetReachingDef(var_id, bb);
- if (val_id == 0) {
- return false;
- }
- // If the reaching definition is a pointer type different than the type of
- // the instruction we are analyzing, then it must be a reference to another
- // pointer (otherwise, this would be invalid SPIRV). We continue
- // de-referencing it by making |val_id| be |var_id|.
- //
- // NOTE: if there is no reaching definition instruction, it means |val_id|
- // is an undef.
- Instruction* reaching_def_inst = def_use_mgr->GetDef(val_id);
- if (reaching_def_inst &&
- !type_mgr->GetType(reaching_def_inst->type_id())->IsSame(load_type)) {
- var_id = val_id;
- } else {
- found_reaching_def = true;
- }
- }
- // Schedule a replacement for the result of this load instruction with
- // |val_id|. After all the rewriting decisions are made, every use of
- // this load will be replaced with |val_id|.
- uint32_t load_id = inst->result_id();
- assert(load_replacement_.count(load_id) == 0);
- load_replacement_[load_id] = val_id;
- PhiCandidate* defining_phi = GetPhiCandidate(val_id);
- if (defining_phi) {
- defining_phi->AddUser(load_id);
- }
- #if SSA_REWRITE_DEBUGGING_LEVEL > 1
- std::cerr << "\tFound load: "
- << inst->PrettyPrint(SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES)
- << " (replacement for %" << load_id << " is %" << val_id << ")\n";
- #endif
- return true;
- }
- void SSARewriter::PrintPhiCandidates() const {
- std::cerr << "\nPhi candidates:\n";
- for (const auto& phi_it : phi_candidates_) {
- std::cerr << "\tBB %" << phi_it.second.bb()->id() << ": "
- << phi_it.second.PrettyPrint(pass_->cfg()) << "\n";
- }
- std::cerr << "\n";
- }
- void SSARewriter::PrintReplacementTable() const {
- std::cerr << "\nLoad replacement table\n";
- for (const auto& it : load_replacement_) {
- std::cerr << "\t%" << it.first << " -> %" << it.second << "\n";
- }
- std::cerr << "\n";
- }
- bool SSARewriter::GenerateSSAReplacements(BasicBlock* bb) {
- #if SSA_REWRITE_DEBUGGING_LEVEL > 1
- std::cerr << "Generating SSA replacements for block: " << bb->id() << "\n";
- std::cerr << bb->PrettyPrint(SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES)
- << "\n";
- #endif
- for (auto& inst : *bb) {
- auto opcode = inst.opcode();
- if (opcode == spv::Op::OpStore || opcode == spv::Op::OpVariable) {
- ProcessStore(&inst, bb);
- } else if (inst.opcode() == spv::Op::OpLoad) {
- if (!ProcessLoad(&inst, bb)) {
- return false;
- }
- }
- }
- // Seal |bb|. This means that all the stores in it have been scanned and
- // it's ready to feed them into its successors.
- SealBlock(bb);
- #if SSA_REWRITE_DEBUGGING_LEVEL > 1
- PrintPhiCandidates();
- PrintReplacementTable();
- std::cerr << "\n\n";
- #endif
- return true;
- }
- uint32_t SSARewriter::GetReplacement(std::pair<uint32_t, uint32_t> repl) {
- uint32_t val_id = repl.second;
- auto it = load_replacement_.find(val_id);
- while (it != load_replacement_.end()) {
- val_id = it->second;
- it = load_replacement_.find(val_id);
- }
- return val_id;
- }
- uint32_t SSARewriter::GetPhiArgument(const PhiCandidate* phi_candidate,
- uint32_t ix) {
- assert(phi_candidate->IsReady() &&
- "Tried to get the final argument from an incomplete/trivial Phi");
- uint32_t arg_id = phi_candidate->phi_args()[ix];
- while (arg_id != 0) {
- PhiCandidate* phi_user = GetPhiCandidate(arg_id);
- if (phi_user == nullptr || phi_user->IsReady()) {
- // If the argument is not a Phi or it's a Phi candidate ready to be
- // emitted, return it.
- return arg_id;
- }
- arg_id = phi_user->copy_of();
- }
- assert(false &&
- "No Phi candidates in the copy-of chain are ready to be generated");
- return 0;
- }
- bool SSARewriter::ApplyReplacements() {
- bool modified = false;
- #if SSA_REWRITE_DEBUGGING_LEVEL > 2
- std::cerr << "\n\nApplying replacement decisions to IR\n\n";
- PrintPhiCandidates();
- PrintReplacementTable();
- std::cerr << "\n\n";
- #endif
- // Add Phi instructions from completed Phi candidates.
- std::vector<Instruction*> generated_phis;
- for (const PhiCandidate* phi_candidate : phis_to_generate_) {
- #if SSA_REWRITE_DEBUGGING_LEVEL > 2
- std::cerr << "Phi candidate: " << phi_candidate->PrettyPrint(pass_->cfg())
- << "\n";
- #endif
- assert(phi_candidate->is_complete() &&
- "Tried to instantiate a Phi instruction from an incomplete Phi "
- "candidate");
- auto* local_var = pass_->get_def_use_mgr()->GetDef(phi_candidate->var_id());
- // Build the vector of operands for the new OpPhi instruction.
- uint32_t type_id = pass_->GetPointeeTypeId(local_var);
- std::vector<Operand> phi_operands;
- uint32_t arg_ix = 0;
- std::unordered_map<uint32_t, uint32_t> already_seen;
- for (uint32_t pred_label : pass_->cfg()->preds(phi_candidate->bb()->id())) {
- uint32_t op_val_id = GetPhiArgument(phi_candidate, arg_ix++);
- if (already_seen.count(pred_label) == 0) {
- phi_operands.push_back(
- {spv_operand_type_t::SPV_OPERAND_TYPE_ID, {op_val_id}});
- phi_operands.push_back(
- {spv_operand_type_t::SPV_OPERAND_TYPE_ID, {pred_label}});
- already_seen[pred_label] = op_val_id;
- } else {
- // It is possible that there are two edges from the same parent block.
- // Since the OpPhi can have only one entry for each parent, we have to
- // make sure the two edges are consistent with each other.
- assert(already_seen[pred_label] == op_val_id &&
- "Inconsistent value for duplicate edges.");
- }
- }
- // Generate a new OpPhi instruction and insert it in its basic
- // block.
- std::unique_ptr<Instruction> phi_inst(
- new Instruction(pass_->context(), spv::Op::OpPhi, type_id,
- phi_candidate->result_id(), phi_operands));
- generated_phis.push_back(phi_inst.get());
- pass_->get_def_use_mgr()->AnalyzeInstDef(&*phi_inst);
- pass_->context()->set_instr_block(&*phi_inst, phi_candidate->bb());
- auto insert_it = phi_candidate->bb()->begin();
- insert_it = insert_it.InsertBefore(std::move(phi_inst));
- pass_->context()->get_decoration_mgr()->CloneDecorations(
- phi_candidate->var_id(), phi_candidate->result_id(),
- {spv::Decoration::RelaxedPrecision});
- // Add DebugValue for the new OpPhi instruction.
- insert_it->SetDebugScope(local_var->GetDebugScope());
- pass_->context()->get_debug_info_mgr()->AddDebugValueForVariable(
- &*insert_it, phi_candidate->var_id(), phi_candidate->result_id(),
- &*insert_it);
- modified = true;
- }
- // Scan uses for all inserted Phi instructions. Do this separately from the
- // registration of the Phi instruction itself to avoid trying to analyze
- // uses of Phi instructions that have not been registered yet.
- for (Instruction* phi_inst : generated_phis) {
- pass_->get_def_use_mgr()->AnalyzeInstUse(&*phi_inst);
- }
- #if SSA_REWRITE_DEBUGGING_LEVEL > 1
- std::cerr << "\n\nReplacing the result of load instructions with the "
- "corresponding SSA id\n\n";
- #endif
- // Apply replacements from the load replacement table.
- for (auto& repl : load_replacement_) {
- uint32_t load_id = repl.first;
- uint32_t val_id = GetReplacement(repl);
- Instruction* load_inst =
- pass_->context()->get_def_use_mgr()->GetDef(load_id);
- #if SSA_REWRITE_DEBUGGING_LEVEL > 2
- std::cerr << "\t"
- << load_inst->PrettyPrint(
- SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES)
- << " (%" << load_id << " -> %" << val_id << ")\n";
- #endif
- // Remove the load instruction and replace all the uses of this load's
- // result with |val_id|. Kill any names or decorates using the load's
- // result before replacing to prevent incorrect replacement in those
- // instructions.
- pass_->context()->KillNamesAndDecorates(load_id);
- pass_->context()->ReplaceAllUsesWith(load_id, val_id);
- pass_->context()->KillInst(load_inst);
- modified = true;
- }
- return modified;
- }
- void SSARewriter::FinalizePhiCandidate(PhiCandidate* phi_candidate) {
- assert(phi_candidate->phi_args().size() > 0 &&
- "Phi candidate should have arguments");
- uint32_t ix = 0;
- for (uint32_t pred : pass_->cfg()->preds(phi_candidate->bb()->id())) {
- BasicBlock* pred_bb = pass_->cfg()->block(pred);
- uint32_t& arg_id = phi_candidate->phi_args()[ix++];
- if (arg_id == 0) {
- // If |pred_bb| is still not sealed, it means it's unreachable. In this
- // case, we just use Undef as an argument.
- arg_id = IsBlockSealed(pred_bb)
- ? GetReachingDef(phi_candidate->var_id(), pred_bb)
- : pass_->GetUndefVal(phi_candidate->var_id());
- }
- }
- // This candidate is now completed.
- phi_candidate->MarkComplete();
- // If |phi_candidate| is not trivial, add it to the list of Phis to
- // generate.
- if (TryRemoveTrivialPhi(phi_candidate) == phi_candidate->result_id()) {
- // If we could not remove |phi_candidate|, it means that it is complete
- // and not trivial. Add it to the list of Phis to generate.
- assert(!phi_candidate->copy_of() && "A completed Phi cannot be trivial.");
- phis_to_generate_.push_back(phi_candidate);
- }
- }
- void SSARewriter::FinalizePhiCandidates() {
- #if SSA_REWRITE_DEBUGGING_LEVEL > 1
- std::cerr << "Finalizing Phi candidates:\n\n";
- PrintPhiCandidates();
- std::cerr << "\n";
- #endif
- // Now, complete the collected candidates.
- while (incomplete_phis_.size() > 0) {
- PhiCandidate* phi_candidate = incomplete_phis_.front();
- incomplete_phis_.pop();
- FinalizePhiCandidate(phi_candidate);
- }
- }
- Pass::Status SSARewriter::RewriteFunctionIntoSSA(Function* fp) {
- #if SSA_REWRITE_DEBUGGING_LEVEL > 0
- std::cerr << "Function before SSA rewrite:\n"
- << fp->PrettyPrint(0) << "\n\n\n";
- #endif
- // Collect variables that can be converted into SSA IDs.
- pass_->CollectTargetVars(fp);
- // Generate all the SSA replacements and Phi candidates. This will
- // generate incomplete and trivial Phis.
- bool succeeded = pass_->cfg()->WhileEachBlockInReversePostOrder(
- fp->entry().get(), [this](BasicBlock* bb) {
- if (!GenerateSSAReplacements(bb)) {
- return false;
- }
- return true;
- });
- if (!succeeded) {
- return Pass::Status::Failure;
- }
- // Remove trivial Phis and add arguments to incomplete Phis.
- FinalizePhiCandidates();
- // Finally, apply all the replacements in the IR.
- bool modified = ApplyReplacements();
- #if SSA_REWRITE_DEBUGGING_LEVEL > 0
- std::cerr << "\n\n\nFunction after SSA rewrite:\n"
- << fp->PrettyPrint(0) << "\n";
- #endif
- return modified ? Pass::Status::SuccessWithChange
- : Pass::Status::SuccessWithoutChange;
- }
- Pass::Status SSARewritePass::Process() {
- Status status = Status::SuccessWithoutChange;
- for (auto& fn : *get_module()) {
- if (fn.IsDeclaration()) {
- continue;
- }
- status =
- CombineStatus(status, SSARewriter(this).RewriteFunctionIntoSSA(&fn));
- // Kill DebugDeclares for target variables.
- for (auto var_id : seen_target_vars_) {
- context()->get_debug_info_mgr()->KillDebugDeclares(var_id);
- }
- if (status == Status::Failure) {
- break;
- }
- }
- return status;
- }
- } // namespace opt
- } // namespace spvtools
|