Gr.cpp 123 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032
  1. // Copyright (C) 2009-present, Panagiotis Christopoulos Charitos and contributors.
  2. // All rights reserved.
  3. // Code licensed under the BSD License.
  4. // http://www.anki3d.org/LICENSE
  5. #include <Tests/Framework/Framework.h>
  6. #include <Tests/Gr/GrCommon.h>
  7. #include <AnKi/Gr.h>
  8. #include <AnKi/Window/NativeWindow.h>
  9. #include <AnKi/Window/Input.h>
  10. #include <AnKi/Util/CVarSet.h>
  11. #include <AnKi/GpuMemory/RebarTransientMemoryPool.h>
  12. #include <AnKi/Util/HighRezTimer.h>
  13. #include <AnKi/Resource/TransferGpuAllocator.h>
  14. #include <AnKi/ShaderCompiler/ShaderParser.h>
  15. #include <AnKi/Collision/Aabb.h>
  16. #include <AnKi/Util/WeakArray.h>
  17. #include <ctime>
  18. using namespace anki;
  19. ANKI_TEST(Gr, GrManager)
  20. {
  21. g_cvarGrValidation = true;
  22. DefaultMemoryPool::allocateSingleton(allocAligned, nullptr);
  23. initWindow();
  24. ANKI_TEST_EXPECT_NO_ERR(Input::allocateSingleton().init());
  25. initGrManager();
  26. GrManager::freeSingleton();
  27. Input::freeSingleton();
  28. NativeWindow::freeSingleton();
  29. DefaultMemoryPool::freeSingleton();
  30. }
  31. ANKI_TEST(Gr, Shader)
  32. {
  33. #if 0
  34. COMMON_BEGIN()
  35. ShaderPtr shader = createShader(FRAG_MRT_SRC, ShaderType::kPixel, *g_gr);
  36. COMMON_END()
  37. #endif
  38. }
  39. ANKI_TEST(Gr, ShaderProgram)
  40. {
  41. #if 0
  42. COMMON_BEGIN()
  43. constexpr const char* kVertSrc = R"(
  44. out gl_PerVertex
  45. {
  46. vec4 gl_Position;
  47. };
  48. void main()
  49. {
  50. const vec2 POSITIONS[3] = vec2[](vec2(-1.0, 1.0), vec2(0.0, -1.0), vec2(1.0, 1.0));
  51. gl_Position = vec4(POSITIONS[gl_VertexID % 3], 0.0, 1.0);
  52. })";
  53. constexpr const char* kFragSrc = R"(layout (location = 0) out vec4 out_color;
  54. void main()
  55. {
  56. out_color = vec4(0.5);
  57. })";
  58. ShaderProgramPtr ppline = createProgram(kVertSrc, kFragSrc, *g_gr);
  59. COMMON_END()
  60. #endif
  61. }
  62. ANKI_TEST(Gr, ClearScreen)
  63. {
  64. commonInit();
  65. ANKI_TEST_LOGI("Expect to see a magenta background");
  66. constexpr U kIterations = 100;
  67. U iterations = kIterations;
  68. while(iterations--)
  69. {
  70. HighRezTimer timer;
  71. timer.start();
  72. GrManager::getSingleton().beginFrame();
  73. TexturePtr presentTex = GrManager::getSingleton().acquireNextPresentableTexture();
  74. CommandBufferInitInfo cinit;
  75. cinit.m_flags = CommandBufferFlag::kGeneralWork | CommandBufferFlag::kSmallBatch;
  76. CommandBufferPtr cmdb = GrManager::getSingleton().newCommandBuffer(cinit);
  77. const TextureBarrierInfo barrier = {TextureView(presentTex.get(), TextureSubresourceDesc::all()), TextureUsageBit::kNone,
  78. TextureUsageBit::kRtvDsvWrite};
  79. cmdb->setPipelineBarrier({&barrier, 1}, {}, {});
  80. RenderTarget rt;
  81. rt.m_textureView = TextureView(presentTex.get(), TextureSubresourceDesc::all());
  82. const F32 col = 1.0f - F32(iterations) / F32(kIterations);
  83. rt.m_clearValue.m_colorf = {col, 0.0f, col, 1.0f};
  84. cmdb->beginRenderPass({rt});
  85. cmdb->endRenderPass();
  86. const TextureBarrierInfo barrier2 = {TextureView(presentTex.get(), TextureSubresourceDesc::all()), TextureUsageBit::kRtvDsvWrite,
  87. TextureUsageBit::kPresent};
  88. cmdb->setPipelineBarrier({&barrier2, 1}, {}, {});
  89. cmdb->endRecording();
  90. GrManager::getSingleton().submit(cmdb.get());
  91. GrManager::getSingleton().endFrame();
  92. timer.stop();
  93. const F32 TICK = 1.0f / 30.0f;
  94. if(timer.getElapsedTime() < TICK)
  95. {
  96. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  97. }
  98. }
  99. commonDestroy();
  100. }
  101. ANKI_TEST(Gr, SimpleCompute)
  102. {
  103. commonInit();
  104. {
  105. BufferInitInfo buffInit;
  106. buffInit.m_mapAccess = BufferMapAccessBit::kWrite;
  107. buffInit.m_size = sizeof(Vec4);
  108. buffInit.m_usage = BufferUsageBit::kSrvCompute;
  109. BufferPtr readBuff = GrManager::getSingleton().newBuffer(buffInit);
  110. Vec4* inData = static_cast<Vec4*>(readBuff->map(0, kMaxPtrSize, BufferMapAccessBit::kWrite));
  111. const Vec4 kValue(123.456f, -666.666f, 172.2f, -16.0f);
  112. *inData = kValue;
  113. readBuff->unmap();
  114. buffInit.m_mapAccess = BufferMapAccessBit::kRead;
  115. buffInit.m_usage = BufferUsageBit::kUavCompute;
  116. BufferPtr writeBuff = GrManager::getSingleton().newBuffer(buffInit);
  117. constexpr const char* kSrc = R"(
  118. StructuredBuffer<float4> g_in : register(t0);
  119. RWStructuredBuffer<float4> g_out : register(u0);
  120. [numthreads(1, 1, 1)]
  121. void main()
  122. {
  123. g_out[0] = g_in[0];
  124. }
  125. )";
  126. ShaderPtr compShader = createShader(kSrc, ShaderType::kCompute);
  127. ShaderProgramInitInfo progInit("Program");
  128. progInit.m_computeShader = compShader.get();
  129. ShaderProgramPtr prog = GrManager::getSingleton().newShaderProgram(progInit);
  130. CommandBufferInitInfo cmdbInit;
  131. cmdbInit.m_flags |= CommandBufferFlag::kSmallBatch;
  132. CommandBufferPtr cmdb = GrManager::getSingleton().newCommandBuffer(cmdbInit);
  133. // Record
  134. cmdb->bindShaderProgram(prog.get());
  135. cmdb->bindSrv(0, 0, BufferView(readBuff.get()));
  136. cmdb->bindUav(0, 0, BufferView(writeBuff.get()));
  137. cmdb->dispatchCompute(1, 1, 1);
  138. cmdb->endRecording();
  139. FencePtr signalFence;
  140. GrManager::getSingleton().submit(cmdb.get(), {}, &signalFence);
  141. signalFence->clientWait(kMaxSecond);
  142. // Check results
  143. Vec4* outData = static_cast<Vec4*>(writeBuff->map(0, kMaxPtrSize, BufferMapAccessBit::kRead));
  144. ANKI_TEST_EXPECT_EQ(*outData, kValue);
  145. writeBuff->unmap();
  146. }
  147. commonDestroy();
  148. }
  149. ANKI_TEST(Gr, Bindings)
  150. {
  151. commonInit();
  152. {
  153. constexpr const char* kSrc = R"(
  154. struct Foo3
  155. {
  156. float x;
  157. float y;
  158. float z;
  159. };
  160. StructuredBuffer<float4> g_structured : register(t0);
  161. Texture2D g_tex : register(t2);
  162. Buffer<float4> g_buff : register(t3);
  163. RWStructuredBuffer<Foo3> g_rwstructured : register(u0, space2);
  164. RWTexture2D<float4> g_rwtex[3] : register(u2);
  165. RWBuffer<float4> g_rwbuff : register(u7);
  166. struct Foo
  167. {
  168. float4 m_val;
  169. };
  170. ConstantBuffer<Foo> g_consts : register(b0);
  171. struct Foo2
  172. {
  173. uint4 m_val;
  174. };
  175. #if defined(__spirv__)
  176. [[vk::push_constant]] ConstantBuffer<Foo2> g_consts;
  177. [[vk::binding(0, 1000000)]] Texture2D g_bindless[];
  178. #else
  179. ConstantBuffer<Foo2> g_consts : register(b0, space3000);
  180. #endif
  181. SamplerState g_sampler : register(s2);
  182. [numthreads(1, 1, 1)]
  183. void main()
  184. {
  185. float3 tmp = (g_structured[0] + g_structured[1]).xyz;
  186. Foo3 tmp3 = {tmp.x, tmp.y, tmp.z};
  187. g_rwstructured[0] = tmp3;
  188. tmp *= 2.0f;
  189. Foo3 tmp3_ = {tmp.x, tmp.y, tmp.z};
  190. g_rwstructured[1] = tmp3_;
  191. g_rwtex[0][uint2(0, 0)] = g_consts.m_val;
  192. #if defined(__spirv__)
  193. Texture2D tex = g_bindless[g_consts.m_val.x];
  194. #else
  195. Texture2D tex = ResourceDescriptorHeap[g_consts.m_val.x];
  196. #endif
  197. g_rwtex[1][uint2(0, 0)] = tex.SampleLevel(g_sampler, 0.0f, 0.0f);
  198. g_rwtex[2][uint2(0, 0)] = g_tex.SampleLevel(g_sampler, 0.0f, 0.0f);
  199. g_rwbuff[0] = g_buff[0];
  200. }
  201. )";
  202. struct Foo
  203. {
  204. F32 x;
  205. F32 y;
  206. F32 z;
  207. Foo() = default;
  208. Foo(Vec4 v)
  209. : x(v.x)
  210. , y(v.y)
  211. , z(v.z)
  212. {
  213. }
  214. Bool operator==(const Foo& b) const
  215. {
  216. return x == b.x && y == b.y && z == b.z;
  217. }
  218. };
  219. TextureInitInfo texInit;
  220. texInit.m_width = texInit.m_height = 1;
  221. texInit.m_format = Format::kR32G32B32A32_Sfloat;
  222. ShaderPtr compShader = createShader(kSrc, ShaderType::kCompute);
  223. ShaderProgramInitInfo progInit("Program");
  224. progInit.m_computeShader = compShader.get();
  225. ShaderProgramPtr prog = GrManager::getSingleton().newShaderProgram(progInit);
  226. const Vec4 kMagicVec(1.0f, 2.0f, 3.0f, 4.0f);
  227. const Vec4 kInvalidVec(100.0f, 200.0f, 300.0f, 400.0f);
  228. const Array<Vec4, 2> data = {kMagicVec, kMagicVec * 2.0f};
  229. BufferPtr structured = createBuffer(BufferUsageBit::kAllUav | BufferUsageBit::kAllSrv, ConstWeakArray<Vec4>(data), "structured");
  230. texInit.m_usage = TextureUsageBit::kSrvCompute | TextureUsageBit::kCopyDestination;
  231. TexturePtr tex = createTexture2d(texInit, kMagicVec * 2.0f);
  232. BufferPtr buff = createBuffer(BufferUsageBit::kAllUav | BufferUsageBit::kAllSrv, kMagicVec * 2.0f, 1, "buff");
  233. BufferPtr rwstructured = createBuffer(BufferUsageBit::kAllUav | BufferUsageBit::kAllSrv, Foo(kInvalidVec), 2, "rwstructured");
  234. BufferPtr rwbuff = createBuffer(BufferUsageBit::kAllUav | BufferUsageBit::kAllSrv, kInvalidVec, 1, "rwbuff");
  235. Array<TexturePtr, 3> rwtex;
  236. texInit.m_usage = TextureUsageBit::kUavCompute | TextureUsageBit::kCopyDestination;
  237. rwtex[0] = createTexture2d(texInit, kInvalidVec);
  238. rwtex[1] = createTexture2d(texInit, kInvalidVec);
  239. rwtex[2] = createTexture2d(texInit, kInvalidVec);
  240. BufferPtr consts = createBuffer(BufferUsageBit::kConstantCompute, kMagicVec * 3.0f, 1, "consts");
  241. SamplerInitInfo samplInit;
  242. SamplerPtr sampler = GrManager::getSingleton().newSampler(samplInit);
  243. const U32 bindlessIdx = tex->getOrCreateBindlessTextureIndex(TextureSubresourceDesc::all());
  244. // Record
  245. CommandBufferInitInfo cmdbInit;
  246. cmdbInit.m_flags |= CommandBufferFlag::kSmallBatch;
  247. CommandBufferPtr cmdb = GrManager::getSingleton().newCommandBuffer(cmdbInit);
  248. cmdb->bindShaderProgram(prog.get());
  249. cmdb->bindSrv(0, 0, BufferView(structured.get()));
  250. cmdb->bindSrv(2, 0, TextureView(tex.get(), TextureSubresourceDesc::all()));
  251. cmdb->bindSrv(3, 0, BufferView(buff.get()), Format::kR32G32B32A32_Sfloat);
  252. cmdb->bindUav(0, 2, BufferView(rwstructured.get()));
  253. cmdb->bindUav(2, 0, TextureView(rwtex[0].get(), TextureSubresourceDesc::firstSurface()));
  254. cmdb->bindUav(3, 0, TextureView(rwtex[1].get(), TextureSubresourceDesc::firstSurface()));
  255. cmdb->bindUav(4, 0, TextureView(rwtex[2].get(), TextureSubresourceDesc::firstSurface()));
  256. cmdb->bindUav(7, 0, BufferView(rwbuff.get()), Format::kR32G32B32A32_Sfloat);
  257. cmdb->bindConstantBuffer(0, 0, BufferView(consts.get()));
  258. cmdb->bindSampler(2, 0, sampler.get());
  259. const UVec4 pc(bindlessIdx);
  260. cmdb->setFastConstants(&pc, sizeof(pc));
  261. cmdb->dispatchCompute(1, 1, 1);
  262. cmdb->endRecording();
  263. FencePtr signalFence;
  264. GrManager::getSingleton().submit(cmdb.get(), {}, &signalFence);
  265. signalFence->clientWait(kMaxSecond);
  266. // Check
  267. validateBuffer(rwstructured, ConstWeakArray(Array<Foo, 2>{kMagicVec + kMagicVec * 2.0f, (kMagicVec + kMagicVec * 2.0f) * 2.0f}));
  268. validateBuffer(rwbuff, ConstWeakArray(Array<Vec4, 1>{kMagicVec * 2.0f}));
  269. }
  270. commonDestroy();
  271. }
  272. ANKI_TEST(Gr, CoordinateSystem)
  273. {
  274. commonInit();
  275. {
  276. constexpr const Char* kVertSrc = R"(
  277. struct VertOut
  278. {
  279. float4 m_svPosition : SV_POSITION;
  280. float2 m_uv : TEXCOORDS;
  281. };
  282. VertOut main(uint svVertexId : SV_VERTEXID)
  283. {
  284. const float2 positions[6] = {float2(-1, -1), float2(1, 1), float2(-1, 1), float2(-1, -1), float2(1, -1), float2(1, 1)};
  285. svVertexId = min(svVertexId, 5u);
  286. VertOut o;
  287. o.m_svPosition = float4(positions[svVertexId], 0.0f, 1.0f);
  288. o.m_uv = positions[svVertexId].xy / 2.0f + 0.5f;
  289. return o;
  290. })";
  291. constexpr const Char* kFragSrc = R"(
  292. struct Viewport
  293. {
  294. float4 m_viewport;
  295. };
  296. #if defined(__spirv__)
  297. [[vk::push_constant]] ConstantBuffer<Viewport> g_viewport;
  298. #else
  299. ConstantBuffer<Viewport> g_viewport : register(b0, space3000);
  300. #endif
  301. Texture2D g_tex : register(t0);
  302. SamplerState g_sampler : register(s0);
  303. float4 main(float4 svPosition : SV_POSITION, float2 uv : TEXCOORDS, uint svPrimId : SV_PRIMITIVEID) : SV_TARGET0
  304. {
  305. if(svPrimId == 1u)
  306. {
  307. return float4(svPosition.xy / g_viewport.m_viewport.zw, 0.0f, 0.0f);
  308. }
  309. else
  310. {
  311. return g_tex.Sample(g_sampler, float2(uv.x, -uv.y) * 2.0f);
  312. }
  313. })";
  314. ShaderProgramPtr prog = createVertFragProg(kVertSrc, kFragSrc);
  315. // Create a texture
  316. TextureInitInfo texInit;
  317. texInit.m_width = 2;
  318. texInit.m_height = 2;
  319. texInit.m_format = Format::kR32G32B32A32_Sfloat;
  320. texInit.m_usage = TextureUsageBit::kAllSrv | TextureUsageBit::kAllCopy;
  321. TexturePtr tex = GrManager::getSingleton().newTexture(texInit);
  322. BufferInitInfo buffInit;
  323. buffInit.m_mapAccess = BufferMapAccessBit::kWrite;
  324. buffInit.m_size = sizeof(Vec4) * 4;
  325. buffInit.m_usage = BufferUsageBit::kCopySource;
  326. BufferPtr uploadBuff = GrManager::getSingleton().newBuffer(buffInit);
  327. void* mappedMem = uploadBuff->map(0, kMaxPtrSize, BufferMapAccessBit::kWrite);
  328. const Array<Vec4, 4> texelData = {Vec4(1.0f, 0.0f, 0.0f, 1.0f), Vec4(0.0f, 1.0f, 0.0f, 1.0f), Vec4(0.0f, 0.0f, 1.0f, 1.0f),
  329. Vec4(1.0f, 0.0f, 1.0f, 1.0f)};
  330. memcpy(mappedMem, &texelData, sizeof(texelData));
  331. uploadBuff->unmap();
  332. CommandBufferInitInfo cmdbInit;
  333. cmdbInit.m_flags |= CommandBufferFlag::kSmallBatch;
  334. CommandBufferPtr cmdb = GrManager::getSingleton().newCommandBuffer(cmdbInit);
  335. TextureBarrierInfo barrier = {TextureView(tex.get(), TextureSubresourceDesc::all()), TextureUsageBit::kNone,
  336. TextureUsageBit::kCopyDestination};
  337. cmdb->setPipelineBarrier({&barrier, 1}, {}, {});
  338. cmdb->copyBufferToTexture(BufferView(uploadBuff.get()), TextureView(tex.get(), TextureSubresourceDesc::all()));
  339. barrier = {TextureView(tex.get(), TextureSubresourceDesc::all()), TextureUsageBit::kCopyDestination, TextureUsageBit::kSrvPixel};
  340. cmdb->setPipelineBarrier({&barrier, 1}, {}, {});
  341. cmdb->endRecording();
  342. FencePtr fence;
  343. GrManager::getSingleton().submit(cmdb.get(), {}, &fence);
  344. fence->clientWait(kMaxSecond);
  345. // Create sampler
  346. SamplerInitInfo samplInit;
  347. SamplerPtr sampler = GrManager::getSingleton().newSampler(samplInit);
  348. const U kIterationCount = 100;
  349. U iterations = kIterationCount;
  350. const Vec4 viewport(10.0f, 10.0f, F32(NativeWindow::getSingleton().getWidth() - 20), F32(NativeWindow::getSingleton().getHeight() - 30));
  351. while(iterations--)
  352. {
  353. HighRezTimer timer;
  354. timer.start();
  355. GrManager::getSingleton().beginFrame();
  356. TexturePtr presentTex = GrManager::getSingleton().acquireNextPresentableTexture();
  357. CommandBufferInitInfo cinit;
  358. cinit.m_flags = CommandBufferFlag::kGeneralWork;
  359. CommandBufferPtr cmdb = GrManager::getSingleton().newCommandBuffer(cinit);
  360. cmdb->setViewport(U32(viewport.x), U32(viewport.y), U32(viewport.z), U32(viewport.w));
  361. cmdb->bindShaderProgram(prog.get());
  362. const TextureBarrierInfo barrier = {TextureView(presentTex.get(), TextureSubresourceDesc::all()), TextureUsageBit::kNone,
  363. TextureUsageBit::kRtvDsvWrite};
  364. cmdb->setPipelineBarrier({&barrier, 1}, {}, {});
  365. cmdb->beginRenderPass({TextureView(presentTex.get(), TextureSubresourceDesc::firstSurface())});
  366. cmdb->setFastConstants(&viewport, sizeof(viewport));
  367. cmdb->bindSrv(0, 0, TextureView(tex.get(), TextureSubresourceDesc::all()));
  368. cmdb->bindSampler(0, 0, sampler.get());
  369. cmdb->draw(PrimitiveTopology::kTriangles, 6);
  370. cmdb->endRenderPass();
  371. const TextureBarrierInfo barrier2 = {TextureView(presentTex.get(), TextureSubresourceDesc::all()), TextureUsageBit::kRtvDsvWrite,
  372. TextureUsageBit::kPresent};
  373. cmdb->setPipelineBarrier({&barrier2, 1}, {}, {});
  374. cmdb->endRecording();
  375. GrManager::getSingleton().submit(cmdb.get());
  376. GrManager::getSingleton().endFrame();
  377. timer.stop();
  378. const Second kTick = 1.0f / 30.0f;
  379. if(timer.getElapsedTime() < kTick)
  380. {
  381. HighRezTimer::sleep(kTick - timer.getElapsedTime());
  382. }
  383. }
  384. }
  385. commonDestroy();
  386. }
  387. ANKI_TEST(Gr, ViewportAndScissor)
  388. {
  389. #if 0
  390. COMMON_BEGIN()
  391. ANKI_TEST_LOGI("Expect to see a grey quad appearing in the 4 corners. The clear color will change and affect only"
  392. "the area around the quad");
  393. ShaderProgramPtr prog = createProgram(VERT_QUAD_STRIP_SRC, FRAG_SRC, *gr);
  394. srand(time(nullptr));
  395. Array<FramebufferPtr, 4> fb;
  396. for(FramebufferPtr& f : fb)
  397. {
  398. FramebufferInitInfo fbinit;
  399. fbinit.m_colorAttachmentCount = 1;
  400. fbinit.m_colorAttachments[0].m_clearValue.m_colorf = {{randFloat(1.0), randFloat(1.0), randFloat(1.0), 1.0}};
  401. f = gr->newFramebuffer(fbinit);
  402. }
  403. static const Array2d<U, 4, 4> VIEWPORTS = {{{{0, 0, WIDTH / 2, HEIGHT / 2}},
  404. {{WIDTH / 2, 0, WIDTH / 2, HEIGHT / 2}},
  405. {{WIDTH / 2, HEIGHT / 2, WIDTH / 2, HEIGHT / 2}},
  406. {{0, HEIGHT / 2, WIDTH / 2, HEIGHT / 2}}}};
  407. const U ITERATIONS = 400;
  408. const U SCISSOR_MARGIN = 20;
  409. const U RENDER_AREA_MARGIN = 10;
  410. for(U i = 0; i < ITERATIONS; ++i)
  411. {
  412. HighRezTimer timer;
  413. timer.start();
  414. gr->beginFrame();
  415. CommandBufferInitInfo cinit;
  416. cinit.m_flags = CommandBufferFlag::kGeneralWork | CommandBufferFlag::kSmallBatch;
  417. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  418. U idx = (i / 30) % 4;
  419. auto vp = VIEWPORTS[idx];
  420. cmdb->setViewport(vp[0], vp[1], vp[2], vp[3]);
  421. cmdb->setScissor(
  422. vp[0] + SCISSOR_MARGIN, vp[1] + SCISSOR_MARGIN, vp[2] - SCISSOR_MARGIN * 2, vp[3] - SCISSOR_MARGIN * 2);
  423. cmdb->bindShaderProgram(prog);
  424. cmdb->beginRenderPass(fb[i % 4],
  425. {},
  426. {},
  427. vp[0] + RENDER_AREA_MARGIN,
  428. vp[1] + RENDER_AREA_MARGIN,
  429. vp[2] - RENDER_AREA_MARGIN * 2,
  430. vp[3] - RENDER_AREA_MARGIN * 2);
  431. cmdb->draw(PrimitiveTopology::TRIANGLE_STRIP, 4);
  432. cmdb->endRenderPass();
  433. cmdb->flush();
  434. gr->swapBuffers();
  435. timer.stop();
  436. const F32 TICK = 1.0f / 30.0f;
  437. if(timer.getElapsedTime() < TICK)
  438. {
  439. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  440. }
  441. }
  442. COMMON_END()
  443. #endif
  444. }
  445. ANKI_TEST(Gr, ViewportAndScissorOffscreen)
  446. {
  447. #if 0
  448. srand(U32(time(nullptr)));
  449. COMMON_BEGIN()
  450. constexpr const char* kFragSrc = R"(layout (location = 0) out vec4 out_color;
  451. void main()
  452. {
  453. out_color = vec4(0.5);
  454. })";
  455. ANKI_TEST_LOGI("Expect to see a grey quad appearing in the 4 corners. "
  456. "Around that quad is a border that changes color. "
  457. "The quads appear counter-clockwise");
  458. ShaderProgramPtr prog = createProgram(VERT_QUAD_STRIP_SRC, kFragSrc, *g_gr);
  459. ShaderProgramPtr blitProg = createProgram(VERT_QUAD_SRC, FRAG_TEX_SRC, *g_gr);
  460. const Format COL_FORMAT = Format::kR8G8B8A8_Unorm;
  461. const U RT_WIDTH = 32;
  462. const U RT_HEIGHT = 16;
  463. TextureInitInfo init;
  464. init.m_depth = 1;
  465. init.m_format = COL_FORMAT;
  466. init.m_usage = TextureUsageBit::kSrvPixel | TextureUsageBit::kAllRtvDsv;
  467. init.m_height = RT_HEIGHT;
  468. init.m_width = RT_WIDTH;
  469. init.m_mipmapCount = 1;
  470. init.m_depth = 1;
  471. init.m_layerCount = 1;
  472. init.m_samples = 1;
  473. init.m_type = TextureType::k2D;
  474. TexturePtr rt = g_gr->newTexture(init);
  475. TextureViewInitInfo viewInit(rt.get());
  476. TextureViewPtr texView = g_gr->newTextureView(viewInit);
  477. Array<FramebufferPtr, 4> fb;
  478. for(FramebufferPtr& f : fb)
  479. {
  480. TextureViewInitInfo viewInf(rt.get());
  481. TextureViewPtr view = g_gr->newTextureView(viewInf);
  482. FramebufferInitInfo fbinit;
  483. fbinit.m_colorAttachmentCount = 1;
  484. fbinit.m_colorAttachments[0].m_clearValue.m_colorf = {
  485. {getRandomRange(0.0f, 1.0f), getRandomRange(0.0f, 1.0f), getRandomRange(0.0f, 1.0f), 1.0}};
  486. fbinit.m_colorAttachments[0].m_textureView = view;
  487. f = g_gr->newFramebuffer(fbinit);
  488. }
  489. SamplerInitInfo samplerInit;
  490. samplerInit.m_minMagFilter = SamplingFilter::kNearest;
  491. samplerInit.m_mipmapFilter = SamplingFilter::kBase;
  492. SamplerPtr sampler = g_gr->newSampler(samplerInit);
  493. static const Array2d<U32, 4, 4> VIEWPORTS = {{{{0, 0, RT_WIDTH / 2, RT_HEIGHT / 2}},
  494. {{RT_WIDTH / 2, 0, RT_WIDTH / 2, RT_HEIGHT / 2}},
  495. {{RT_WIDTH / 2, RT_HEIGHT / 2, RT_WIDTH / 2, RT_HEIGHT / 2}},
  496. {{0, RT_HEIGHT / 2, RT_WIDTH / 2, RT_HEIGHT / 2}}}};
  497. const U32 ITERATIONS = 400;
  498. const U32 SCISSOR_MARGIN = 2;
  499. const U32 RENDER_AREA_MARGIN = 1;
  500. for(U32 i = 0; i < ITERATIONS; ++i)
  501. {
  502. HighRezTimer timer;
  503. timer.start();
  504. TexturePtr presentTex = g_gr->acquireNextPresentableTexture();
  505. FramebufferPtr dfb = createColorFb(*g_gr, presentTex);
  506. if(i == 0)
  507. {
  508. CommandBufferInitInfo cinit;
  509. cinit.m_flags = CommandBufferFlag::kGeneralWork | CommandBufferFlag::kSmallBatch;
  510. CommandBufferPtr cmdb = g_gr->newCommandBuffer(cinit);
  511. cmdb->setViewport(0, 0, RT_WIDTH, RT_HEIGHT);
  512. setTextureSurfaceBarrier(cmdb, rt, TextureUsageBit::kNone, TextureUsageBit::kRtvDsvWrite, TextureSurfaceDescriptor(0, 0, 0, 0));
  513. cmdb->beginRenderPass(fb[0].get(), {{TextureUsageBit::kRtvDsvWrite}}, {});
  514. cmdb->endRenderPass();
  515. setTextureSurfaceBarrier(cmdb, rt, TextureUsageBit::kRtvDsvWrite, TextureUsageBit::kSrvPixel, TextureSurfaceDescriptor(0, 0, 0, 0));
  516. cmdb->endRecording();
  517. GrManager::getSingleton().submit(cmdb.get());
  518. }
  519. CommandBufferInitInfo cinit;
  520. cinit.m_flags = CommandBufferFlag::kGeneralWork | CommandBufferFlag::kSmallBatch;
  521. CommandBufferPtr cmdb = g_gr->newCommandBuffer(cinit);
  522. // Draw offscreen
  523. setTextureSurfaceBarrier(cmdb, rt, TextureUsageBit::kSrvPixel, TextureUsageBit::kRtvDsvWrite, TextureSurfaceDescriptor(0, 0, 0, 0));
  524. auto vp = VIEWPORTS[(i / 30) % 4];
  525. cmdb->setViewport(vp[0], vp[1], vp[2], vp[3]);
  526. cmdb->setScissor(vp[0] + SCISSOR_MARGIN, vp[1] + SCISSOR_MARGIN, vp[2] - SCISSOR_MARGIN * 2, vp[3] - SCISSOR_MARGIN * 2);
  527. cmdb->bindShaderProgram(prog.get());
  528. cmdb->beginRenderPass(fb[i % 4].get(), {{TextureUsageBit::kRtvDsvWrite}}, {}, vp[0] + RENDER_AREA_MARGIN, vp[1] + RENDER_AREA_MARGIN,
  529. vp[2] - RENDER_AREA_MARGIN * 2, vp[3] - RENDER_AREA_MARGIN * 2);
  530. cmdb->draw(PrimitiveTopology::kTriangleStrip, 4);
  531. cmdb->endRenderPass();
  532. // Draw onscreen
  533. cmdb->setViewport(0, 0, g_win->getWidth(), g_win->getHeight());
  534. cmdb->setScissor(0, 0, g_win->getWidth(), g_win->getHeight());
  535. cmdb->bindShaderProgram(blitProg.get());
  536. setTextureSurfaceBarrier(cmdb, rt, TextureUsageBit::kRtvDsvWrite, TextureUsageBit::kSrvPixel, TextureSurfaceDescriptor(0, 0, 0, 0));
  537. // cmdb->bindTextureAndSampler(0, 0, texView.get(), sampler.get());
  538. presentBarrierA(cmdb, presentTex);
  539. cmdb->beginRenderPass(dfb.get(), {TextureUsageBit::kRtvDsvWrite}, {});
  540. cmdb->draw(PrimitiveTopology::kTriangles, 6);
  541. cmdb->endRenderPass();
  542. presentBarrierB(cmdb, presentTex);
  543. cmdb->endRecording();
  544. GrManager::getSingleton().submit(cmdb.get());
  545. g_gr->swapBuffers();
  546. timer.stop();
  547. const F32 TICK = 1.0f / 30.0f;
  548. if(timer.getElapsedTime() < TICK)
  549. {
  550. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  551. }
  552. }
  553. COMMON_END()
  554. #endif
  555. }
  556. ANKI_TEST(Gr, Buffer)
  557. {
  558. #if 0
  559. COMMON_BEGIN()
  560. BufferInitInfo buffInit("a");
  561. buffInit.m_size = 512;
  562. buffInit.m_usage = BufferUsageBit::kAllConstant;
  563. buffInit.m_mapAccess = BufferMapAccessBit::kNone;
  564. BufferPtr a = g_gr->newBuffer(buffInit);
  565. buffInit.setName("b");
  566. buffInit.m_size = 64;
  567. buffInit.m_usage = BufferUsageBit::kAllStorage;
  568. buffInit.m_mapAccess = BufferMapAccessBit::kWrite | BufferMapAccessBit::kRead;
  569. BufferPtr b = g_gr->newBuffer(buffInit);
  570. void* ptr = b->map(0, 64, BufferMapAccessBit::kWrite);
  571. ANKI_TEST_EXPECT_NEQ(ptr, nullptr);
  572. U8 ptr2[64];
  573. memset(ptr, 0xCC, 64);
  574. memset(ptr2, 0xCC, 64);
  575. b->unmap();
  576. ptr = b->map(0, 64, BufferMapAccessBit::kRead);
  577. ANKI_TEST_EXPECT_NEQ(ptr, nullptr);
  578. ANKI_TEST_EXPECT_EQ(memcmp(ptr, ptr2, 64), 0);
  579. b->unmap();
  580. COMMON_END()
  581. #endif
  582. }
  583. ANKI_TEST(Gr, SimpleDrawcall)
  584. {
  585. commonInit();
  586. {
  587. // Prog
  588. constexpr const char* kUboVert = R"(
  589. struct A
  590. {
  591. float4 m_color[3];
  592. float4 m_rotation2d;
  593. };
  594. #if defined(__spirv__)
  595. [[vk::push_constant]] ConstantBuffer<A> g_consts;
  596. #else
  597. ConstantBuffer<A> g_consts : register(b0, space3000);
  598. #endif
  599. struct VertOut
  600. {
  601. float4 m_svPosition : SV_POSITION;
  602. float3 m_color : COLOR;
  603. };
  604. VertOut main(uint svVertexId : SV_VERTEXID)
  605. {
  606. VertOut o;
  607. // No dynamic branching with push constants
  608. float4 color;
  609. switch(svVertexId)
  610. {
  611. case 0:
  612. color = g_consts.m_color[0];
  613. break;
  614. case 1:
  615. color = g_consts.m_color[1];
  616. break;
  617. default:
  618. color = g_consts.m_color[2];
  619. };
  620. o.m_color = color.xyz;
  621. const float2 kPositions[3] = {float2(-1.0, 1.0), float2(0.0, -1.0), float2(1.0, 1.0)};
  622. float2x2 rot = float2x2(
  623. g_consts.m_rotation2d.x, g_consts.m_rotation2d.y, g_consts.m_rotation2d.z, g_consts.m_rotation2d.w);
  624. float2 pos = mul(rot, kPositions[svVertexId % 3]);
  625. o.m_svPosition = float4(pos, 0.0, 1.0);
  626. return o;
  627. })";
  628. constexpr const char* kUboFrag = R"(
  629. struct VertOut
  630. {
  631. float4 m_svPosition : SV_POSITION;
  632. float3 m_color : COLOR;
  633. };
  634. float4 main(VertOut i) : SV_TARGET0
  635. {
  636. return float4(i.m_color, 1.0);
  637. })";
  638. ShaderProgramPtr prog = createVertFragProg(kUboVert, kUboFrag);
  639. const U kIterationCount = 100;
  640. U iterations = kIterationCount;
  641. while(iterations--)
  642. {
  643. HighRezTimer timer;
  644. timer.start();
  645. GrManager::getSingleton().beginFrame();
  646. TexturePtr presentTex = GrManager::getSingleton().acquireNextPresentableTexture();
  647. CommandBufferInitInfo cinit;
  648. cinit.m_flags = CommandBufferFlag::kGeneralWork;
  649. CommandBufferPtr cmdb = GrManager::getSingleton().newCommandBuffer(cinit);
  650. cmdb->setViewport(0, 0, NativeWindow::getSingleton().getWidth(), NativeWindow::getSingleton().getHeight());
  651. cmdb->bindShaderProgram(prog.get());
  652. const TextureBarrierInfo barrier = {TextureView(presentTex.get(), TextureSubresourceDesc::all()), TextureUsageBit::kNone,
  653. TextureUsageBit::kRtvDsvWrite};
  654. cmdb->setPipelineBarrier({&barrier, 1}, {}, {});
  655. cmdb->pushDebugMarker("AnKi", Vec3(1.0f, 0.0f, 0.0f));
  656. cmdb->beginRenderPass({TextureView(presentTex.get(), TextureSubresourceDesc::firstSurface())});
  657. // Set uniforms
  658. class A
  659. {
  660. public:
  661. Array<Vec4, 3> m_color;
  662. Vec4 m_rotation2d;
  663. } pc;
  664. const F32 angle = toRad(360.0f / F32(kIterationCount) * F32(iterations)) / 2.0f;
  665. pc.m_rotation2d[0] = cos(angle);
  666. pc.m_rotation2d[1] = -sin(angle);
  667. pc.m_rotation2d[2] = sin(angle);
  668. pc.m_rotation2d[3] = cos(angle);
  669. pc.m_color[0] = Vec4(1.0, 0.0, 0.0, 0.0);
  670. pc.m_color[1] = Vec4(0.0, 1.0, 0.0, 0.0);
  671. pc.m_color[2] = Vec4(0.0, 0.0, 1.0, 0.0);
  672. cmdb->setFastConstants(&pc, sizeof(pc));
  673. cmdb->draw(PrimitiveTopology::kTriangles, 3);
  674. cmdb->endRenderPass();
  675. const TextureBarrierInfo barrier2 = {TextureView(presentTex.get(), TextureSubresourceDesc::all()), TextureUsageBit::kRtvDsvWrite,
  676. TextureUsageBit::kPresent};
  677. cmdb->setPipelineBarrier({&barrier2, 1}, {}, {});
  678. cmdb->popDebugMarker();
  679. cmdb->endRecording();
  680. GrManager::getSingleton().submit(cmdb.get());
  681. GrManager::getSingleton().endFrame();
  682. timer.stop();
  683. const Second kTick = 1.0f / 30.0f;
  684. if(timer.getElapsedTime() < kTick)
  685. {
  686. HighRezTimer::sleep(kTick - timer.getElapsedTime());
  687. }
  688. }
  689. }
  690. commonDestroy();
  691. }
  692. ANKI_TEST(Gr, DrawWithVertex)
  693. {
  694. #if 0
  695. COMMON_BEGIN()
  696. // The buffers
  697. struct Vert
  698. {
  699. Vec3 m_pos;
  700. Array<U8, 4> m_color;
  701. };
  702. static_assert(sizeof(Vert) == sizeof(Vec4), "See file");
  703. BufferPtr b = g_gr->newBuffer(BufferInitInfo(sizeof(Vert) * 3, BufferUsageBit::kVertex, BufferMapAccessBit::kWrite));
  704. Vert* ptr = static_cast<Vert*>(b->map(0, sizeof(Vert) * 3, BufferMapAccessBit::kWrite));
  705. ANKI_TEST_EXPECT_NEQ(ptr, nullptr);
  706. ptr[0].m_pos = Vec3(-1.0, 1.0, 0.0);
  707. ptr[1].m_pos = Vec3(0.0, -1.0, 0.0);
  708. ptr[2].m_pos = Vec3(1.0, 1.0, 0.0);
  709. ptr[0].m_color = {{255, 0, 0}};
  710. ptr[1].m_color = {{0, 255, 0}};
  711. ptr[2].m_color = {{0, 0, 255}};
  712. b->unmap();
  713. BufferPtr c = g_gr->newBuffer(BufferInitInfo(sizeof(Vec3) * 3, BufferUsageBit::kVertex, BufferMapAccessBit::kWrite));
  714. Vec3* otherColor = static_cast<Vec3*>(c->map(0, sizeof(Vec3) * 3, BufferMapAccessBit::kWrite));
  715. otherColor[0] = Vec3(0.0, 1.0, 1.0);
  716. otherColor[1] = Vec3(1.0, 0.0, 1.0);
  717. otherColor[2] = Vec3(1.0, 1.0, 0.0);
  718. c->unmap();
  719. // Prog
  720. ShaderProgramPtr prog = createProgram(VERT_INP_SRC, FRAG_INP_SRC, *g_gr);
  721. U iterations = 100;
  722. while(iterations--)
  723. {
  724. HighRezTimer timer;
  725. timer.start();
  726. TexturePtr presentTex = g_gr->acquireNextPresentableTexture();
  727. FramebufferPtr fb = createColorFb(*g_gr, presentTex);
  728. CommandBufferInitInfo cinit;
  729. cinit.m_flags = CommandBufferFlag::kGeneralWork;
  730. CommandBufferPtr cmdb = g_gr->newCommandBuffer(cinit);
  731. cmdb->bindVertexBuffer(0, b.get(), 0, sizeof(Vert));
  732. cmdb->bindVertexBuffer(1, c.get(), 0, sizeof(Vec3));
  733. cmdb->setVertexAttribute(VertexAttributeSemantic::kPosition, 0, Format::kR32G32B32_Sfloat, 0);
  734. cmdb->setVertexAttribute(VertexAttributeSemantic::kColor, 0, Format::kR8G8B8_Unorm, sizeof(Vec3));
  735. cmdb->setVertexAttribute(VertexAttributeSemantic::kMisc0, 1, Format::kR32G32B32_Sfloat, 0);
  736. cmdb->setViewport(0, 0, g_win->getWidth(), g_win->getHeight());
  737. cmdb->setPolygonOffset(0.0, 0.0);
  738. cmdb->bindShaderProgram(prog.get());
  739. presentBarrierA(cmdb, presentTex);
  740. cmdb->beginRenderPass(fb.get(), {TextureUsageBit::kRtvDsvWrite}, {});
  741. cmdb->draw(PrimitiveTopology::kTriangles, 3);
  742. cmdb->endRenderPass();
  743. presentBarrierB(cmdb, presentTex);
  744. cmdb->endRecording();
  745. GrManager::getSingleton().submit(cmdb.get());
  746. g_gr->swapBuffers();
  747. timer.stop();
  748. const F32 TICK = 1.0f / 30.0f;
  749. if(timer.getElapsedTime() < TICK)
  750. {
  751. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  752. }
  753. }
  754. COMMON_END()
  755. #endif
  756. }
  757. ANKI_TEST(Gr, Sampler)
  758. {
  759. #if 0
  760. COMMON_BEGIN()
  761. SamplerInitInfo init;
  762. SamplerPtr b = g_gr->newSampler(init);
  763. COMMON_END()
  764. #endif
  765. }
  766. ANKI_TEST(Gr, Texture)
  767. {
  768. #if 0
  769. COMMON_BEGIN()
  770. TextureInitInfo init;
  771. init.m_depth = 1;
  772. init.m_format = Format::kR8G8B8_Unorm;
  773. init.m_usage = TextureUsageBit::kSrvPixel;
  774. init.m_height = 4;
  775. init.m_width = 4;
  776. init.m_mipmapCount = 2;
  777. init.m_depth = 1;
  778. init.m_layerCount = 1;
  779. init.m_samples = 1;
  780. init.m_type = TextureType::k2D;
  781. TexturePtr b = g_gr->newTexture(init);
  782. COMMON_END()
  783. #endif
  784. }
  785. ANKI_TEST(Gr, DrawWithTexture)
  786. {
  787. #if 0
  788. COMMON_BEGIN()
  789. //
  790. // Create sampler
  791. //
  792. SamplerInitInfo samplerInit;
  793. samplerInit.m_minMagFilter = SamplingFilter::kNearest;
  794. samplerInit.m_mipmapFilter = SamplingFilter::kLinear;
  795. samplerInit.m_addressing = SamplingAddressing::kClamp;
  796. SamplerPtr sampler = g_gr->newSampler(samplerInit);
  797. //
  798. // Create texture A
  799. //
  800. TextureInitInfo init;
  801. init.m_depth = 1;
  802. init.m_format = Format::kR8G8B8_Unorm;
  803. init.m_usage = TextureUsageBit::kSrvPixel | TextureUsageBit::kCopyDestination;
  804. init.m_height = 2;
  805. init.m_width = 2;
  806. init.m_mipmapCount = 2;
  807. init.m_samples = 1;
  808. init.m_depth = 1;
  809. init.m_layerCount = 1;
  810. init.m_type = TextureType::k2D;
  811. TexturePtr a = g_gr->newTexture(init);
  812. TextureViewPtr aView = g_gr->newTextureView(TextureViewInitInfo(a.get()));
  813. //
  814. // Create texture B
  815. //
  816. init.m_width = 4;
  817. init.m_height = 4;
  818. init.m_mipmapCount = 3;
  819. init.m_usage = TextureUsageBit::kSrvPixel | TextureUsageBit::kCopyDestination | TextureUsageBit::kGenerateMipmaps;
  820. TexturePtr b = g_gr->newTexture(init);
  821. TextureViewPtr bView = g_gr->newTextureView(TextureViewInitInfo(b.get()));
  822. //
  823. // Upload all textures
  824. //
  825. Array<U8, 2 * 2 * 3> mip0 = {{255, 0, 0, 0, 255, 0, 0, 0, 255, 255, 0, 255}};
  826. Array<U8, 3> mip1 = {{128, 128, 128}};
  827. Array<U8, 4 * 4 * 3> bmip0 = {{255, 0, 0, 0, 255, 0, 0, 0, 255, 255, 255, 0, 255, 0, 255, 0, 255, 255, 255, 255, 255, 128, 0, 0, 0,
  828. 128, 0, 0, 0, 128, 128, 128, 0, 128, 0, 128, 0, 128, 128, 128, 128, 128, 255, 128, 0, 0, 128, 255}};
  829. CommandBufferInitInfo cmdbinit;
  830. cmdbinit.m_flags = CommandBufferFlag::kGeneralWork;
  831. CommandBufferPtr cmdb = g_gr->newCommandBuffer(cmdbinit);
  832. // Set barriers
  833. setTextureSurfaceBarrier(cmdb, a, TextureUsageBit::kSrvPixel, TextureUsageBit::kCopyDestination, TextureSurfaceDescriptor(0, 0, 0, 0));
  834. setTextureSurfaceBarrier(cmdb, a, TextureUsageBit::kSrvPixel, TextureUsageBit::kCopyDestination, TextureSurfaceDescriptor(1, 0, 0, 0));
  835. setTextureSurfaceBarrier(cmdb, b, TextureUsageBit::kNone, TextureUsageBit::kCopyDestination, TextureSurfaceDescriptor(0, 0, 0, 0));
  836. TransferGpuAllocatorHandle handle0, handle1, handle2;
  837. UPLOAD_TEX_SURFACE(cmdb, a, TextureSurfaceDescriptor(0, 0, 0, 0), &mip0[0], sizeof(mip0), handle0);
  838. UPLOAD_TEX_SURFACE(cmdb, a, TextureSurfaceDescriptor(1, 0, 0, 0), &mip1[0], sizeof(mip1), handle1);
  839. UPLOAD_TEX_SURFACE(cmdb, b, TextureSurfaceDescriptor(0, 0, 0, 0), &bmip0[0], sizeof(bmip0), handle2);
  840. // Gen mips
  841. setTextureSurfaceBarrier(cmdb, b, TextureUsageBit::kCopyDestination, TextureUsageBit::kGenerateMipmaps, TextureSurfaceDescriptor(0, 0, 0, 0));
  842. cmdb->generateMipmaps2d(g_gr->newTextureView(TextureViewInitInfo(b.get())).get());
  843. // Set barriers
  844. setTextureSurfaceBarrier(cmdb, a, TextureUsageBit::kCopyDestination, TextureUsageBit::kSrvPixel, TextureSurfaceDescriptor(0, 0, 0, 0));
  845. setTextureSurfaceBarrier(cmdb, a, TextureUsageBit::kCopyDestination, TextureUsageBit::kSrvPixel, TextureSurfaceDescriptor(1, 0, 0, 0));
  846. for(U32 i = 0; i < 3; ++i)
  847. {
  848. setTextureSurfaceBarrier(cmdb, b, TextureUsageBit::kGenerateMipmaps, TextureUsageBit::kSrvPixel, TextureSurfaceDescriptor(i, 0, 0, 0));
  849. }
  850. FencePtr fence;
  851. cmdb->endRecording();
  852. GrManager::getSingleton().submit(cmdb.get(), {}, &fence);
  853. transfAlloc->release(handle0, fence);
  854. transfAlloc->release(handle1, fence);
  855. transfAlloc->release(handle2, fence);
  856. //
  857. // Create prog
  858. //
  859. static const char* FRAG_2TEX_SRC = R"(layout (location = 0) out vec4 out_color;
  860. layout(location = 0) in vec2 in_uv;
  861. layout(set = 0, binding = 0) uniform sampler2D u_tex0;
  862. layout(set = 0, binding = 1) uniform sampler2D u_tex1;
  863. layout(push_constant) uniform b_pc
  864. {
  865. Vec4 u_viewport;
  866. };
  867. void main()
  868. {
  869. if(gl_FragCoord.x < u_viewport.x / 2.0)
  870. {
  871. if(gl_FragCoord.y < u_viewport.y / 2.0)
  872. {
  873. vec2 uv = in_uv * 2.0;
  874. out_color = textureLod(u_tex0, uv, 0.0);
  875. }
  876. else
  877. {
  878. vec2 uv = in_uv * 2.0 - vec2(0.0, 1.0);
  879. out_color = textureLod(u_tex0, uv, 1.0);
  880. }
  881. }
  882. else
  883. {
  884. if(gl_FragCoord.y < u_viewport.y / 2.0)
  885. {
  886. vec2 uv = in_uv * 2.0 - vec2(1.0, 0.0);
  887. out_color = textureLod(u_tex1, uv, 0.0);
  888. }
  889. else
  890. {
  891. vec2 uv = in_uv * 2.0 - vec2(1.0, 1.0);
  892. out_color = textureLod(u_tex1, uv, 1.0);
  893. }
  894. }
  895. })";
  896. ShaderProgramPtr prog = createProgram(VERT_QUAD_SRC, FRAG_2TEX_SRC, *g_gr);
  897. //
  898. // Draw
  899. //
  900. const U ITERATION_COUNT = 200;
  901. U iterations = ITERATION_COUNT;
  902. while(iterations--)
  903. {
  904. HighRezTimer timer;
  905. timer.start();
  906. TexturePtr presentTex = g_gr->acquireNextPresentableTexture();
  907. FramebufferPtr fb = createColorFb(*g_gr, presentTex);
  908. CommandBufferInitInfo cinit;
  909. cinit.m_flags = CommandBufferFlag::kGeneralWork | CommandBufferFlag::kSmallBatch;
  910. CommandBufferPtr cmdb = g_gr->newCommandBuffer(cinit);
  911. cmdb->setViewport(0, 0, g_win->getWidth(), g_win->getHeight());
  912. cmdb->bindShaderProgram(prog.get());
  913. presentBarrierA(cmdb, presentTex);
  914. cmdb->beginRenderPass(fb.get(), {TextureUsageBit::kRtvDsvWrite}, {});
  915. Vec4 pc(F32(g_win->getWidth()), F32(g_win->getHeight()), 0.0f, 0.0f);
  916. cmdb->setFastConstants(&pc, sizeof(pc));
  917. // cmdb->bindTextureAndSampler(0, 0, aView.get(), sampler.get());
  918. // cmdb->bindTextureAndSampler(0, 1, bView.get(), sampler.get());
  919. cmdb->draw(PrimitiveTopology::kTriangles, 6);
  920. cmdb->endRenderPass();
  921. presentBarrierB(cmdb, presentTex);
  922. cmdb->endRecording();
  923. GrManager::getSingleton().submit(cmdb.get());
  924. g_gr->swapBuffers();
  925. timer.stop();
  926. const F32 TICK = 1.0f / 30.0f;
  927. if(timer.getElapsedTime() < TICK)
  928. {
  929. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  930. }
  931. }
  932. COMMON_END()
  933. #endif
  934. }
  935. #if 0
  936. static void drawOffscreenDrawcalls([[maybe_unused]] GrManager& gr, ShaderProgramPtr prog, CommandBufferPtr cmdb, U32 viewPortSize,
  937. BufferPtr indexBuff, BufferPtr vertBuff)
  938. {
  939. static F32 ang = -2.5f;
  940. ang += toRad(2.5f);
  941. Mat4 viewMat(Vec3(0.0, 0.0, 5.0), Mat3::getIdentity(), Vec3(1.0f));
  942. viewMat.invert();
  943. Mat4 projMat = Mat4::calculatePerspectiveProjectionMatrix(toRad(60.0f), toRad(60.0f), 0.1f, 100.0f);
  944. Mat4 modelMat(Vec3(-0.5, -0.5, 0.0), Mat3(Euler(ang, ang / 2.0f, ang / 3.0f)), Vec3(1.0f));
  945. Mat4* mvp = SET_UNIFORMS(Mat4*, sizeof(*mvp), cmdb, 0, 0);
  946. *mvp = projMat * viewMat * modelMat;
  947. Vec4* color = SET_UNIFORMS(Vec4*, sizeof(*color) * 2, cmdb, 0, 1);
  948. *color++ = Vec4(1.0, 0.0, 0.0, 0.0);
  949. *color = Vec4(0.0, 1.0, 0.0, 0.0);
  950. cmdb->bindVertexBuffer(0, BufferView(vertBuff.get()), sizeof(Vec3));
  951. cmdb->setVertexAttribute(VertexAttributeSemantic::kPosition, 0, Format::kR32G32B32_Sfloat, 0);
  952. cmdb->bindShaderProgram(prog.get());
  953. cmdb->bindIndexBuffer(BufferView(indexBuff.get()), IndexType::kU16);
  954. cmdb->setViewport(0, 0, viewPortSize, viewPortSize);
  955. cmdb->drawIndexed(PrimitiveTopology::kTriangles, 6 * 2 * 3);
  956. // 2nd draw
  957. modelMat = Mat4(Vec3(0.5, 0.5, 0.0), Mat3(Euler(ang * 2.0f, ang, ang / 3.0f * 2.0f)), Vec3(1.0f));
  958. mvp = SET_UNIFORMS(Mat4*, sizeof(*mvp), cmdb, 0, 0);
  959. *mvp = projMat * viewMat * modelMat;
  960. color = SET_UNIFORMS(Vec4*, sizeof(*color) * 2, cmdb, 0, 1);
  961. *color++ = Vec4(0.0, 0.0, 1.0, 0.0);
  962. *color = Vec4(0.0, 1.0, 1.0, 0.0);
  963. cmdb->drawIndexed(PrimitiveTopology::kTriangles, 6 * 2 * 3);
  964. }
  965. #endif
  966. [[maybe_unused]] static void drawOffscreen([[maybe_unused]] GrManager& gr)
  967. {
  968. #if 0
  969. //
  970. // Create textures
  971. //
  972. SamplerInitInfo samplerInit;
  973. samplerInit.m_minMagFilter = SamplingFilter::kLinear;
  974. samplerInit.m_mipmapFilter = SamplingFilter::kLinear;
  975. SamplerPtr sampler = gr.newSampler(samplerInit);
  976. const Format COL_FORMAT = Format::kR8G8B8A8_Unorm;
  977. const U TEX_SIZE = 256;
  978. TextureInitInfo init;
  979. init.m_format = COL_FORMAT;
  980. init.m_usage = TextureUsageBit::kSrvPixel | TextureUsageBit::kAllRtvDsv;
  981. init.m_height = TEX_SIZE;
  982. init.m_width = TEX_SIZE;
  983. init.m_type = TextureType::k2D;
  984. TexturePtr col0 = gr.newTexture(init);
  985. TexturePtr col1 = gr.newTexture(init);
  986. TextureViewPtr col0View = gr.newTextureView(TextureViewInitInfo(col0.get()));
  987. TextureViewPtr col1View = gr.newTextureView(TextureViewInitInfo(col1.get()));
  988. init.m_format = kDsFormat;
  989. TexturePtr dp = gr.newTexture(init);
  990. //
  991. // Create FB
  992. //
  993. FramebufferInitInfo fbinit;
  994. fbinit.m_colorAttachmentCount = 2;
  995. fbinit.m_colorAttachments[0].m_textureView = gr.newTextureView(TextureViewInitInfo(col0.get()));
  996. fbinit.m_colorAttachments[0].m_clearValue.m_colorf = {{0.1f, 0.0f, 0.0f, 0.0f}};
  997. fbinit.m_colorAttachments[1].m_textureView = gr.newTextureView(TextureViewInitInfo(col1.get()));
  998. fbinit.m_colorAttachments[1].m_clearValue.m_colorf = {{0.0f, 0.1f, 0.0f, 0.0f}};
  999. TextureViewInitInfo viewInit(dp.get());
  1000. viewInit.m_depthStencilAspect = DepthStencilAspectBit::kDepth;
  1001. fbinit.m_depthStencilAttachment.m_textureView = gr.newTextureView(viewInit);
  1002. fbinit.m_depthStencilAttachment.m_clearValue.m_depthStencil.m_depth = 1.0;
  1003. FramebufferPtr fb = gr.newFramebuffer(fbinit);
  1004. //
  1005. // Create buffs
  1006. //
  1007. BufferPtr verts, indices;
  1008. createCube(gr, verts, indices);
  1009. //
  1010. // Create progs
  1011. //
  1012. ShaderProgramPtr prog = createProgram(VERT_MRT_SRC, FRAG_MRT_SRC, gr);
  1013. ShaderProgramPtr resolveProg = createProgram(VERT_QUAD_SRC, FRAG_MRT2_SRC, gr);
  1014. //
  1015. // Draw
  1016. //
  1017. const U ITERATION_COUNT = 200;
  1018. U iterations = ITERATION_COUNT;
  1019. while(iterations--)
  1020. {
  1021. HighRezTimer timer;
  1022. timer.start();
  1023. CommandBufferInitInfo cinit;
  1024. cinit.m_flags = CommandBufferFlag::kGeneralWork;
  1025. CommandBufferPtr cmdb = gr.newCommandBuffer(cinit);
  1026. cmdb->setPolygonOffset(0.0, 0.0);
  1027. setTextureSurfaceBarrier(cmdb, col0, TextureUsageBit::kNone, TextureUsageBit::kRtvDsvWrite, TextureSurfaceDescriptor(0, 0, 0, 0));
  1028. setTextureSurfaceBarrier(cmdb, col1, TextureUsageBit::kNone, TextureUsageBit::kRtvDsvWrite, TextureSurfaceDescriptor(0, 0, 0, 0));
  1029. setTextureSurfaceBarrier(cmdb, dp, TextureUsageBit::kNone, TextureUsageBit::kAllRtvDsv, TextureSurfaceDescriptor(0, 0, 0, 0));
  1030. cmdb->beginRenderPass(fb.get(), {{TextureUsageBit::kRtvDsvWrite, TextureUsageBit::kRtvDsvWrite}}, TextureUsageBit::kAllRtvDsv);
  1031. drawOffscreenDrawcalls(gr, prog, cmdb, TEX_SIZE, indices, verts);
  1032. cmdb->endRenderPass();
  1033. setTextureSurfaceBarrier(cmdb, col0, TextureUsageBit::kRtvDsvWrite, TextureUsageBit::kSrvPixel, TextureSurfaceDescriptor(0, 0, 0, 0));
  1034. setTextureSurfaceBarrier(cmdb, col1, TextureUsageBit::kRtvDsvWrite, TextureUsageBit::kSrvPixel, TextureSurfaceDescriptor(0, 0, 0, 0));
  1035. setTextureSurfaceBarrier(cmdb, dp, TextureUsageBit::kAllRtvDsv, TextureUsageBit::kSrvPixel, TextureSurfaceDescriptor(0, 0, 0, 0));
  1036. // Draw quad
  1037. TexturePtr presentTex = gr.acquireNextPresentableTexture();
  1038. FramebufferPtr dfb = createColorFb(gr, presentTex);
  1039. presentBarrierA(cmdb, presentTex);
  1040. cmdb->beginRenderPass(dfb.get(), {TextureUsageBit::kRtvDsvWrite}, {});
  1041. cmdb->bindShaderProgram(resolveProg.get());
  1042. cmdb->setViewport(0, 0, WIDTH, HEIGHT);
  1043. // cmdb->bindTextureAndSampler(0, 0, col0View.get(), sampler.get());
  1044. // cmdb->bindTextureAndSampler(0, 2, col1View.get(), sampler.get());
  1045. cmdb->draw(PrimitiveTopology::kTriangles, 6);
  1046. cmdb->endRenderPass();
  1047. presentBarrierB(cmdb, presentTex);
  1048. cmdb->endRecording();
  1049. GrManager::getSingleton().submit(cmdb.get());
  1050. // End
  1051. gr.swapBuffers();
  1052. timer.stop();
  1053. const F32 TICK = 1.0f / 30.0f;
  1054. if(timer.getElapsedTime() < TICK)
  1055. {
  1056. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  1057. }
  1058. }
  1059. #endif
  1060. }
  1061. ANKI_TEST(Gr, DrawOffscreen)
  1062. {
  1063. #if 0
  1064. COMMON_BEGIN()
  1065. drawOffscreen(*g_gr);
  1066. COMMON_END();
  1067. #endif
  1068. }
  1069. ANKI_TEST(Gr, ImageLoadStore)
  1070. {
  1071. #if 0
  1072. COMMON_BEGIN()
  1073. SamplerInitInfo samplerInit;
  1074. samplerInit.m_minMagFilter = SamplingFilter::kNearest;
  1075. samplerInit.m_mipmapFilter = SamplingFilter::kBase;
  1076. SamplerPtr sampler = g_gr->newSampler(samplerInit);
  1077. TextureInitInfo init;
  1078. init.m_width = init.m_height = 4;
  1079. init.m_mipmapCount = 2;
  1080. init.m_usage = TextureUsageBit::kCopyDestination | TextureUsageBit::kAllSrv | TextureUsageBit::kUavCompute;
  1081. init.m_type = TextureType::k2D;
  1082. init.m_format = Format::kR8G8B8A8_Unorm;
  1083. TexturePtr tex = g_gr->newTexture(init);
  1084. TextureViewInitInfo viewInit(tex.get());
  1085. viewInit.m_firstMipmap = 1;
  1086. viewInit.m_mipmapCount = 1;
  1087. TextureViewPtr view = g_gr->newTextureView(viewInit);
  1088. // Prog
  1089. ShaderProgramPtr prog = createProgram(VERT_QUAD_SRC, FRAG_SIMPLE_TEX_SRC, *g_gr);
  1090. // Create shader & compute prog
  1091. ShaderPtr shader = createShader(COMP_WRITE_IMAGE_SRC, ShaderType::kCompute, *g_gr);
  1092. ShaderProgramInitInfo sprogInit;
  1093. sprogInit.m_computeShader = shader.get();
  1094. ShaderProgramPtr compProg = g_gr->newShaderProgram(sprogInit);
  1095. // Write texture data
  1096. CommandBufferInitInfo cmdbinit;
  1097. CommandBufferPtr cmdb = g_gr->newCommandBuffer(cmdbinit);
  1098. setTextureSurfaceBarrier(cmdb, tex, TextureUsageBit::kNone, TextureUsageBit::kCopyDestination, TextureSurfaceDescriptor(0, 0, 0, 0));
  1099. ClearValue clear;
  1100. clear.m_colorf = {{0.0, 1.0, 0.0, 1.0}};
  1101. TextureViewInitInfo viewInit2(tex.get(), TextureSurfaceDescriptor(0, 0, 0, 0));
  1102. cmdb->clearTextureView(g_gr->newTextureView(viewInit2).get(), clear);
  1103. setTextureSurfaceBarrier(cmdb, tex, TextureUsageBit::kCopyDestination, TextureUsageBit::kSrvPixel, TextureSurfaceDescriptor(0, 0, 0, 0));
  1104. setTextureSurfaceBarrier(cmdb, tex, TextureUsageBit::kNone, TextureUsageBit::kCopyDestination, TextureSurfaceDescriptor(1, 0, 0, 0));
  1105. clear.m_colorf = {{0.0, 0.0, 1.0, 1.0}};
  1106. TextureViewInitInfo viewInit3(tex.get(), TextureSurfaceDescriptor(1, 0, 0, 0));
  1107. cmdb->clearTextureView(g_gr->newTextureView(viewInit3).get(), clear);
  1108. setTextureSurfaceBarrier(cmdb, tex, TextureUsageBit::kCopyDestination, TextureUsageBit::kUavCompute, TextureSurfaceDescriptor(1, 0, 0, 0));
  1109. cmdb->endRecording();
  1110. GrManager::getSingleton().submit(cmdb.get());
  1111. const U ITERATION_COUNT = 100;
  1112. U iterations = ITERATION_COUNT;
  1113. while(iterations--)
  1114. {
  1115. HighRezTimer timer;
  1116. timer.start();
  1117. CommandBufferInitInfo cinit;
  1118. cinit.m_flags = CommandBufferFlag::kGeneralWork | CommandBufferFlag::kComputeWork | CommandBufferFlag::kSmallBatch;
  1119. CommandBufferPtr cmdb = g_gr->newCommandBuffer(cinit);
  1120. // Write image
  1121. Vec4* col = SET_STORAGE(Vec4*, sizeof(*col), cmdb, 1, 0);
  1122. *col = Vec4(F32(iterations) / F32(ITERATION_COUNT));
  1123. setTextureSurfaceBarrier(cmdb, tex, TextureUsageBit::kNone, TextureUsageBit::kUavCompute, TextureSurfaceDescriptor(1, 0, 0, 0));
  1124. cmdb->bindShaderProgram(compProg.get());
  1125. cmdb->bindStorageTexture(0, 0, view.get());
  1126. cmdb->dispatchCompute(WIDTH / 2, HEIGHT / 2, 1);
  1127. setTextureSurfaceBarrier(cmdb, tex, TextureUsageBit::kUavCompute, TextureUsageBit::kSrvPixel, TextureSurfaceDescriptor(1, 0, 0, 0));
  1128. // Present image
  1129. cmdb->setViewport(0, 0, WIDTH, HEIGHT);
  1130. cmdb->bindShaderProgram(prog.get());
  1131. TexturePtr presentTex = g_gr->acquireNextPresentableTexture();
  1132. FramebufferPtr dfb = createColorFb(*g_gr, presentTex);
  1133. presentBarrierA(cmdb, presentTex);
  1134. cmdb->beginRenderPass(dfb.get(), {TextureUsageBit::kRtvDsvWrite}, {});
  1135. // cmdb->bindTextureAndSampler(0, 0, g_gr->newTextureView(TextureViewInitInfo(tex.get())).get(), sampler.get());
  1136. cmdb->draw(PrimitiveTopology::kTriangles, 6);
  1137. cmdb->endRenderPass();
  1138. presentBarrierB(cmdb, presentTex);
  1139. cmdb->endRecording();
  1140. GrManager::getSingleton().submit(cmdb.get());
  1141. // End
  1142. g_gr->swapBuffers();
  1143. timer.stop();
  1144. const F32 TICK = 1.0f / 30.0f;
  1145. if(timer.getElapsedTime() < TICK)
  1146. {
  1147. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  1148. }
  1149. }
  1150. COMMON_END()
  1151. #endif
  1152. }
  1153. ANKI_TEST(Gr, 3DTextures)
  1154. {
  1155. #if 0
  1156. COMMON_BEGIN()
  1157. SamplerInitInfo samplerInit;
  1158. samplerInit.m_minMagFilter = SamplingFilter::kNearest;
  1159. samplerInit.m_mipmapFilter = SamplingFilter::kBase;
  1160. samplerInit.m_addressing = SamplingAddressing::kClamp;
  1161. SamplerPtr sampler = g_gr->newSampler(samplerInit);
  1162. //
  1163. // Create texture A
  1164. //
  1165. TextureInitInfo init;
  1166. init.m_depth = 1;
  1167. init.m_format = Format::kR8G8B8A8_Unorm;
  1168. init.m_usage = TextureUsageBit::kSrvPixel | TextureUsageBit::kCopyDestination;
  1169. init.m_height = 2;
  1170. init.m_width = 2;
  1171. init.m_mipmapCount = 2;
  1172. init.m_samples = 1;
  1173. init.m_depth = 2;
  1174. init.m_layerCount = 1;
  1175. init.m_type = TextureType::k3D;
  1176. TexturePtr a = g_gr->newTexture(init);
  1177. //
  1178. // Upload all textures
  1179. //
  1180. Array<U8, 2 * 2 * 2 * 4> mip0 = {
  1181. {255, 0, 0, 0, 0, 255, 0, 0, 0, 0, 255, 0, 255, 255, 0, 0, 255, 0, 255, 0, 0, 255, 255, 0, 255, 255, 255, 0, 0, 0, 0, 0}};
  1182. Array<U8, 4> mip1 = {{128, 128, 128, 0}};
  1183. CommandBufferInitInfo cmdbinit;
  1184. cmdbinit.m_flags = CommandBufferFlag::kGeneralWork | CommandBufferFlag::kSmallBatch;
  1185. CommandBufferPtr cmdb = g_gr->newCommandBuffer(cmdbinit);
  1186. setTextureVolumeBarrier(cmdb, a, TextureUsageBit::kNone, TextureUsageBit::kCopyDestination, TextureVolumeDescriptor(0));
  1187. setTextureVolumeBarrier(cmdb, a, TextureUsageBit::kNone, TextureUsageBit::kCopyDestination, TextureVolumeDescriptor(1));
  1188. TransferGpuAllocatorHandle handle0, handle1;
  1189. UPLOAD_TEX_VOL(cmdb, a, TextureVolumeDescriptor(0), &mip0[0], sizeof(mip0), handle0);
  1190. UPLOAD_TEX_VOL(cmdb, a, TextureVolumeDescriptor(1), &mip1[0], sizeof(mip1), handle1);
  1191. setTextureVolumeBarrier(cmdb, a, TextureUsageBit::kCopyDestination, TextureUsageBit::kSrvPixel, TextureVolumeDescriptor(0));
  1192. setTextureVolumeBarrier(cmdb, a, TextureUsageBit::kCopyDestination, TextureUsageBit::kSrvPixel, TextureVolumeDescriptor(1));
  1193. FencePtr fence;
  1194. cmdb->endRecording();
  1195. GrManager::getSingleton().submit(cmdb.get(), {}, &fence);
  1196. transfAlloc->release(handle0, fence);
  1197. transfAlloc->release(handle1, fence);
  1198. //
  1199. // Rest
  1200. //
  1201. ShaderProgramPtr prog = createProgram(VERT_QUAD_SRC, FRAG_TEX3D_SRC, *g_gr);
  1202. static Array<Vec4, 9> TEX_COORDS_LOD = {{Vec4(0, 0, 0, 0), Vec4(1, 0, 0, 0), Vec4(0, 1, 0, 0), Vec4(1, 1, 0, 0), Vec4(0, 0, 1, 0),
  1203. Vec4(1, 0, 1, 0), Vec4(0, 1, 1, 0), Vec4(1, 1, 1, 0), Vec4(0, 0, 0, 1)}};
  1204. const U ITERATION_COUNT = 100;
  1205. U iterations = ITERATION_COUNT;
  1206. while(iterations--)
  1207. {
  1208. HighRezTimer timer;
  1209. timer.start();
  1210. CommandBufferInitInfo cinit;
  1211. cinit.m_flags = CommandBufferFlag::kGeneralWork | CommandBufferFlag::kSmallBatch;
  1212. CommandBufferPtr cmdb = g_gr->newCommandBuffer(cinit);
  1213. cmdb->setViewport(0, 0, WIDTH, HEIGHT);
  1214. TexturePtr presentTex = g_gr->acquireNextPresentableTexture();
  1215. FramebufferPtr dfb = createColorFb(*g_gr, presentTex);
  1216. presentBarrierA(cmdb, presentTex);
  1217. cmdb->beginRenderPass(dfb.get(), {TextureUsageBit::kRtvDsvWrite}, {});
  1218. cmdb->bindShaderProgram(prog.get());
  1219. Vec4* uv = SET_UNIFORMS(Vec4*, sizeof(Vec4), cmdb, 0, 0);
  1220. U32 idx = U32((F32(ITERATION_COUNT - iterations - 1) / F32(ITERATION_COUNT)) * F32(TEX_COORDS_LOD.getSize()));
  1221. *uv = TEX_COORDS_LOD[idx];
  1222. // cmdb->bindTextureAndSampler(0, 1, g_gr->newTextureView(TextureViewInitInfo(a.get())).get(), sampler.get());
  1223. cmdb->draw(PrimitiveTopology::kTriangles, 6);
  1224. cmdb->endRenderPass();
  1225. presentBarrierB(cmdb, presentTex);
  1226. cmdb->endRecording();
  1227. GrManager::getSingleton().submit(cmdb.get());
  1228. // End
  1229. g_gr->swapBuffers();
  1230. timer.stop();
  1231. const F32 TICK = 1.0f / 15.0f;
  1232. if(timer.getElapsedTime() < TICK)
  1233. {
  1234. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  1235. }
  1236. }
  1237. COMMON_END()
  1238. #endif
  1239. }
  1240. [[maybe_unused]] static RenderTargetDesc newRTDescr(CString name)
  1241. {
  1242. RenderTargetDesc texInf(name);
  1243. texInf.m_width = texInf.m_height = 16;
  1244. texInf.m_usage = TextureUsageBit::kRtvDsvWrite | TextureUsageBit::kSrvPixel;
  1245. texInf.m_format = Format::kR8G8B8A8_Unorm;
  1246. texInf.bake();
  1247. return texInf;
  1248. }
  1249. ANKI_TEST(Gr, RenderGraph)
  1250. {
  1251. #if 0
  1252. COMMON_BEGIN()
  1253. StackMemoryPool pool(allocAligned, nullptr, 2_MB);
  1254. RenderGraphBuilder descr(&pool);
  1255. RenderGraphPtr rgraph = g_gr->newRenderGraph();
  1256. const U GI_MIP_COUNT = 4;
  1257. TextureInitInfo texI("dummy");
  1258. texI.m_width = texI.m_height = 16;
  1259. texI.m_usage = TextureUsageBit::kRtvDsvWrite | TextureUsageBit::kSrvPixel;
  1260. texI.m_format = Format::kR8G8B8A8_Unorm;
  1261. TexturePtr dummyTex = g_gr->newTexture(texI);
  1262. // SM
  1263. RenderTargetHandle smScratchRt = descr.newRenderTarget(newRTDescr("SM scratch"));
  1264. {
  1265. GraphicsRenderPass& pass = descr.newGraphicsRenderPass("SM");
  1266. pass.newTextureDependency(smScratchRt, TextureUsageBit::kAllRtvDsv);
  1267. }
  1268. // SM to exponential SM
  1269. RenderTargetHandle smExpRt = descr.importRenderTarget(dummyTex.get(), TextureUsageBit::kSrvPixel);
  1270. {
  1271. GraphicsRenderPass& pass = descr.newGraphicsRenderPass("ESM");
  1272. pass.newTextureDependency(smScratchRt, TextureUsageBit::kSrvPixel);
  1273. pass.newTextureDependency(smExpRt, TextureUsageBit::kRtvDsvWrite);
  1274. }
  1275. // GI gbuff
  1276. RenderTargetHandle giGbuffNormRt = descr.newRenderTarget(newRTDescr("GI GBuff norm"));
  1277. RenderTargetHandle giGbuffDiffRt = descr.newRenderTarget(newRTDescr("GI GBuff diff"));
  1278. RenderTargetHandle giGbuffDepthRt = descr.newRenderTarget(newRTDescr("GI GBuff depth"));
  1279. {
  1280. GraphicsRenderPass& pass = descr.newGraphicsRenderPass("GI gbuff");
  1281. pass.newTextureDependency(giGbuffNormRt, TextureUsageBit::kRtvDsvWrite);
  1282. pass.newTextureDependency(giGbuffDepthRt, TextureUsageBit::kRtvDsvWrite);
  1283. pass.newTextureDependency(giGbuffDiffRt, TextureUsageBit::kRtvDsvWrite);
  1284. }
  1285. // GI light
  1286. RenderTargetHandle giGiLightRt = descr.importRenderTarget(dummyTex.get(), TextureUsageBit::kSrvPixel);
  1287. for(U32 faceIdx = 0; faceIdx < 6; ++faceIdx)
  1288. {
  1289. TextureSubresourceInfo subresource(TextureSurfaceDescriptor(0, faceIdx, 0));
  1290. GraphicsRenderPass& pass = descr.newGraphicsRenderPass(String().sprintf("GI lp%u", faceIdx).toCString());
  1291. pass.newTextureDependency(giGiLightRt, TextureUsageBit::kRtvDsvWrite, subresource);
  1292. pass.newTextureDependency(giGbuffNormRt, TextureUsageBit::kSrvPixel);
  1293. pass.newTextureDependency(giGbuffDepthRt, TextureUsageBit::kSrvPixel);
  1294. pass.newTextureDependency(giGbuffDiffRt, TextureUsageBit::kSrvPixel);
  1295. }
  1296. // GI light mips
  1297. {
  1298. for(U32 faceIdx = 0; faceIdx < 6; ++faceIdx)
  1299. {
  1300. GraphicsRenderPass& pass = descr.newGraphicsRenderPass(String().sprintf("GI mip%u", faceIdx).toCString());
  1301. for(U32 mip = 0; mip < GI_MIP_COUNT; ++mip)
  1302. {
  1303. TextureSurfaceDescriptor surf(mip, faceIdx, 0);
  1304. pass.newTextureDependency(giGiLightRt, TextureUsageBit::kGenerateMipmaps, surf);
  1305. }
  1306. }
  1307. }
  1308. // Gbuffer
  1309. RenderTargetHandle gbuffRt0 = descr.newRenderTarget(newRTDescr("GBuff RT0"));
  1310. RenderTargetHandle gbuffRt1 = descr.newRenderTarget(newRTDescr("GBuff RT1"));
  1311. RenderTargetHandle gbuffRt2 = descr.newRenderTarget(newRTDescr("GBuff RT2"));
  1312. RenderTargetHandle gbuffDepth = descr.newRenderTarget(newRTDescr("GBuff RT2"));
  1313. {
  1314. GraphicsRenderPass& pass = descr.newGraphicsRenderPass("G-Buffer");
  1315. pass.newTextureDependency(gbuffRt0, TextureUsageBit::kRtvDsvWrite);
  1316. pass.newTextureDependency(gbuffRt1, TextureUsageBit::kRtvDsvWrite);
  1317. pass.newTextureDependency(gbuffRt2, TextureUsageBit::kRtvDsvWrite);
  1318. pass.newTextureDependency(gbuffDepth, TextureUsageBit::kRtvDsvWrite);
  1319. }
  1320. // Half depth
  1321. RenderTargetHandle halfDepthRt = descr.newRenderTarget(newRTDescr("Depth/2"));
  1322. {
  1323. GraphicsRenderPass& pass = descr.newGraphicsRenderPass("HalfDepth");
  1324. pass.newTextureDependency(gbuffDepth, TextureUsageBit::kSrvPixel);
  1325. pass.newTextureDependency(halfDepthRt, TextureUsageBit::kRtvDsvWrite);
  1326. }
  1327. // Quarter depth
  1328. RenderTargetHandle quarterDepthRt = descr.newRenderTarget(newRTDescr("Depth/4"));
  1329. {
  1330. GraphicsRenderPass& pass = descr.newGraphicsRenderPass("QuarterDepth");
  1331. pass.newTextureDependency(quarterDepthRt, TextureUsageBit::kRtvDsvWrite);
  1332. pass.newTextureDependency(halfDepthRt, TextureUsageBit::kSrvPixel);
  1333. }
  1334. // SSAO
  1335. RenderTargetHandle ssaoRt = descr.newRenderTarget(newRTDescr("SSAO"));
  1336. {
  1337. GraphicsRenderPass& pass = descr.newGraphicsRenderPass("SSAO main");
  1338. pass.newTextureDependency(ssaoRt, TextureUsageBit::kRtvDsvWrite);
  1339. pass.newTextureDependency(quarterDepthRt, TextureUsageBit::kSrvPixel);
  1340. pass.newTextureDependency(gbuffRt2, TextureUsageBit::kSrvPixel);
  1341. RenderTargetHandle ssaoVBlurRt = descr.newRenderTarget(newRTDescr("SSAO tmp"));
  1342. GraphicsRenderPass& pass2 = descr.newGraphicsRenderPass("SSAO vblur");
  1343. pass2.newTextureDependency(ssaoRt, TextureUsageBit::kSrvPixel);
  1344. pass2.newTextureDependency(ssaoVBlurRt, TextureUsageBit::kRtvDsvWrite);
  1345. GraphicsRenderPass& pass3 = descr.newGraphicsRenderPass("SSAO hblur");
  1346. pass3.newTextureDependency(ssaoRt, TextureUsageBit::kRtvDsvWrite);
  1347. pass3.newTextureDependency(ssaoVBlurRt, TextureUsageBit::kSrvPixel);
  1348. }
  1349. // Volumetric
  1350. RenderTargetHandle volRt = descr.newRenderTarget(newRTDescr("Vol"));
  1351. {
  1352. GraphicsRenderPass& pass = descr.newGraphicsRenderPass("Vol main");
  1353. pass.newTextureDependency(volRt, TextureUsageBit::kRtvDsvWrite);
  1354. pass.newTextureDependency(quarterDepthRt, TextureUsageBit::kSrvPixel);
  1355. RenderTargetHandle volVBlurRt = descr.newRenderTarget(newRTDescr("Vol tmp"));
  1356. GraphicsRenderPass& pass2 = descr.newGraphicsRenderPass("Vol vblur");
  1357. pass2.newTextureDependency(volRt, TextureUsageBit::kSrvPixel);
  1358. pass2.newTextureDependency(volVBlurRt, TextureUsageBit::kRtvDsvWrite);
  1359. GraphicsRenderPass& pass3 = descr.newGraphicsRenderPass("Vol hblur");
  1360. pass3.newTextureDependency(volRt, TextureUsageBit::kRtvDsvWrite);
  1361. pass3.newTextureDependency(volVBlurRt, TextureUsageBit::kSrvPixel);
  1362. }
  1363. // Forward shading
  1364. RenderTargetHandle fsRt = descr.newRenderTarget(newRTDescr("FS"));
  1365. {
  1366. GraphicsRenderPass& pass = descr.newGraphicsRenderPass("Forward shading");
  1367. pass.newTextureDependency(fsRt, TextureUsageBit::kRtvDsvWrite);
  1368. pass.newTextureDependency(halfDepthRt, TextureUsageBit::kSrvPixel | TextureUsageBit::kRtvDsvRead);
  1369. pass.newTextureDependency(volRt, TextureUsageBit::kSrvPixel);
  1370. }
  1371. // Light shading
  1372. RenderTargetHandle lightRt = descr.importRenderTarget(dummyTex.get(), TextureUsageBit::kNone);
  1373. {
  1374. GraphicsRenderPass& pass = descr.newGraphicsRenderPass("Light shading");
  1375. pass.newTextureDependency(lightRt, TextureUsageBit::kRtvDsvWrite);
  1376. pass.newTextureDependency(gbuffRt0, TextureUsageBit::kSrvPixel);
  1377. pass.newTextureDependency(gbuffRt1, TextureUsageBit::kSrvPixel);
  1378. pass.newTextureDependency(gbuffRt2, TextureUsageBit::kSrvPixel);
  1379. pass.newTextureDependency(gbuffDepth, TextureUsageBit::kSrvPixel);
  1380. pass.newTextureDependency(smExpRt, TextureUsageBit::kSrvPixel);
  1381. pass.newTextureDependency(giGiLightRt, TextureUsageBit::kSrvPixel);
  1382. pass.newTextureDependency(ssaoRt, TextureUsageBit::kSrvPixel);
  1383. pass.newTextureDependency(fsRt, TextureUsageBit::kSrvPixel);
  1384. }
  1385. // TAA
  1386. RenderTargetHandle taaHistoryRt = descr.importRenderTarget(dummyTex.get(), TextureUsageBit::kSrvPixel);
  1387. RenderTargetHandle taaRt = descr.importRenderTarget(dummyTex.get(), TextureUsageBit::kNone);
  1388. {
  1389. GraphicsRenderPass& pass = descr.newGraphicsRenderPass("Temporal AA");
  1390. pass.newTextureDependency(lightRt, TextureUsageBit::kSrvPixel);
  1391. pass.newTextureDependency(taaRt, TextureUsageBit::kRtvDsvWrite);
  1392. pass.newTextureDependency(taaHistoryRt, TextureUsageBit::kSrvPixel);
  1393. }
  1394. rgraph->compileNewGraph(descr, pool);
  1395. COMMON_END()
  1396. #endif
  1397. }
  1398. /// Test workarounds for some unsupported formats
  1399. ANKI_TEST(Gr, VkWorkarounds)
  1400. {
  1401. #if 0
  1402. COMMON_BEGIN()
  1403. // Create program
  1404. static const char* COMP_SRC = R"(
  1405. layout(local_size_x = 8, local_size_y = 8, local_size_z = 2) in;
  1406. layout(set = 0, binding = 0) uniform usampler2D u_tex;
  1407. layout(set = 0, binding = 1) buffer s_
  1408. {
  1409. uvec4 u_result;
  1410. };
  1411. shared uint g_wrong;
  1412. void main()
  1413. {
  1414. g_wrong = 0;
  1415. memoryBarrierShared();
  1416. barrier();
  1417. int lod = -1;
  1418. uint idx;
  1419. if(gl_LocalInvocationID.z == 0)
  1420. {
  1421. // First mip
  1422. lod = 0;
  1423. idx = gl_LocalInvocationID.y * 8 + gl_LocalInvocationID.x;
  1424. }
  1425. else if(gl_LocalInvocationID.x < 4u && gl_LocalInvocationID.y < 4u)
  1426. {
  1427. lod = 1;
  1428. idx = gl_LocalInvocationID.y * 4 + gl_LocalInvocationID.x;
  1429. }
  1430. if(lod != -1)
  1431. {
  1432. uvec3 col = texelFetch(u_tex, ivec2(gl_LocalInvocationID.x, gl_LocalInvocationID.y), lod).rgb;
  1433. if(col.x != idx || col.y != idx + 1 || col.z != idx + 2)
  1434. {
  1435. atomicAdd(g_wrong, 1);
  1436. }
  1437. }
  1438. memoryBarrierShared();
  1439. barrier();
  1440. if(g_wrong != 0)
  1441. {
  1442. u_result = uvec4(1);
  1443. }
  1444. else
  1445. {
  1446. u_result = uvec4(2);
  1447. }
  1448. })";
  1449. ShaderPtr comp = createShader(COMP_SRC, ShaderType::kCompute, *g_gr);
  1450. ShaderProgramInitInfo sinf;
  1451. sinf.m_computeShader = comp.get();
  1452. ShaderProgramPtr prog = g_gr->newShaderProgram(sinf);
  1453. // Create the texture
  1454. TextureInitInfo texInit;
  1455. texInit.m_width = texInit.m_height = 8;
  1456. texInit.m_format = Format::kR8G8B8_Uint;
  1457. texInit.m_type = TextureType::k2D;
  1458. texInit.m_usage = TextureUsageBit::kCopyDestination | TextureUsageBit::kAllSrv;
  1459. texInit.m_mipmapCount = 2;
  1460. TexturePtr tex = g_gr->newTexture(texInit);
  1461. TextureViewPtr texView = g_gr->newTextureView(TextureViewInitInfo(tex.get()));
  1462. SamplerInitInfo samplerInit;
  1463. SamplerPtr sampler = g_gr->newSampler(samplerInit);
  1464. // Create the buffer to copy to the texture
  1465. BufferPtr uploadBuff =
  1466. g_gr->newBuffer(BufferInitInfo(PtrSize(texInit.m_width) * texInit.m_height * 3, BufferUsageBit::kAllCopy, BufferMapAccessBit::kWrite));
  1467. U8* data = static_cast<U8*>(uploadBuff->map(0, uploadBuff->getSize(), BufferMapAccessBit::kWrite));
  1468. for(U32 i = 0; i < texInit.m_width * texInit.m_height; ++i)
  1469. {
  1470. data[0] = U8(i);
  1471. data[1] = U8(i + 1);
  1472. data[2] = U8(i + 2);
  1473. data += 3;
  1474. }
  1475. uploadBuff->unmap();
  1476. BufferPtr uploadBuff2 = g_gr->newBuffer(
  1477. BufferInitInfo(PtrSize(texInit.m_width >> 1) * (texInit.m_height >> 1) * 3, BufferUsageBit::kAllCopy, BufferMapAccessBit::kWrite));
  1478. data = static_cast<U8*>(uploadBuff2->map(0, uploadBuff2->getSize(), BufferMapAccessBit::kWrite));
  1479. for(U i = 0; i < (texInit.m_width >> 1) * (texInit.m_height >> 1); ++i)
  1480. {
  1481. data[0] = U8(i);
  1482. data[1] = U8(i + 1);
  1483. data[2] = U8(i + 2);
  1484. data += 3;
  1485. }
  1486. uploadBuff2->unmap();
  1487. // Create the result buffer
  1488. BufferPtr resultBuff = g_gr->newBuffer(BufferInitInfo(sizeof(UVec4), BufferUsageBit::kUavCompute, BufferMapAccessBit::kRead));
  1489. // Upload data and test them
  1490. CommandBufferInitInfo cmdbInit;
  1491. cmdbInit.m_flags = CommandBufferFlag::kGeneralWork | CommandBufferFlag::kSmallBatch;
  1492. CommandBufferPtr cmdb = g_gr->newCommandBuffer(cmdbInit);
  1493. TextureSubresourceInfo subresource;
  1494. subresource.m_mipmapCount = texInit.m_mipmapCount;
  1495. setTextureBarrier(cmdb, tex, TextureUsageBit::kNone, TextureUsageBit::kCopyDestination, subresource);
  1496. cmdb->copyBufferToTexture(BufferView(uploadBuff.get()), g_gr->newTextureView(TextureViewInitInfo(tex.get(), TextureSurfaceDescriptor(0, 0, 0))).get());
  1497. cmdb->copyBufferToTexture(BufferView(uploadBuff2.get()), g_gr->newTextureView(TextureViewInitInfo(tex.get(), TextureSurfaceDescriptor(1, 0, 0))).get());
  1498. setTextureBarrier(cmdb, tex, TextureUsageBit::kCopyDestination, TextureUsageBit::kSrvCompute, subresource);
  1499. cmdb->bindShaderProgram(prog.get());
  1500. // cmdb->bindTextureAndSampler(0, 0, texView.get(), sampler.get());
  1501. cmdb->bindStorageBuffer(0, 1, BufferView(resultBuff.get()));
  1502. cmdb->dispatchCompute(1, 1, 1);
  1503. setBufferBarrier(cmdb, resultBuff, BufferUsageBit::kUavCompute, BufferUsageBit::kUavCompute, 0, resultBuff->getSize());
  1504. cmdb->endRecording();
  1505. GrManager::getSingleton().submit(cmdb.get());
  1506. g_gr->finish();
  1507. // Get the result
  1508. UVec4* result = static_cast<UVec4*>(resultBuff->map(0, resultBuff->getSize(), BufferMapAccessBit::kRead));
  1509. ANKI_TEST_EXPECT_EQ(result->x(), 2);
  1510. ANKI_TEST_EXPECT_EQ(result->y(), 2);
  1511. ANKI_TEST_EXPECT_EQ(result->z(), 2);
  1512. ANKI_TEST_EXPECT_EQ(result->w(), 2);
  1513. resultBuff->unmap();
  1514. COMMON_END()
  1515. #endif
  1516. }
  1517. ANKI_TEST(Gr, PushConsts)
  1518. {
  1519. #if 0
  1520. COMMON_BEGIN()
  1521. static const char* VERT_SRC = R"(
  1522. struct PC
  1523. {
  1524. vec4 color;
  1525. ivec4 icolor;
  1526. vec4 arr[2];
  1527. mat4 mat;
  1528. };
  1529. layout(push_constant, std140) uniform pc_
  1530. {
  1531. PC regs;
  1532. };
  1533. out gl_PerVertex
  1534. {
  1535. vec4 gl_Position;
  1536. };
  1537. layout(location = 0) out vec4 out_color;
  1538. void main()
  1539. {
  1540. vec2 uv = vec2(gl_VertexID & 1, gl_VertexID >> 1) * 2.0;
  1541. vec2 pos = uv * 2.0 - 1.0;
  1542. gl_Position = vec4(pos, 0.0, 1.0);
  1543. out_color = regs.color;
  1544. }
  1545. )";
  1546. static const char* FRAG_SRC = R"(
  1547. struct PC
  1548. {
  1549. vec4 color;
  1550. ivec4 icolor;
  1551. vec4 arr[2];
  1552. mat4 mat;
  1553. };
  1554. layout(push_constant, std140) uniform pc_
  1555. {
  1556. PC regs;
  1557. };
  1558. layout(location = 0) in vec4 in_color;
  1559. layout(location = 0) out vec4 out_color;
  1560. layout(set = 0, binding = 0) buffer s_
  1561. {
  1562. uvec4 u_result;
  1563. };
  1564. void main()
  1565. {
  1566. out_color = vec4(1.0);
  1567. if(gl_FragCoord.x == 0.5 && gl_FragCoord.y == 0.5)
  1568. {
  1569. if(in_color != vec4(1.0, 0.0, 1.0, 0.0) || regs.icolor != ivec4(-1, 1, 2147483647, -2147483647)
  1570. || regs.arr[0] != vec4(1, 2, 3, 4) || regs.arr[1] != vec4(10, 20, 30, 40)
  1571. || regs.mat[1][0] != 0.5)
  1572. {
  1573. u_result = uvec4(1u);
  1574. }
  1575. else
  1576. {
  1577. u_result = uvec4(2u);
  1578. }
  1579. }
  1580. }
  1581. )";
  1582. ShaderProgramPtr prog = createProgram(VERT_SRC, FRAG_SRC, *g_gr);
  1583. // Create the result buffer
  1584. BufferPtr resultBuff =
  1585. g_gr->newBuffer(BufferInitInfo(sizeof(UVec4), BufferUsageBit::kAllStorage | BufferUsageBit::kCopyDestination, BufferMapAccessBit::kRead));
  1586. // Draw
  1587. CommandBufferInitInfo cinit;
  1588. cinit.m_flags = CommandBufferFlag::kGeneralWork;
  1589. CommandBufferPtr cmdb = g_gr->newCommandBuffer(cinit);
  1590. cmdb->fillBuffer(resultBuff.get(), 0, resultBuff->getSize(), 0);
  1591. setBufferBarrier(cmdb, resultBuff, BufferUsageBit::kCopyDestination, BufferUsageBit::kStorageFragmentWrite, 0, resultBuff->getSize());
  1592. cmdb->setViewport(0, 0, WIDTH, HEIGHT);
  1593. cmdb->bindShaderProgram(prog.get());
  1594. struct PushConstants
  1595. {
  1596. Vec4 m_color = Vec4(1.0, 0.0, 1.0, 0.0);
  1597. IVec4 m_icolor = IVec4(-1, 1, 2147483647, -2147483647);
  1598. Vec4 m_arr[2] = {Vec4(1, 2, 3, 4), Vec4(10, 20, 30, 40)};
  1599. Mat4 m_mat = Mat4(0.0f);
  1600. } pc;
  1601. pc.m_mat(0, 1) = 0.5f;
  1602. cmdb->setFastConstants(&pc, sizeof(pc));
  1603. cmdb->bindStorageBuffer(0, 0, resultBuff.get(), 0, resultBuff->getSize());
  1604. TexturePtr presentTex = g_gr->acquireNextPresentableTexture();
  1605. FramebufferPtr dfb = createColorFb(*g_gr, presentTex);
  1606. presentBarrierA(cmdb, presentTex);
  1607. cmdb->beginRenderPass(dfb.get(), {TextureUsageBit::kRtvDsvWrite}, {});
  1608. cmdb->draw(PrimitiveTopology::kTriangles, 3);
  1609. cmdb->endRenderPass();
  1610. presentBarrierB(cmdb, presentTex);
  1611. cmdb->endRecording();
  1612. GrManager::getSingleton().submit(cmdb.get());
  1613. g_gr->swapBuffers();
  1614. g_gr->finish();
  1615. // Get the result
  1616. UVec4* result = static_cast<UVec4*>(resultBuff->map(0, resultBuff->getSize(), BufferMapAccessBit::kRead));
  1617. ANKI_TEST_EXPECT_EQ(result->x(), 2);
  1618. ANKI_TEST_EXPECT_EQ(result->y(), 2);
  1619. ANKI_TEST_EXPECT_EQ(result->z(), 2);
  1620. ANKI_TEST_EXPECT_EQ(result->w(), 2);
  1621. resultBuff->unmap();
  1622. COMMON_END()
  1623. #endif
  1624. }
  1625. ANKI_TEST(Gr, BindingWithArray)
  1626. {
  1627. #if 0
  1628. COMMON_BEGIN()
  1629. // Create result buffer
  1630. BufferPtr resBuff = g_gr->newBuffer(BufferInitInfo(sizeof(Vec4), BufferUsageBit::kAllCompute, BufferMapAccessBit::kRead));
  1631. Array<BufferPtr, 4> uniformBuffers;
  1632. F32 count = 1.0f;
  1633. for(BufferPtr& ptr : uniformBuffers)
  1634. {
  1635. ptr = g_gr->newBuffer(BufferInitInfo(sizeof(Vec4), BufferUsageBit::kAllCompute, BufferMapAccessBit::kWrite));
  1636. Vec4* mapped = static_cast<Vec4*>(ptr->map(0, sizeof(Vec4), BufferMapAccessBit::kWrite));
  1637. *mapped = Vec4(count, count + 1.0f, count + 2.0f, count + 3.0f);
  1638. count += 4.0f;
  1639. ptr->unmap();
  1640. }
  1641. // Create program
  1642. static const char* PROG_SRC = R"(
  1643. layout(local_size_x = 1, local_size_y = 1, local_size_z = 1) in;
  1644. layout(set = 0, binding = 0) uniform u_
  1645. {
  1646. vec4 m_vec;
  1647. } u_ubos[4];
  1648. layout(set = 0, binding = 1) writeonly buffer ss_
  1649. {
  1650. vec4 u_result;
  1651. };
  1652. void main()
  1653. {
  1654. u_result = u_ubos[0].m_vec + u_ubos[1].m_vec + u_ubos[2].m_vec + u_ubos[3].m_vec;
  1655. })";
  1656. ShaderPtr shader = createShader(PROG_SRC, ShaderType::kCompute, *g_gr);
  1657. ShaderProgramInitInfo sprogInit;
  1658. sprogInit.m_computeShader = shader.get();
  1659. ShaderProgramPtr prog = g_gr->newShaderProgram(sprogInit);
  1660. // Run
  1661. CommandBufferInitInfo cinit;
  1662. cinit.m_flags = CommandBufferFlag::kComputeWork | CommandBufferFlag::kSmallBatch;
  1663. CommandBufferPtr cmdb = g_gr->newCommandBuffer(cinit);
  1664. for(U32 i = 0; i < uniformBuffers.getSize(); ++i)
  1665. {
  1666. cmdb->bindUniformBuffer(0, 0, BufferView(uniformBuffers[i].get()), i);
  1667. }
  1668. cmdb->bindStorageBuffer(0, 1, BufferView(resBuff.get()));
  1669. cmdb->bindShaderProgram(prog.get());
  1670. cmdb->dispatchCompute(1, 1, 1);
  1671. cmdb->endRecording();
  1672. GrManager::getSingleton().submit(cmdb.get());
  1673. g_gr->finish();
  1674. // Check result
  1675. Vec4* res = static_cast<Vec4*>(resBuff->map(0, sizeof(Vec4), BufferMapAccessBit::kRead));
  1676. ANKI_TEST_EXPECT_EQ(res->x(), 28.0f);
  1677. ANKI_TEST_EXPECT_EQ(res->y(), 32.0f);
  1678. ANKI_TEST_EXPECT_EQ(res->z(), 36.0f);
  1679. ANKI_TEST_EXPECT_EQ(res->w(), 40.0f);
  1680. resBuff->unmap();
  1681. COMMON_END();
  1682. #endif
  1683. }
  1684. ANKI_TEST(Gr, Bindless)
  1685. {
  1686. #if 0
  1687. COMMON_BEGIN()
  1688. // Create texture A
  1689. TextureInitInfo texInit;
  1690. texInit.m_width = 1;
  1691. texInit.m_height = 1;
  1692. texInit.m_format = Format::R32G32B32A32_UINT;
  1693. texInit.m_usage = TextureUsageBit::kAllUav | TextureUsageBit::ALL_TRANSFER | TextureUsageBit::kAllSrv;
  1694. texInit.m_mipmapCount = 1;
  1695. TexturePtr texA = gr->newTexture(texInit);
  1696. // Create texture B
  1697. TexturePtr texB = gr->newTexture(texInit);
  1698. // Create texture C
  1699. texInit.m_format = Format::R32G32B32A32_SFLOAT;
  1700. TexturePtr texC = gr->newTexture(texInit);
  1701. // Create sampler
  1702. SamplerInitInfo samplerInit;
  1703. SamplerPtr sampler = gr->newSampler(samplerInit);
  1704. // Create views
  1705. TextureViewPtr viewA = gr->newTextureView(TextureViewInitInfo(texA, TextureSurfaceDescriptor()));
  1706. TextureViewPtr viewB = gr->newTextureView(TextureViewInitInfo(texB, TextureSurfaceDescriptor()));
  1707. TextureViewPtr viewC = gr->newTextureView(TextureViewInitInfo(texC, TextureSurfaceDescriptor()));
  1708. // Create result buffer
  1709. BufferPtr resBuff =
  1710. gr->newBuffer(BufferInitInfo(sizeof(UVec4), BufferUsageBit::kAllCompute, BufferMapAccessBit::kRead));
  1711. // Create program A
  1712. static const char* PROG_SRC = R"(
  1713. layout(local_size_x = 1, local_size_y = 1, local_size_z = 1) in;
  1714. ANKI_BINDLESS_SET(0u);
  1715. layout(set = 1, binding = 0) writeonly buffer ss_
  1716. {
  1717. uvec4 u_result;
  1718. };
  1719. layout(set = 1, binding = 1) uniform sampler u_sampler;
  1720. layout(push_constant) uniform pc_
  1721. {
  1722. uvec4 u_texIndices;
  1723. };
  1724. void main()
  1725. {
  1726. uvec4 val0 = imageLoad(u_bindlessImages2dU32[u_texIndices[0]], ivec2(0));
  1727. uvec4 val1 = texelFetch(usampler2D(u_bindlessTextures2dU32[u_texIndices[1]], u_sampler), ivec2(0), 0);
  1728. vec4 val2 = texelFetch(sampler2D(u_bindlessTextures2dF32[u_texIndices[2]], u_sampler), ivec2(0), 0);
  1729. u_result = val0 + val1 + uvec4(val2);
  1730. })";
  1731. ShaderPtr shader = createShader(PROG_SRC, ShaderType::kCompute, *gr);
  1732. ShaderProgramInitInfo sprogInit;
  1733. sprogInit.m_computeShader = shader;
  1734. ShaderProgramPtr prog = gr->newShaderProgram(sprogInit);
  1735. // Run
  1736. CommandBufferInitInfo cinit;
  1737. cinit.m_flags = CommandBufferFlag::kComputeWork | CommandBufferFlag::kSmallBatch;
  1738. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  1739. setTextureSurfaceBarrier(cmdb, texA, TextureUsageBit::kNone, TextureUsageBit::kCopyDestination,
  1740. TextureSurfaceDescriptor());
  1741. setTextureSurfaceBarrier(cmdb, texB, TextureUsageBit::kNone, TextureUsageBit::kCopyDestination,
  1742. TextureSurfaceDescriptor());
  1743. setTextureSurfaceBarrier(cmdb, texC, TextureUsageBit::kNone, TextureUsageBit::kCopyDestination,
  1744. TextureSurfaceDescriptor());
  1745. TransferGpuAllocatorHandle handle0, handle1, handle2;
  1746. const UVec4 mip0 = UVec4(1, 2, 3, 4);
  1747. UPLOAD_TEX_SURFACE(cmdb, texA, TextureSurfaceDescriptor(0, 0, 0, 0), &mip0[0], sizeof(mip0), handle0);
  1748. const UVec4 mip1 = UVec4(10, 20, 30, 40);
  1749. UPLOAD_TEX_SURFACE(cmdb, texB, TextureSurfaceDescriptor(0, 0, 0, 0), &mip1[0], sizeof(mip1), handle1);
  1750. const Vec4 mip2 = Vec4(2.2f, 3.3f, 4.4f, 5.5f);
  1751. UPLOAD_TEX_SURFACE(cmdb, texC, TextureSurfaceDescriptor(0, 0, 0, 0), &mip2[0], sizeof(mip2), handle2);
  1752. setTextureSurfaceBarrier(cmdb, texA, TextureUsageBit::kCopyDestination, TextureUsageBit::kUavComputeRead,
  1753. TextureSurfaceDescriptor());
  1754. setTextureSurfaceBarrier(cmdb, texB, TextureUsageBit::kCopyDestination, TextureUsageBit::kSrvCompute,
  1755. TextureSurfaceDescriptor());
  1756. setTextureSurfaceBarrier(cmdb, texC, TextureUsageBit::kCopyDestination, TextureUsageBit::kSrvCompute,
  1757. TextureSurfaceDescriptor());
  1758. cmdb->bindStorageBuffer(1, 0, resBuff, 0, kMaxPtrSize);
  1759. cmdb->bindSampler(1, 1, sampler);
  1760. cmdb->bindShaderProgram(prog);
  1761. const U32 idx0 = viewA->getOrCreateBindlessImageIndex();
  1762. const U32 idx1 = viewB->getOrCreateBindlessTextureIndex();
  1763. const U32 idx2 = viewC->getOrCreateBindlessTextureIndex();
  1764. UVec4 pc(idx0, idx1, idx2, 0);
  1765. cmdb->setFastConstants(&pc, sizeof(pc));
  1766. cmdb->bindAllBindless(0);
  1767. cmdb->dispatchCompute(1, 1, 1);
  1768. // Read result
  1769. FencePtr fence;
  1770. cmdb->flush({}, &fence);
  1771. transfAlloc->release(handle0, fence);
  1772. transfAlloc->release(handle1, fence);
  1773. transfAlloc->release(handle2, fence);
  1774. gr->finish();
  1775. // Check result
  1776. UVec4* res = static_cast<UVec4*>(resBuff->map(0, sizeof(UVec4), BufferMapAccessBit::kRead));
  1777. ANKI_TEST_EXPECT_EQ(res->x(), 13);
  1778. ANKI_TEST_EXPECT_EQ(res->y(), 25);
  1779. ANKI_TEST_EXPECT_EQ(res->z(), 37);
  1780. ANKI_TEST_EXPECT_EQ(res->w(), 49);
  1781. resBuff->unmap();
  1782. COMMON_END()
  1783. #endif
  1784. }
  1785. ANKI_TEST(Gr, RayQuery)
  1786. {
  1787. g_cvarGrRayTracing = true;
  1788. commonInit();
  1789. {
  1790. if(!GrManager::getSingleton().getDeviceCapabilities().m_rayTracingEnabled)
  1791. {
  1792. ANKI_TEST_LOGF("Test can't run without ray tracing");
  1793. }
  1794. // Index buffer
  1795. BufferPtr idxBuffer;
  1796. {
  1797. Array<U16, 3> indices = {0, 1, 2};
  1798. BufferInitInfo init("IdxBuffer");
  1799. init.m_mapAccess = BufferMapAccessBit::kWrite;
  1800. init.m_usage = BufferUsageBit::kVertexOrIndex | BufferUsageBit::kAccelerationStructureBuild;
  1801. init.m_size = sizeof(indices);
  1802. idxBuffer = GrManager::getSingleton().newBuffer(init);
  1803. void* addr = idxBuffer->map(0, kMaxPtrSize, BufferMapAccessBit::kWrite);
  1804. memcpy(addr, &indices[0], sizeof(indices));
  1805. idxBuffer->unmap();
  1806. }
  1807. // Position buffer (add some padding to complicate things a bit)
  1808. BufferPtr vertBuffer;
  1809. {
  1810. Array<Vec4, 3> verts = {{Vec4(-1.0f, 0.0f, 0.0f, 100.0f), Vec4(1.0f, 0.0f, 0.0f, 100.0f), Vec4(0.0f, 2.0f, 0.0f, 100.0f)}};
  1811. BufferInitInfo init("VertBuffer");
  1812. init.m_mapAccess = BufferMapAccessBit::kWrite;
  1813. init.m_usage = BufferUsageBit::kVertexOrIndex | BufferUsageBit::kAccelerationStructureBuild;
  1814. init.m_size = sizeof(verts);
  1815. vertBuffer = GrManager::getSingleton().newBuffer(init);
  1816. void* addr = vertBuffer->map(0, kMaxPtrSize, BufferMapAccessBit::kWrite);
  1817. memcpy(addr, &verts[0], sizeof(verts));
  1818. vertBuffer->unmap();
  1819. }
  1820. // BLAS
  1821. AccelerationStructurePtr blas;
  1822. {
  1823. AccelerationStructureInitInfo init;
  1824. init.m_type = AccelerationStructureType::kBottomLevel;
  1825. init.m_bottomLevel.m_indexBuffer = BufferView(idxBuffer.get());
  1826. init.m_bottomLevel.m_indexCount = 3;
  1827. init.m_bottomLevel.m_indexType = IndexType::kU16;
  1828. init.m_bottomLevel.m_positionBuffer = BufferView(vertBuffer.get());
  1829. init.m_bottomLevel.m_positionCount = 3;
  1830. init.m_bottomLevel.m_positionsFormat = Format::kR32G32B32_Sfloat;
  1831. init.m_bottomLevel.m_positionStride = 4 * 4;
  1832. blas = GrManager::getSingleton().newAccelerationStructure(init);
  1833. }
  1834. // TLAS
  1835. AccelerationStructurePtr tlas;
  1836. {
  1837. AccelerationStructureInstance inst = {};
  1838. inst.m_accelerationStructureAddress = blas->getGpuAddress();
  1839. inst.m_transform = Mat3x4::getIdentity();
  1840. inst.m_mask = 0xFF;
  1841. inst.m_flags = kAccellerationStructureFlagForceOpaque;
  1842. BufferPtr instBuff = createBuffer(BufferUsageBit::kAll, inst, 1);
  1843. AccelerationStructureInitInfo init;
  1844. init.m_type = AccelerationStructureType::kTopLevel;
  1845. init.m_topLevel.m_instancesBuffer = BufferView(instBuff.get());
  1846. init.m_topLevel.m_instanceCount = 1;
  1847. tlas = GrManager::getSingleton().newAccelerationStructure(init);
  1848. }
  1849. // Program
  1850. ShaderProgramPtr prog;
  1851. {
  1852. constexpr const Char* kVertSrc = R"(
  1853. struct VertOut
  1854. {
  1855. float4 m_svPosition : SV_POSITION;
  1856. float2 m_uv : TEXCOORDS;
  1857. };
  1858. VertOut main(uint svVertexId : SV_VERTEXID)
  1859. {
  1860. const float2 coord = float2(svVertexId >> 1, svVertexId & 1);
  1861. VertOut output;
  1862. output.m_svPosition = float4(coord * float2(4.0, -4.0) + float2(-1.0, 1.0), 0.0, 1.0);
  1863. output.m_uv = coord * 2.0;
  1864. return output;
  1865. })";
  1866. CString kPixelSrc = R"(
  1867. struct Consts
  1868. {
  1869. float4x4 m_invViewProj;
  1870. float3 m_cameraPos;
  1871. float m_padding0;
  1872. float2 m_viewport;
  1873. float2 m_padding1;
  1874. };
  1875. #if defined(__spirv__)
  1876. [[vk::push_constant]] ConstantBuffer<Consts> g_consts;
  1877. #else
  1878. ConstantBuffer<Consts> g_consts : register(b0, space3000);
  1879. #endif
  1880. RaytracingAccelerationStructure g_tlas : register(t0);
  1881. struct VertOut
  1882. {
  1883. float4 m_svPosition : SV_POSITION;
  1884. float2 m_uv : TEXCOORDS;
  1885. };
  1886. float4 main(VertOut input) : SV_TARGET0
  1887. {
  1888. // Unproject
  1889. const float2 uv = input.m_uv;
  1890. float2 ndc = uv * 2.0 - 1.0;
  1891. ndc.y *= -1;
  1892. const float4 p4 = mul(g_consts.m_invViewProj, float4(ndc, 1.0, 1.0));
  1893. const float3 p3 = p4.xyz / p4.w;
  1894. const float3 rayDir = normalize(p3 - g_consts.m_cameraPos);
  1895. const float3 rayOrigin = g_consts.m_cameraPos;
  1896. RayQuery<RAY_FLAG_NONE> q;
  1897. const uint cullMask = 0xFFu;
  1898. const uint traceFlags = RAY_FLAG_FORCE_OPAQUE | RAY_FLAG_SKIP_PROCEDURAL_PRIMITIVES | RAY_FLAG_ACCEPT_FIRST_HIT_AND_END_SEARCH;
  1899. RayDesc ray;
  1900. ray.Origin = rayOrigin;
  1901. ray.TMin = 0.01;
  1902. ray.Direction = rayDir;
  1903. ray.TMax = 100.0;
  1904. q.TraceRayInline(g_tlas, traceFlags, cullMask, ray);
  1905. q.Proceed();
  1906. bool hit = q.CommittedStatus() == COMMITTED_TRIANGLE_HIT;
  1907. float u = 0;
  1908. float v = 0;
  1909. float w = 0;
  1910. if(hit)
  1911. {
  1912. float2 bary = q.CandidateTriangleBarycentrics();
  1913. u = 1.0 - bary.x - bary.y;
  1914. v = bary.x;
  1915. w = bary.y;
  1916. }
  1917. return float4(u, v, w, 0.0);
  1918. })";
  1919. prog = createVertFragProg(kVertSrc, kPixelSrc);
  1920. }
  1921. // Build AS
  1922. {
  1923. CommandBufferInitInfo cinit;
  1924. cinit.m_flags = CommandBufferFlag::kGeneralWork | CommandBufferFlag::kSmallBatch;
  1925. CommandBufferPtr cmdb = GrManager::getSingleton().newCommandBuffer(cinit);
  1926. AccelerationStructureBarrierInfo barr;
  1927. barr.m_as = blas.get();
  1928. barr.m_previousUsage = AccelerationStructureUsageBit::kNone;
  1929. barr.m_nextUsage = AccelerationStructureUsageBit::kBuild;
  1930. cmdb->setPipelineBarrier({}, {}, {&barr, 1});
  1931. BufferInitInfo scratchInit;
  1932. scratchInit.m_size = blas->getBuildScratchBufferSize();
  1933. scratchInit.m_usage = BufferUsageBit::kAccelerationStructureBuildScratch;
  1934. BufferPtr scratchBuff = GrManager::getSingleton().newBuffer(scratchInit);
  1935. cmdb->buildAccelerationStructure(blas.get(), BufferView(scratchBuff.get()));
  1936. Array<AccelerationStructureBarrierInfo, 2> barr2;
  1937. barr2[0].m_as = blas.get();
  1938. barr2[0].m_previousUsage = AccelerationStructureUsageBit::kBuild;
  1939. barr2[0].m_nextUsage = AccelerationStructureUsageBit::kAttach;
  1940. barr2[1].m_as = tlas.get();
  1941. barr2[1].m_previousUsage = AccelerationStructureUsageBit::kNone;
  1942. barr2[1].m_nextUsage = AccelerationStructureUsageBit::kBuild;
  1943. cmdb->setPipelineBarrier({}, {}, barr2);
  1944. scratchInit.m_size = tlas->getBuildScratchBufferSize();
  1945. scratchBuff = GrManager::getSingleton().newBuffer(scratchInit);
  1946. cmdb->buildAccelerationStructure(tlas.get(), BufferView(scratchBuff.get()));
  1947. AccelerationStructureBarrierInfo barr3;
  1948. barr3.m_as = tlas.get();
  1949. barr3.m_previousUsage = AccelerationStructureUsageBit::kBuild;
  1950. barr3.m_nextUsage = AccelerationStructureUsageBit::kSrvCompute;
  1951. cmdb->setPipelineBarrier({}, {}, {&barr3, 1});
  1952. cmdb->endRecording();
  1953. GrManager::getSingleton().submit(cmdb.get());
  1954. }
  1955. // Draw
  1956. constexpr U32 kIterations = 200;
  1957. for(U i = 0; i < kIterations; ++i)
  1958. {
  1959. HighRezTimer timer;
  1960. timer.start();
  1961. GrManager::getSingleton().beginFrame();
  1962. const Vec4 cameraPos(0.0f, 0.0f, 3.0f, 0.0f);
  1963. const Mat4 viewMat = Mat4(cameraPos.xyz, Mat3::getIdentity(), Vec3(1.0f)).invert();
  1964. const Mat4 projMat = Mat4::calculatePerspectiveProjectionMatrix(toRad(90.0f), toRad(90.0f), 0.01f, 1000.0f);
  1965. CommandBufferInitInfo cinit;
  1966. cinit.m_flags = CommandBufferFlag::kGeneralWork | CommandBufferFlag::kSmallBatch;
  1967. CommandBufferPtr cmdb = GrManager::getSingleton().newCommandBuffer(cinit);
  1968. cmdb->bindShaderProgram(prog.get());
  1969. struct Consts
  1970. {
  1971. Mat4 m_invViewProj;
  1972. Vec3 m_cameraPos;
  1973. F32 m_padding0;
  1974. Vec2 m_viewport;
  1975. Vec2 m_padding1;
  1976. } consts;
  1977. consts.m_invViewProj = (projMat * viewMat).invert().transpose();
  1978. consts.m_cameraPos = cameraPos.xyz;
  1979. consts.m_viewport = Vec2(kWidth, kHeight);
  1980. cmdb->setFastConstants(&consts, sizeof(consts));
  1981. cmdb->bindSrv(0, 0, tlas.get());
  1982. TexturePtr presentTex = GrManager::getSingleton().acquireNextPresentableTexture();
  1983. TextureBarrierInfo barr;
  1984. barr.m_textureView = TextureView(presentTex.get(), TextureSubresourceDesc::all());
  1985. barr.m_previousUsage = TextureUsageBit::kNone;
  1986. barr.m_nextUsage = TextureUsageBit::kRtvDsvWrite;
  1987. cmdb->setPipelineBarrier({&barr, 1}, {}, {});
  1988. cmdb->beginRenderPass({TextureView(presentTex.get(), TextureSubresourceDesc::firstSurface())});
  1989. cmdb->setViewport(0, 0, kWidth, kHeight);
  1990. cmdb->draw(PrimitiveTopology::kTriangles, 3);
  1991. cmdb->endRenderPass();
  1992. barr.m_previousUsage = TextureUsageBit::kRtvDsvWrite;
  1993. barr.m_nextUsage = TextureUsageBit::kPresent;
  1994. cmdb->setPipelineBarrier({&barr, 1}, {}, {});
  1995. cmdb->endRecording();
  1996. GrManager::getSingleton().submit(cmdb.get());
  1997. GrManager::getSingleton().endFrame();
  1998. timer.stop();
  1999. const F32 TICK = 1.0f / 30.0f;
  2000. if(timer.getElapsedTime() < TICK)
  2001. {
  2002. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  2003. }
  2004. }
  2005. }
  2006. commonDestroy();
  2007. }
  2008. ANKI_TEST(Gr, RayTracingPipeline)
  2009. {
  2010. g_cvarGrRayTracing = true;
  2011. // g_deviceCVar = 1;
  2012. commonInit();
  2013. {
  2014. if(!GrManager::getSingleton().getDeviceCapabilities().m_rayTracingEnabled)
  2015. {
  2016. ANKI_TEST_LOGF("Test can't run without ray tracing");
  2017. }
  2018. // Index buffer
  2019. BufferPtr idxBuffer;
  2020. {
  2021. Array<U16, 3> indices = {0, 1, 2};
  2022. BufferInitInfo init("IdxBuffer");
  2023. init.m_mapAccess = BufferMapAccessBit::kWrite;
  2024. init.m_usage = BufferUsageBit::kVertexOrIndex | BufferUsageBit::kAccelerationStructureBuild;
  2025. init.m_size = sizeof(indices);
  2026. idxBuffer = GrManager::getSingleton().newBuffer(init);
  2027. void* addr = idxBuffer->map(0, kMaxPtrSize, BufferMapAccessBit::kWrite);
  2028. memcpy(addr, &indices[0], sizeof(indices));
  2029. idxBuffer->unmap();
  2030. }
  2031. // Position buffer (add some padding to complicate things a bit)
  2032. BufferPtr vertBuffer;
  2033. {
  2034. Array<Vec4, 3> verts = {{Vec4(-1.0f, 0.0f, 0.0f, 100.0f), Vec4(1.0f, 0.0f, 0.0f, 100.0f), Vec4(0.0f, 2.0f, 0.0f, 100.0f)}};
  2035. BufferInitInfo init("VertBuffer");
  2036. init.m_mapAccess = BufferMapAccessBit::kWrite;
  2037. init.m_usage = BufferUsageBit::kVertexOrIndex | BufferUsageBit::kAccelerationStructureBuild;
  2038. init.m_size = sizeof(verts);
  2039. vertBuffer = GrManager::getSingleton().newBuffer(init);
  2040. void* addr = vertBuffer->map(0, kMaxPtrSize, BufferMapAccessBit::kWrite);
  2041. memcpy(addr, &verts[0], sizeof(verts));
  2042. vertBuffer->unmap();
  2043. }
  2044. // BLAS
  2045. AccelerationStructurePtr blas;
  2046. {
  2047. AccelerationStructureInitInfo init;
  2048. init.m_type = AccelerationStructureType::kBottomLevel;
  2049. init.m_bottomLevel.m_indexBuffer = BufferView(idxBuffer.get());
  2050. init.m_bottomLevel.m_indexCount = 3;
  2051. init.m_bottomLevel.m_indexType = IndexType::kU16;
  2052. init.m_bottomLevel.m_positionBuffer = BufferView(vertBuffer.get());
  2053. init.m_bottomLevel.m_positionCount = 3;
  2054. init.m_bottomLevel.m_positionsFormat = Format::kR32G32B32_Sfloat;
  2055. init.m_bottomLevel.m_positionStride = 4 * 4;
  2056. blas = GrManager::getSingleton().newAccelerationStructure(init);
  2057. }
  2058. // TLAS
  2059. AccelerationStructurePtr tlas;
  2060. {
  2061. Array<AccelerationStructureInstance, 2> inst = {};
  2062. inst[0].m_accelerationStructureAddress = blas->getGpuAddress();
  2063. inst[0].m_transform = Mat3x4::getIdentity();
  2064. inst[0].m_mask = 0xFF;
  2065. inst[0].m_flags = kAccellerationStructureFlagForceOpaque;
  2066. inst[1] = inst[0];
  2067. inst[1].m_transform = Mat3x4(Vec3(0.0f, -2.0f, 0.0f), Mat3::getIdentity(), Vec3(1.0f));
  2068. inst[1].m_instanceCustomIndex = 1;
  2069. inst[1].m_instanceShaderBindingTableRecordOffset = 1;
  2070. BufferPtr instBuff = createBuffer(BufferUsageBit::kAccelerationStructureBuild, inst, 1, "TLAS instances");
  2071. AccelerationStructureInitInfo init;
  2072. init.m_type = AccelerationStructureType::kTopLevel;
  2073. init.m_topLevel.m_instancesBuffer = BufferView(instBuff.get());
  2074. init.m_topLevel.m_instanceCount = 2;
  2075. tlas = GrManager::getSingleton().newAccelerationStructure(init);
  2076. }
  2077. // Program
  2078. ShaderProgramPtr prog;
  2079. {
  2080. constexpr const Char* kCHit = R"(
  2081. struct Barycentrics
  2082. {
  2083. float2 m_value;
  2084. };
  2085. struct [raypayload] Payload
  2086. {
  2087. float3 m_color : write(closesthit, miss, caller) : read(caller);
  2088. };
  2089. struct SbtConsts
  2090. {
  2091. float3 m_color;
  2092. };
  2093. [[vk::shader_record_ext]] ConstantBuffer<SbtConsts> g_sbtConsts : register(b0, space3001);
  2094. [shader("closesthit")] void main(inout Payload payload : SV_RayPayload, in Barycentrics barycentrics : SV_IntersectionAttributes)
  2095. {
  2096. const float3 bary = float3(1.0 - barycentrics.m_value.x - barycentrics.m_value.y, barycentrics.m_value.x, barycentrics.m_value.y);
  2097. float3 c = bary * COLOR_SCALE;
  2098. float factor = max(c.x, max(c.y, c.z));
  2099. payload.m_color = lerp(g_sbtConsts.m_color, c, saturate(factor));
  2100. })";
  2101. constexpr const Char* kMiss = R"(
  2102. struct [raypayload] Payload
  2103. {
  2104. float3 m_color : write(closesthit, miss, caller) : read(caller);
  2105. };
  2106. [shader("miss")] void main(inout Payload payload : SV_RayPayload)
  2107. {
  2108. payload.m_color = float3(0.2, 0.0, 0.2);
  2109. })";
  2110. constexpr const Char* kRaygen = R"(
  2111. struct Consts
  2112. {
  2113. float4x4 m_invViewProj;
  2114. float3 m_cameraPos;
  2115. float m_padding0;
  2116. float2 m_viewport;
  2117. float2 m_padding1;
  2118. };
  2119. struct [raypayload] Payload
  2120. {
  2121. float3 m_color : write(closesthit, miss, caller) : read(caller);
  2122. };
  2123. #if defined(__spirv__)
  2124. [[vk::push_constant]] ConstantBuffer<Consts> g_consts;
  2125. #else
  2126. ConstantBuffer<Consts> g_consts : register(b0, space3000);
  2127. #endif
  2128. RaytracingAccelerationStructure g_tlas : register(t0);
  2129. RWTexture2D<float4> g_uav : register(u0);
  2130. [shader("raygeneration")] void main()
  2131. {
  2132. // Unproject
  2133. const float2 uv = (DispatchRaysIndex().xy + 0.5) / g_consts.m_viewport;
  2134. float2 ndc = uv * 2.0 - 1.0;
  2135. ndc.y *= -1;
  2136. const float4 p4 = mul(g_consts.m_invViewProj, float4(ndc, 1.0, 1.0));
  2137. const float3 p3 = p4.xyz / p4.w;
  2138. const float3 rayDir = normalize(p3 - g_consts.m_cameraPos);
  2139. const float3 rayOrigin = g_consts.m_cameraPos;
  2140. Payload payload;
  2141. payload.m_color = 0.0;
  2142. const uint cullMask = 0xFFu;
  2143. const uint traceFlags = RAY_FLAG_FORCE_OPAQUE | RAY_FLAG_SKIP_PROCEDURAL_PRIMITIVES | RAY_FLAG_ACCEPT_FIRST_HIT_AND_END_SEARCH;
  2144. const uint missIndex = 0u;
  2145. const uint sbtRecordOffset = 0u;
  2146. const uint sbtRecordStride = 0u;
  2147. RayDesc ray;
  2148. ray.Origin = rayOrigin;
  2149. ray.TMin = 0.01;
  2150. ray.Direction = rayDir;
  2151. ray.TMax = 100.0;
  2152. TraceRay(g_tlas, traceFlags, cullMask, sbtRecordOffset, sbtRecordStride, missIndex, ray, payload);
  2153. g_uav[DispatchRaysIndex().xy] = float4(payload.m_color + COLOR_BIAS * ((DispatchRaysIndex().x / 32) & 1), 0.0);
  2154. })";
  2155. ShaderPtr chit1Shader = createShader(kCHit, ShaderType::kClosestHit, Array<CString, 1>{"-DCOLOR_SCALE=float4(1, 0, 0, 0)"});
  2156. ShaderPtr chit2Shader = createShader(kCHit, ShaderType::kClosestHit, Array<CString, 1>{"-DCOLOR_SCALE=float4(0, 0, 1, 0)"});
  2157. ShaderPtr missShader = createShader(kMiss, ShaderType::kMiss);
  2158. ShaderPtr raygen1Shader = createShader(kRaygen, ShaderType::kRayGen, Array<CString, 1>{"-DCOLOR_BIAS=float4(1, 1, 1, 0)"});
  2159. ShaderPtr raygen2Shader = createShader(kRaygen, ShaderType::kRayGen, Array<CString, 1>{"-DCOLOR_BIAS=float4(0, 0, 0, 0)"});
  2160. ShaderProgramInitInfo inf;
  2161. Array<Shader*, 2> raygenArr = {raygen1Shader.get(), raygen2Shader.get()};
  2162. inf.m_rayTracingShaders.m_rayGenShaders = raygenArr;
  2163. Shader* pMiss = missShader.get();
  2164. inf.m_rayTracingShaders.m_missShaders = {&pMiss, 1};
  2165. Array<RayTracingHitGroup, 2> hits = {{{chit1Shader.get(), nullptr}, {chit2Shader.get(), nullptr}}};
  2166. inf.m_rayTracingShaders.m_hitGroups = hits;
  2167. prog = GrManager::getSingleton().newShaderProgram(inf);
  2168. }
  2169. // Build SBT
  2170. BufferPtr sbt;
  2171. U32 sbtRecordSize;
  2172. {
  2173. const U32 handleSize = GrManager::getSingleton().getDeviceCapabilities().m_shaderGroupHandleSize;
  2174. sbtRecordSize = getAlignedRoundUp(GrManager::getSingleton().getDeviceCapabilities().m_sbtRecordAlignment, handleSize + U32(sizeof(Vec3)));
  2175. ConstWeakArray<U8> handles = prog->getShaderGroupHandles();
  2176. const Array<U32, 4> copyHandles = {0, 2, 3, 4};
  2177. const Array<Vec3, 4> colors = {Vec3(0.0f), Vec3(0.0f), Vec3(0.0f, 1.0f, 0.0f), Vec3(1.0f, 0.0f, 0.0f)};
  2178. DynamicArray<U8> sbtData;
  2179. sbtData.resize(copyHandles.getSize() * sbtRecordSize, 0);
  2180. U32 count = 0;
  2181. for(U32 handleIdx : copyHandles)
  2182. {
  2183. memcpy(sbtData.getBegin() + sbtRecordSize * count, handles.getBegin() + handleSize * handleIdx, handleSize);
  2184. memcpy(sbtData.getBegin() + sbtRecordSize * count + handleSize, &colors[count], sizeof(Vec3));
  2185. ++count;
  2186. }
  2187. sbt = createBuffer(BufferUsageBit::kShaderBindingTable, ConstWeakArray(sbtData), "SBT");
  2188. }
  2189. // Build AS
  2190. {
  2191. CommandBufferInitInfo cinit;
  2192. cinit.m_flags = CommandBufferFlag::kGeneralWork | CommandBufferFlag::kSmallBatch;
  2193. CommandBufferPtr cmdb = GrManager::getSingleton().newCommandBuffer(cinit);
  2194. AccelerationStructureBarrierInfo barr;
  2195. barr.m_as = blas.get();
  2196. barr.m_previousUsage = AccelerationStructureUsageBit::kNone;
  2197. barr.m_nextUsage = AccelerationStructureUsageBit::kBuild;
  2198. cmdb->setPipelineBarrier({}, {}, {&barr, 1});
  2199. BufferInitInfo scratchInit;
  2200. scratchInit.m_size = blas->getBuildScratchBufferSize();
  2201. scratchInit.m_usage = BufferUsageBit::kAccelerationStructureBuildScratch;
  2202. BufferPtr scratchBuff = GrManager::getSingleton().newBuffer(scratchInit);
  2203. cmdb->buildAccelerationStructure(blas.get(), BufferView(scratchBuff.get()));
  2204. Array<AccelerationStructureBarrierInfo, 2> barr2;
  2205. barr2[0].m_as = blas.get();
  2206. barr2[0].m_previousUsage = AccelerationStructureUsageBit::kBuild;
  2207. barr2[0].m_nextUsage = AccelerationStructureUsageBit::kAttach;
  2208. barr2[1].m_as = tlas.get();
  2209. barr2[1].m_previousUsage = AccelerationStructureUsageBit::kNone;
  2210. barr2[1].m_nextUsage = AccelerationStructureUsageBit::kBuild;
  2211. cmdb->setPipelineBarrier({}, {}, barr2);
  2212. scratchInit.m_size = tlas->getBuildScratchBufferSize();
  2213. scratchBuff = GrManager::getSingleton().newBuffer(scratchInit);
  2214. cmdb->buildAccelerationStructure(tlas.get(), BufferView(scratchBuff.get()));
  2215. AccelerationStructureBarrierInfo barr3;
  2216. barr3.m_as = tlas.get();
  2217. barr3.m_previousUsage = AccelerationStructureUsageBit::kBuild;
  2218. barr3.m_nextUsage = AccelerationStructureUsageBit::kSrvCompute;
  2219. cmdb->setPipelineBarrier({}, {}, {&barr3, 1});
  2220. cmdb->endRecording();
  2221. GrManager::getSingleton().submit(cmdb.get());
  2222. }
  2223. // UAV
  2224. TexturePtr uav;
  2225. {
  2226. TextureInitInfo texInit;
  2227. texInit.m_width = kWidth;
  2228. texInit.m_height = kHeight;
  2229. texInit.m_format = Format::kR8G8B8A8_Unorm;
  2230. texInit.m_usage = TextureUsageBit::kAllUav | TextureUsageBit::kAllSrv;
  2231. uav = GrManager::getSingleton().newTexture(texInit);
  2232. }
  2233. // Prog to blit to swapchain
  2234. ShaderProgramPtr blitProg;
  2235. {
  2236. constexpr const Char* kVertSrc = R"(
  2237. float4 main(uint svVertexId : SV_VERTEXID) : SV_POSITION
  2238. {
  2239. const float2 coord = float2(svVertexId >> 1, svVertexId & 1);
  2240. return float4(coord * float2(4.0, -4.0) + float2(-1.0, 1.0), 0.0, 1.0);
  2241. })";
  2242. CString kPixelSrc = R"(
  2243. Texture2D g_srv : register(t0);
  2244. float4 main(float4 svPosition : SV_POSITION) : SV_TARGET0
  2245. {
  2246. return g_srv[svPosition.xy];
  2247. })";
  2248. blitProg = createVertFragProg(kVertSrc, kPixelSrc);
  2249. }
  2250. // Build indirect args
  2251. BufferPtr indirectArgs;
  2252. {
  2253. const DispatchIndirectArgs args = {kWidth, kHeight, 1};
  2254. indirectArgs = createBuffer(BufferUsageBit::kIndirectDispatchRays, args, 1, "IndirectArgs");
  2255. }
  2256. // Draw
  2257. constexpr U32 kIterations = 200;
  2258. for(U i = 0; i < kIterations; ++i)
  2259. {
  2260. HighRezTimer timer;
  2261. timer.start();
  2262. GrManager::getSingleton().beginFrame();
  2263. const Vec4 cameraPos(0.0f, 0.0f, 3.0f, 0.0f);
  2264. const Mat4 viewMat = Mat4(cameraPos.xyz, Mat3::getIdentity(), Vec3(1.0f)).invert();
  2265. const Mat4 projMat = Mat4::calculatePerspectiveProjectionMatrix(toRad(90.0f), toRad(90.0f), 0.01f, 1000.0f);
  2266. CommandBufferInitInfo cinit;
  2267. cinit.m_flags = CommandBufferFlag::kGeneralWork | CommandBufferFlag::kSmallBatch;
  2268. CommandBufferPtr cmdb = GrManager::getSingleton().newCommandBuffer(cinit);
  2269. TextureBarrierInfo barr;
  2270. barr.m_textureView = TextureView(uav.get());
  2271. barr.m_previousUsage = (i == 0) ? TextureUsageBit::kNone : TextureUsageBit::kSrvPixel;
  2272. barr.m_nextUsage = TextureUsageBit::kUavDispatchRays;
  2273. cmdb->setPipelineBarrier({&barr, 1}, {}, {});
  2274. cmdb->bindShaderProgram(prog.get());
  2275. struct Consts
  2276. {
  2277. Mat4 m_invViewProj;
  2278. Vec3 m_cameraPos;
  2279. F32 m_padding0;
  2280. Vec2 m_viewport;
  2281. Vec2 m_padding1;
  2282. } consts;
  2283. consts.m_invViewProj = (projMat * viewMat).invert().transpose();
  2284. consts.m_cameraPos = cameraPos.xyz;
  2285. consts.m_viewport = Vec2(kWidth, kHeight);
  2286. cmdb->setFastConstants(&consts, sizeof(consts));
  2287. cmdb->bindSrv(0, 0, tlas.get());
  2288. cmdb->bindUav(0, 0, TextureView(uav.get()));
  2289. cmdb->dispatchRaysIndirect(BufferView(sbt.get()), sbtRecordSize, 2, 1, BufferView(indirectArgs.get()));
  2290. barr.m_previousUsage = TextureUsageBit::kUavDispatchRays;
  2291. barr.m_nextUsage = TextureUsageBit::kSrvPixel;
  2292. cmdb->setPipelineBarrier({&barr, 1}, {}, {});
  2293. // Blit to swapchain
  2294. TexturePtr presentTex = GrManager::getSingleton().acquireNextPresentableTexture();
  2295. barr.m_textureView = TextureView(presentTex.get());
  2296. barr.m_previousUsage = TextureUsageBit::kNone;
  2297. barr.m_nextUsage = TextureUsageBit::kRtvDsvWrite;
  2298. cmdb->setPipelineBarrier({&barr, 1}, {}, {});
  2299. cmdb->beginRenderPass({TextureView(presentTex.get())});
  2300. cmdb->setViewport(0, 0, kWidth, kHeight);
  2301. cmdb->bindSrv(0, 0, TextureView(uav.get()));
  2302. cmdb->bindShaderProgram(blitProg.get());
  2303. cmdb->draw(PrimitiveTopology::kTriangles, 3);
  2304. cmdb->endRenderPass();
  2305. barr.m_previousUsage = TextureUsageBit::kRtvDsvWrite;
  2306. barr.m_nextUsage = TextureUsageBit::kPresent;
  2307. cmdb->setPipelineBarrier({&barr, 1}, {}, {});
  2308. cmdb->endRecording();
  2309. GrManager::getSingleton().submit(cmdb.get());
  2310. GrManager::getSingleton().endFrame();
  2311. timer.stop();
  2312. const F32 TICK = 1.0f / 30.0f;
  2313. if(timer.getElapsedTime() < TICK)
  2314. {
  2315. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  2316. }
  2317. }
  2318. }
  2319. commonDestroy();
  2320. }
  2321. [[maybe_unused]] static void createCubeBuffers(GrManager& gr, Vec3 min, Vec3 max, BufferPtr& indexBuffer, BufferPtr& vertBuffer,
  2322. Bool turnInsideOut = false)
  2323. {
  2324. BufferInitInfo inf;
  2325. inf.m_mapAccess = BufferMapAccessBit::kWrite;
  2326. inf.m_usage = BufferUsageBit::kVertexOrIndex | BufferUsageBit::kSrvDispatchRays;
  2327. inf.m_size = sizeof(Vec3) * 8;
  2328. vertBuffer = gr.newBuffer(inf);
  2329. WeakArray<Vec3, PtrSize> positions = vertBuffer->map<Vec3>(0, 8, BufferMapAccessBit::kWrite);
  2330. // 7------6
  2331. // /| /|
  2332. // 3------2 |
  2333. // | | | |
  2334. // | 4 ---|-5
  2335. // |/ |/
  2336. // 0------1
  2337. positions[0] = Vec3(min.x, min.y, max.z);
  2338. positions[1] = Vec3(max.x, min.y, max.z);
  2339. positions[2] = Vec3(max.x, max.y, max.z);
  2340. positions[3] = Vec3(min.x, max.y, max.z);
  2341. positions[4] = Vec3(min.x, min.y, min.z);
  2342. positions[5] = Vec3(max.x, min.y, min.z);
  2343. positions[6] = Vec3(max.x, max.y, min.z);
  2344. positions[7] = Vec3(min.x, max.y, min.z);
  2345. vertBuffer->unmap();
  2346. inf.m_size = sizeof(U16) * 36;
  2347. indexBuffer = gr.newBuffer(inf);
  2348. WeakArray<U16, PtrSize> indices = indexBuffer->map<U16>(0, 36, BufferMapAccessBit::kWrite);
  2349. U32 t = 0;
  2350. // Top
  2351. indices[t++] = 3;
  2352. indices[t++] = 2;
  2353. indices[t++] = 7;
  2354. indices[t++] = 2;
  2355. indices[t++] = 6;
  2356. indices[t++] = 7;
  2357. // Bottom
  2358. indices[t++] = 1;
  2359. indices[t++] = 0;
  2360. indices[t++] = 4;
  2361. indices[t++] = 1;
  2362. indices[t++] = 4;
  2363. indices[t++] = 5;
  2364. // Left
  2365. indices[t++] = 0;
  2366. indices[t++] = 3;
  2367. indices[t++] = 4;
  2368. indices[t++] = 3;
  2369. indices[t++] = 7;
  2370. indices[t++] = 4;
  2371. // Right
  2372. indices[t++] = 1;
  2373. indices[t++] = 5;
  2374. indices[t++] = 2;
  2375. indices[t++] = 2;
  2376. indices[t++] = 5;
  2377. indices[t++] = 6;
  2378. // Front
  2379. indices[t++] = 0;
  2380. indices[t++] = 1;
  2381. indices[t++] = 3;
  2382. indices[t++] = 3;
  2383. indices[t++] = 1;
  2384. indices[t++] = 2;
  2385. // Back
  2386. indices[t++] = 4;
  2387. indices[t++] = 7;
  2388. indices[t++] = 6;
  2389. indices[t++] = 5;
  2390. indices[t++] = 4;
  2391. indices[t++] = 6;
  2392. ANKI_ASSERT(t == indices.getSize());
  2393. if(turnInsideOut)
  2394. {
  2395. for(U32 i = 0; i < t; i += 3)
  2396. {
  2397. std::swap(indices[i + 1], indices[i + 2]);
  2398. }
  2399. }
  2400. indexBuffer->unmap();
  2401. }
  2402. enum class GeomWhat
  2403. {
  2404. SMALL_BOX,
  2405. BIG_BOX,
  2406. ROOM,
  2407. LIGHT,
  2408. kCount,
  2409. kFirst = 0
  2410. };
  2411. ANKI_ENUM_ALLOW_NUMERIC_OPERATIONS(GeomWhat)
  2412. ANKI_TEST(Gr, RayGen)
  2413. {
  2414. #if 0
  2415. COMMON_BEGIN();
  2416. const Bool useRayTracing = g_gr->getDeviceCapabilities().m_rayTracingEnabled;
  2417. if(!useRayTracing)
  2418. {
  2419. ANKI_TEST_LOGW("Ray tracing not supported");
  2420. break;
  2421. }
  2422. using Mat3x4Scalar = Array2d<F32, 3, 4>;
  2423. # define MAGIC_MACRO(x) x
  2424. # include <Tests/Gr/RtTypes.h>
  2425. # undef MAGIC_MACRO
  2426. HeapMemoryPool pool(allocAligned, nullptr);
  2427. // Create the offscreen RTs
  2428. Array<TexturePtr, 2> offscreenRts;
  2429. {
  2430. TextureInitInfo inf("T_offscreen#1");
  2431. inf.m_width = WIDTH;
  2432. inf.m_height = HEIGHT;
  2433. inf.m_format = Format::kR8G8B8A8_Unorm;
  2434. inf.m_usage = TextureUsageBit::kUavTraceRaysRead | TextureUsageBit::kUavTraceRaysWrite | TextureUsageBit::kUavComputeRead;
  2435. offscreenRts[0] = g_gr->newTexture(inf);
  2436. inf.setName("T_offscreen#2");
  2437. offscreenRts[1] = g_gr->newTexture(inf);
  2438. }
  2439. // Copy to present program
  2440. ShaderProgramPtr copyToPresentProg;
  2441. {
  2442. const CString src = R"(
  2443. layout(local_size_x = 8, local_size_y = 8, local_size_z = 1) in;
  2444. layout(set = 0, binding = 0) uniform readonly image2D u_inImg;
  2445. layout(set = 0, binding = 1) uniform writeonly image2D u_outImg;
  2446. void main()
  2447. {
  2448. const UVec2 size = UVec2(imageSize(u_inImg));
  2449. if(gl_GlobalInvocationID.x >= size.x || gl_GlobalInvocationID.y >= size.y)
  2450. {
  2451. return;
  2452. }
  2453. const Vec4 col = imageLoad(u_inImg, IVec2(gl_GlobalInvocationID.xy));
  2454. imageStore(u_outImg, IVec2(gl_GlobalInvocationID.xy), col);
  2455. })";
  2456. ShaderPtr shader = createShader(src, ShaderType::kCompute, *g_gr);
  2457. ShaderProgramInitInfo sprogInit;
  2458. sprogInit.m_computeShader = shader.get();
  2459. copyToPresentProg = g_gr->newShaderProgram(sprogInit);
  2460. }
  2461. // Create the gometries
  2462. struct Geom
  2463. {
  2464. BufferPtr m_vertexBuffer;
  2465. BufferPtr m_indexBuffer;
  2466. Aabb m_aabb;
  2467. Mat3x4 m_worldTransform;
  2468. Mat3 m_worldRotation;
  2469. Bool m_insideOut = false;
  2470. U8 m_asMask = 0b10;
  2471. AccelerationStructurePtr m_blas;
  2472. U32 m_indexCount = 36;
  2473. Vec3 m_diffuseColor = Vec3(0.0f);
  2474. Vec3 m_emissiveColor = Vec3(0.0f);
  2475. };
  2476. Array<Geom, U(GeomWhat::kCount)> geometries;
  2477. geometries[GeomWhat::SMALL_BOX].m_aabb = Aabb(Vec3(130.0f, 0.0f, 65.0f), Vec3(295.0f, 160.0f, 230.0f));
  2478. geometries[GeomWhat::SMALL_BOX].m_worldRotation = Mat3(Axisang(toRad(-18.0f), Vec3(0.0f, 1.0f, 0.0f)));
  2479. geometries[GeomWhat::SMALL_BOX].m_worldTransform =
  2480. Mat3x4(Vec3((geometries[GeomWhat::SMALL_BOX].m_aabb.getMin() + geometries[GeomWhat::SMALL_BOX].m_aabb.getMax()).xyz / 2.0f),
  2481. geometries[GeomWhat::SMALL_BOX].m_worldRotation);
  2482. geometries[GeomWhat::SMALL_BOX].m_diffuseColor = Vec3(0.75f);
  2483. geometries[GeomWhat::BIG_BOX].m_aabb = Aabb(Vec3(265.0f, 0.0f, 295.0f), Vec3(430.0f, 330.0f, 460.0f));
  2484. geometries[GeomWhat::BIG_BOX].m_worldRotation = Mat3(Axisang(toRad(15.0f), Vec3(0.0f, 1.0f, 0.0f)));
  2485. geometries[GeomWhat::BIG_BOX].m_worldTransform =
  2486. Mat3x4(Vec3((geometries[GeomWhat::BIG_BOX].m_aabb.getMin() + geometries[GeomWhat::BIG_BOX].m_aabb.getMax()).xyz / 2.0f),
  2487. geometries[GeomWhat::BIG_BOX].m_worldRotation);
  2488. geometries[GeomWhat::BIG_BOX].m_diffuseColor = Vec3(0.75f);
  2489. geometries[GeomWhat::ROOM].m_aabb = Aabb(Vec3(0.0f), Vec3(555.0f));
  2490. geometries[GeomWhat::ROOM].m_worldRotation = Mat3::getIdentity();
  2491. geometries[GeomWhat::ROOM].m_worldTransform =
  2492. Mat3x4(Vec3((geometries[GeomWhat::ROOM].m_aabb.getMin() + geometries[GeomWhat::ROOM].m_aabb.getMax()).xyz / 2.0f),
  2493. geometries[GeomWhat::ROOM].m_worldRotation);
  2494. geometries[GeomWhat::ROOM].m_insideOut = true;
  2495. geometries[GeomWhat::ROOM].m_indexCount = 30;
  2496. geometries[GeomWhat::LIGHT].m_aabb = Aabb(Vec3(213.0f + 1.0f, 554.0f, 227.0f + 1.0f), Vec3(343.0f - 1.0f, 554.0f + 0.001f, 332.0f - 1.0f));
  2497. geometries[GeomWhat::LIGHT].m_worldRotation = Mat3::getIdentity();
  2498. geometries[GeomWhat::LIGHT].m_worldTransform =
  2499. Mat3x4(Vec3((geometries[GeomWhat::LIGHT].m_aabb.getMin() + geometries[GeomWhat::LIGHT].m_aabb.getMax()).xyz / 2.0f),
  2500. geometries[GeomWhat::LIGHT].m_worldRotation);
  2501. geometries[GeomWhat::LIGHT].m_asMask = 0b01;
  2502. geometries[GeomWhat::LIGHT].m_emissiveColor = Vec3(15.0f);
  2503. // Create Buffers
  2504. for(Geom& g : geometries)
  2505. {
  2506. createCubeBuffers(*g_gr, -(g.m_aabb.getMax().xyz - g.m_aabb.getMin().xyz) / 2.0f,
  2507. (g.m_aabb.getMax().xyz - g.m_aabb.getMin().xyz) / 2.0f, g.m_indexBuffer, g.m_vertexBuffer, g.m_insideOut);
  2508. }
  2509. // Create AS
  2510. AccelerationStructurePtr tlas;
  2511. {
  2512. for(Geom& g : geometries)
  2513. {
  2514. AccelerationStructureInitInfo inf;
  2515. inf.m_type = AccelerationStructureType::kBottomLevel;
  2516. inf.m_bottomLevel.m_indexBuffer = BufferView(g.m_indexBuffer.get());
  2517. inf.m_bottomLevel.m_indexType = IndexType::kU16;
  2518. inf.m_bottomLevel.m_indexCount = g.m_indexCount;
  2519. inf.m_bottomLevel.m_positionBuffer = BufferView(g.m_vertexBuffer.get());
  2520. inf.m_bottomLevel.m_positionCount = 8;
  2521. inf.m_bottomLevel.m_positionsFormat = Format::kR32G32B32_Sfloat;
  2522. inf.m_bottomLevel.m_positionStride = sizeof(Vec3);
  2523. g.m_blas = g_gr->newAccelerationStructure(inf);
  2524. }
  2525. // TLAS
  2526. Array<AccelerationStructureInstanceInfo, U32(GeomWhat::kCount)> instances;
  2527. U32 count = 0;
  2528. for(Geom& g : geometries)
  2529. {
  2530. instances[count].m_bottomLevel = g.m_blas;
  2531. instances[count].m_transform = g.m_worldTransform;
  2532. instances[count].m_hitgroupSbtRecordIndex = count;
  2533. instances[count].m_mask = g.m_asMask;
  2534. ++count;
  2535. }
  2536. AccelerationStructureInitInfo inf;
  2537. inf.m_type = AccelerationStructureType::kTopLevel;
  2538. inf.m_topLevel.m_directArgs.m_instances = instances;
  2539. tlas = g_gr->newAccelerationStructure(inf);
  2540. }
  2541. // Create model info
  2542. BufferPtr modelBuffer;
  2543. {
  2544. BufferInitInfo inf;
  2545. inf.m_mapAccess = BufferMapAccessBit::kWrite;
  2546. inf.m_usage = BufferUsageBit::kAllStorage;
  2547. inf.m_size = sizeof(Model) * U32(GeomWhat::kCount);
  2548. modelBuffer = g_gr->newBuffer(inf);
  2549. WeakArray<Model, PtrSize> models = modelBuffer->map<Model>(0, U32(GeomWhat::kCount), BufferMapAccessBit::kWrite);
  2550. memset(&models[0], 0, inf.m_size);
  2551. for(GeomWhat i : EnumIterable<GeomWhat>())
  2552. {
  2553. const Geom& g = geometries[i];
  2554. models[U32(i)].m_mtl.m_diffuseColor = g.m_diffuseColor;
  2555. models[U32(i)].m_mtl.m_emissiveColor = g.m_emissiveColor;
  2556. models[U32(i)].m_mesh.m_indexBufferPtr = g.m_indexBuffer->getGpuAddress();
  2557. models[U32(i)].m_mesh.m_positionBufferPtr = g.m_vertexBuffer->getGpuAddress();
  2558. memcpy(&models[U32(i)].m_worldTransform, &g.m_worldTransform, sizeof(Mat3x4));
  2559. models[U32(i)].m_worldRotation = g.m_worldRotation;
  2560. }
  2561. modelBuffer->unmap();
  2562. }
  2563. // Create the ppline
  2564. ShaderProgramPtr rtProg;
  2565. constexpr U32 rayGenGroupIdx = 1;
  2566. constexpr U32 missGroupIdx = 2;
  2567. constexpr U32 shadowMissGroupIdx = 3;
  2568. constexpr U32 lambertianChitGroupIdx = 4;
  2569. constexpr U32 lambertianRoomChitGroupIdx = 5;
  2570. constexpr U32 emissiveChitGroupIdx = 6;
  2571. constexpr U32 shadowAhitGroupIdx = 7;
  2572. constexpr U32 hitgroupCount = 7;
  2573. {
  2574. const CString commonSrcPart = R"(
  2575. #define Mat3x4Scalar Mat3x4
  2576. %s
  2577. const F32 PI = 3.14159265358979323846;
  2578. struct PayLoad
  2579. {
  2580. Vec3 m_total;
  2581. Vec3 m_weight;
  2582. Vec3 m_scatteredDir;
  2583. F32 m_hitT;
  2584. };
  2585. struct ShadowPayLoad
  2586. {
  2587. F32 m_shadow;
  2588. };
  2589. layout(set = 0, binding = 0, scalar) buffer b_00
  2590. {
  2591. Model u_models[];
  2592. };
  2593. layout(set = 0, binding = 1, scalar) buffer b_01
  2594. {
  2595. Light u_lights[];
  2596. };
  2597. layout(push_constant, scalar) uniform b_pc
  2598. {
  2599. PushConstants u_regs;
  2600. };
  2601. #define PAYLOAD_LOCATION 0
  2602. #define SHADOW_PAYLOAD_LOCATION 1
  2603. ANKI_REF(U16Vec3, ANKI_SIZEOF(U16));
  2604. ANKI_REF(Vec3, ANKI_SIZEOF(F32));
  2605. Vec3 computePrimitiveNormal(Model model, U32 primitiveId)
  2606. {
  2607. const Mesh mesh = model.m_mesh;
  2608. const U32 offset = primitiveId * 6;
  2609. const U16Vec3 indices = U16Vec3Ref(nonuniformEXT(mesh.m_indexBufferPtr + offset)).m_value;
  2610. const Vec3 pos0 = Vec3Ref(nonuniformEXT(mesh.m_positionBufferPtr + indices[0] * ANKI_SIZEOF(Vec3))).m_value;
  2611. const Vec3 pos1 = Vec3Ref(nonuniformEXT(mesh.m_positionBufferPtr + indices[1] * ANKI_SIZEOF(Vec3))).m_value;
  2612. const Vec3 pos2 = Vec3Ref(nonuniformEXT(mesh.m_positionBufferPtr + indices[2] * ANKI_SIZEOF(Vec3))).m_value;
  2613. const Vec3 normal = normalize(cross(pos1 - pos0, pos2 - pos0));
  2614. return model.m_worldRotation * normal;
  2615. }
  2616. UVec3 rand3DPCG16(UVec3 v)
  2617. {
  2618. v = v * 1664525u + 1013904223u;
  2619. v.x += v.y * v.z;
  2620. v.y += v.z * v.x;
  2621. v.z += v.x * v.y;
  2622. v.x += v.y * v.z;
  2623. v.y += v.z * v.x;
  2624. v.z += v.x * v.y;
  2625. return v >> 16u;
  2626. }
  2627. Vec2 hammersleyRandom16(U32 sampleIdx, U32 sampleCount, UVec2 random)
  2628. {
  2629. const F32 e1 = fract(F32(sampleIdx) / sampleCount + F32(random.x) * (1.0 / 65536.0));
  2630. const F32 e2 = F32((bitfieldReverse(sampleIdx) >> 16) ^ random.y) * (1.0 / 65536.0);
  2631. return Vec2(e1, e2);
  2632. }
  2633. Vec3 hemisphereSampleUniform(Vec2 uv)
  2634. {
  2635. const F32 phi = uv.y * 2.0 * PI;
  2636. const F32 cosTheta = 1.0 - uv.x;
  2637. const F32 sinTheta = sqrt(1.0 - cosTheta * cosTheta);
  2638. return Vec3(cos(phi) * sinTheta, sin(phi) * sinTheta, cosTheta);
  2639. }
  2640. Mat3 rotationFromDirection(Vec3 zAxis)
  2641. {
  2642. Vec3 z = zAxis;
  2643. F32 sign = (z.z >= 0.0) ? 1.0 : -1.0;
  2644. F32 a = -1.0 / (sign + z.z);
  2645. F32 b = z.x * z.y * a;
  2646. Vec3 x = Vec3(1.0 + sign * a * pow(z.x, 2.0), sign * b, -sign * z.x);
  2647. Vec3 y = Vec3(b, sign + a * pow(z.y, 2.0), -z.y);
  2648. return Mat3(x, y, z);
  2649. }
  2650. Vec3 randomDirectionInHemisphere(Vec3 normal)
  2651. {
  2652. const UVec2 random = rand3DPCG16(UVec3(gl_LaunchIDEXT.xy, u_regs.m_frame)).xy;
  2653. const Vec2 uniformRandom = hammersleyRandom16(0, 0xFFFFu, random);
  2654. return normalize(rotationFromDirection(normal) * hemisphereSampleUniform(uniformRandom));
  2655. }
  2656. void scatterLambertian(Vec3 normal, out Vec3 scatterDir, out F32 pdf)
  2657. {
  2658. scatterDir = randomDirectionInHemisphere(normal);
  2659. pdf = dot(normal, scatterDir) / PI;
  2660. }
  2661. F32 scatteringPdfLambertian(Vec3 normal, Vec3 scatteredDir)
  2662. {
  2663. F32 cosine = dot(normal, scatteredDir);
  2664. return max(cosine / PI, 0.0);
  2665. })";
  2666. # define MAGIC_MACRO ANKI_STRINGIZE
  2667. const CString rtTypesStr =
  2668. # include <Tests/Gr/RtTypes.h>
  2669. ;
  2670. # undef MAGIC_MACRO
  2671. String commonSrc;
  2672. commonSrc.sprintf(commonSrcPart.cstr(), rtTypesStr.cstr());
  2673. const CString lambertianSrc = R"(
  2674. layout(location = PAYLOAD_LOCATION) rayPayloadInEXT PayLoad s_payLoad;
  2675. hitAttributeEXT vec2 g_attribs;
  2676. void main()
  2677. {
  2678. const Model model = u_models[nonuniformEXT(gl_InstanceID)];
  2679. const Vec3 normal = computePrimitiveNormal(model, gl_PrimitiveID);
  2680. Vec3 scatteredDir;
  2681. F32 pdf;
  2682. scatterLambertian(normal, scatteredDir, pdf);
  2683. const F32 scatteringPdf = scatteringPdfLambertian(normal, scatteredDir);
  2684. s_payLoad.m_total += model.m_mtl.m_emissiveColor * s_payLoad.m_weight;
  2685. s_payLoad.m_weight *= model.m_mtl.m_diffuseColor * scatteringPdf / pdf;
  2686. s_payLoad.m_scatteredDir = scatteredDir;
  2687. s_payLoad.m_hitT = gl_HitTEXT;
  2688. })";
  2689. const CString lambertianRoomSrc = R"(
  2690. layout(location = PAYLOAD_LOCATION) rayPayloadInEXT PayLoad s_payLoad;
  2691. void main()
  2692. {
  2693. Vec3 col;
  2694. U32 quad = gl_PrimitiveID / 2;
  2695. if(quad == 2)
  2696. {
  2697. col = Vec3(0.65, 0.05, 0.05);
  2698. }
  2699. else if(quad == 3)
  2700. {
  2701. col = Vec3(0.12, 0.45, 0.15);
  2702. }
  2703. else
  2704. {
  2705. col = Vec3(0.73f);
  2706. }
  2707. const Model model = u_models[nonuniformEXT(gl_InstanceID)];
  2708. const Vec3 normal = computePrimitiveNormal(model, gl_PrimitiveID);
  2709. Vec3 scatteredDir;
  2710. F32 pdf;
  2711. scatterLambertian(normal, scatteredDir, pdf);
  2712. const F32 scatteringPdf = scatteringPdfLambertian(normal, scatteredDir);
  2713. // Color = diff * scatteringPdf / pdf * trace(depth - 1)
  2714. s_payLoad.m_total += model.m_mtl.m_emissiveColor * s_payLoad.m_weight;
  2715. s_payLoad.m_weight *= col * scatteringPdf / pdf;
  2716. s_payLoad.m_scatteredDir = scatteredDir;
  2717. s_payLoad.m_hitT = gl_HitTEXT;
  2718. })";
  2719. const CString emissiveSrc = R"(
  2720. layout(location = PAYLOAD_LOCATION) rayPayloadInEXT PayLoad s_payLoad;
  2721. void main()
  2722. {
  2723. const Model model = u_models[nonuniformEXT(gl_InstanceID)];
  2724. s_payLoad.m_total += model.m_mtl.m_emissiveColor * s_payLoad.m_weight;
  2725. s_payLoad.m_weight = Vec3(0.0);
  2726. s_payLoad.m_scatteredDir = Vec3(1.0, 0.0, 0.0);
  2727. s_payLoad.m_hitT = -1.0;
  2728. })";
  2729. const CString missSrc = R"(
  2730. layout(location = PAYLOAD_LOCATION) rayPayloadInEXT PayLoad s_payLoad;
  2731. void main()
  2732. {
  2733. //s_payLoad.m_color =
  2734. //mix(Vec3(0.3, 0.5, 0.3), Vec3(0.1, 0.6, 0.1), F32(gl_LaunchIDEXT.y) / F32(gl_LaunchSizeEXT.y));
  2735. //Vec3(0.0);
  2736. s_payLoad.m_weight = Vec3(0.0);
  2737. s_payLoad.m_scatteredDir = Vec3(1.0, 0.0, 0.0);
  2738. s_payLoad.m_hitT = -1.0;
  2739. })";
  2740. const CString shadowAhitSrc = R"(
  2741. layout(location = SHADOW_PAYLOAD_LOCATION) rayPayloadInEXT ShadowPayLoad s_payLoad;
  2742. void main()
  2743. {
  2744. s_payLoad.m_shadow += 0.25;
  2745. //terminateRayEXT();
  2746. })";
  2747. const CString shadowChitSrc = R"(
  2748. void main()
  2749. {
  2750. })";
  2751. const CString shadowMissSrc = R"(
  2752. layout(location = SHADOW_PAYLOAD_LOCATION) rayPayloadInEXT ShadowPayLoad s_payLoad;
  2753. void main()
  2754. {
  2755. s_payLoad.m_shadow = 1.0;
  2756. })";
  2757. const CString rayGenSrc = R"(
  2758. layout(set = 1, binding = 0) uniform accelerationStructureEXT u_tlas;
  2759. layout(set = 1, binding = 1, rgba8) uniform readonly image2D u_inImg;
  2760. layout(set = 1, binding = 2, rgba8) uniform writeonly image2D u_outImg;
  2761. layout(location = PAYLOAD_LOCATION) rayPayloadEXT PayLoad s_payLoad;
  2762. layout(location = SHADOW_PAYLOAD_LOCATION) rayPayloadEXT ShadowPayLoad s_shadowPayLoad;
  2763. void main()
  2764. {
  2765. Vec2 uv = (Vec2(gl_LaunchIDEXT.xy) + 0.5) / Vec2(gl_LaunchSizeEXT.xy);
  2766. uv.y = 1.0 - uv.y;
  2767. const Vec2 ndc = uv * 2.0 - 1.0;
  2768. const Vec4 p4 = inverse(u_regs.m_vp) * Vec4(ndc, 1.0, 1.0);
  2769. const Vec3 p3 = p4.xyz / p4.w;
  2770. const UVec2 random = rand3DPCG16(UVec3(gl_LaunchIDEXT.xy, u_regs.m_frame)).xy;
  2771. const Vec2 randomCircle = hammersleyRandom16(0, 0xFFFFu, random);
  2772. Vec3 outColor = Vec3(0.0);
  2773. const U32 sampleCount = 8;
  2774. const U32 maxRecursionDepth = 2;
  2775. for(U32 s = 0; s < sampleCount; ++s)
  2776. {
  2777. Vec3 rayOrigin = u_regs.m_cameraPos;
  2778. Vec3 rayDir = normalize(p3 - u_regs.m_cameraPos);
  2779. s_payLoad.m_total = Vec3(0.0);
  2780. s_payLoad.m_weight = Vec3(1.0);
  2781. for(U32 depth = 0; depth < maxRecursionDepth; ++depth)
  2782. {
  2783. const U32 cullMask = 0xFF;
  2784. const U32 sbtRecordOffset = 0;
  2785. const U32 sbtRecordStride = 0;
  2786. const U32 missIndex = 0;
  2787. const F32 tMin = 0.1;
  2788. const F32 tMax = 10000.0;
  2789. traceRayEXT(u_tlas, gl_RayFlagsOpaqueEXT, cullMask, sbtRecordOffset, sbtRecordStride, missIndex,
  2790. rayOrigin, tMin, rayDir, tMax, PAYLOAD_LOCATION);
  2791. if(s_payLoad.m_hitT > 0.0)
  2792. {
  2793. rayOrigin = rayOrigin + rayDir * s_payLoad.m_hitT;
  2794. rayDir = s_payLoad.m_scatteredDir;
  2795. }
  2796. else
  2797. {
  2798. break;
  2799. }
  2800. }
  2801. outColor += s_payLoad.m_total + s_payLoad.m_weight;
  2802. //outColor += s_payLoad.m_scatteredDir * 0.5 + 0.5;
  2803. }
  2804. outColor /= F32(sampleCount);
  2805. #if 0
  2806. const Vec3 diffuseColor = Vec3(s_payLoad.m_diffuseColor);
  2807. const Vec3 normal = s_payLoad.m_normal;
  2808. if(s_payLoad.m_hitT > 0.0)
  2809. {
  2810. const Vec3 rayOrigin = u_regs.m_cameraPos + normalize(p3 - u_regs.m_cameraPos) * s_payLoad.m_hitT;
  2811. for(U32 i = 0; i < u_regs.m_lightCount; ++i)
  2812. {
  2813. s_shadowPayLoad.m_shadow = 0.0;
  2814. const Light light = u_lights[i];
  2815. const Vec3 randomPointInLight = mix(light.m_min, light.m_max, randomCircle.xyx);
  2816. const Vec3 rayDir = normalize(randomPointInLight - rayOrigin);
  2817. const U32 cullMask = 0x2;
  2818. const U32 sbtRecordOffset = 1;
  2819. const U32 sbtRecordStride = 0;
  2820. const U32 missIndex = 1;
  2821. const F32 tMin = 0.1;
  2822. const F32 tMax = length(randomPointInLight - rayOrigin);
  2823. const U32 flags = gl_RayFlagsOpaqueEXT;
  2824. traceRayEXT(u_tlas, flags, cullMask, sbtRecordOffset, sbtRecordStride, missIndex, rayOrigin,
  2825. tMin, rayDir, tMax, SHADOW_PAYLOAD_LOCATION);
  2826. F32 shadow = clamp(s_shadowPayLoad.m_shadow, 0.0, 1.0);
  2827. outColor += normal * light.m_intensity * shadow;
  2828. }
  2829. }
  2830. else
  2831. {
  2832. outColor = diffuseColor;
  2833. }
  2834. #endif
  2835. const Vec3 history = imageLoad(u_inImg, IVec2(gl_LaunchIDEXT.xy)).rgb;
  2836. outColor = mix(outColor, history, (u_regs.m_frame != 0) ? 0.99 : 0.0);
  2837. imageStore(u_outImg, IVec2(gl_LaunchIDEXT.xy), Vec4(outColor, 0.0));
  2838. })";
  2839. ShaderPtr lambertianShader = createShader(String().sprintf("%s\n%s", commonSrc.cstr(), lambertianSrc.cstr()), ShaderType::kClosestHit, *g_gr);
  2840. ShaderPtr lambertianRoomShader =
  2841. createShader(String().sprintf("%s\n%s", commonSrc.cstr(), lambertianRoomSrc.cstr()), ShaderType::kClosestHit, *g_gr);
  2842. ShaderPtr emissiveShader = createShader(String().sprintf("%s\n%s", commonSrc.cstr(), emissiveSrc.cstr()), ShaderType::kClosestHit, *g_gr);
  2843. ShaderPtr shadowAhitShader = createShader(String().sprintf("%s\n%s", commonSrc.cstr(), shadowAhitSrc.cstr()), ShaderType::kAnyHit, *g_gr);
  2844. ShaderPtr shadowChitShader = createShader(String().sprintf("%s\n%s", commonSrc.cstr(), shadowChitSrc.cstr()), ShaderType::kClosestHit, *g_gr);
  2845. ShaderPtr missShader = createShader(String().sprintf("%s\n%s", commonSrc.cstr(), missSrc.cstr()), ShaderType::kMiss, *g_gr);
  2846. ShaderPtr shadowMissShader = createShader(String().sprintf("%s\n%s", commonSrc.cstr(), shadowMissSrc.cstr()), ShaderType::kMiss, *g_gr);
  2847. ShaderPtr rayGenShader = createShader(String().sprintf("%s\n%s", commonSrc.cstr(), rayGenSrc.cstr()), ShaderType::kRayGen, *g_gr);
  2848. Array<RayTracingHitGroup, 4> hitGroups;
  2849. hitGroups[0].m_closestHitShader = lambertianShader.get();
  2850. hitGroups[1].m_closestHitShader = lambertianRoomShader.get();
  2851. hitGroups[2].m_closestHitShader = emissiveShader.get();
  2852. hitGroups[3].m_closestHitShader = shadowChitShader.get();
  2853. hitGroups[3].m_anyHitShader = shadowAhitShader.get();
  2854. Array<Shader*, 2> missShaders = {missShader.get(), shadowMissShader.get()};
  2855. // Add the same 2 times to test multiple ray gen shaders
  2856. Array<Shader*, 2> rayGenShaders = {rayGenShader.get(), rayGenShader.get()};
  2857. ShaderProgramInitInfo inf;
  2858. inf.m_rayTracingShaders.m_hitGroups = hitGroups;
  2859. inf.m_rayTracingShaders.m_rayGenShaders = rayGenShaders;
  2860. inf.m_rayTracingShaders.m_missShaders = missShaders;
  2861. rtProg = g_gr->newShaderProgram(inf);
  2862. }
  2863. // Create the SBT
  2864. BufferPtr sbt;
  2865. {
  2866. const U32 recordCount = 1 + 2 + U32(GeomWhat::kCount) * 2;
  2867. const U32 sbtRecordSize = g_gr->getDeviceCapabilities().m_sbtRecordAlignment;
  2868. BufferInitInfo inf;
  2869. inf.m_mapAccess = BufferMapAccessBit::kWrite;
  2870. inf.m_usage = BufferUsageBit::kShaderBindingTable;
  2871. inf.m_size = sbtRecordSize * recordCount;
  2872. sbt = g_gr->newBuffer(inf);
  2873. WeakArray<U8, PtrSize> mapped = sbt->map<U8>(0, inf.m_size, BufferMapAccessBit::kWrite);
  2874. memset(&mapped[0], 0, inf.m_size);
  2875. ConstWeakArray<U8> handles = rtProg->getShaderGroupHandles();
  2876. ANKI_TEST_EXPECT_EQ(handles.getSize(), g_gr->getDeviceCapabilities().m_shaderGroupHandleSize * (hitgroupCount + 1));
  2877. // Ray gen
  2878. U32 record = 0;
  2879. memcpy(&mapped[sbtRecordSize * record++], &handles[g_gr->getDeviceCapabilities().m_shaderGroupHandleSize * rayGenGroupIdx],
  2880. g_gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2881. // 2xMiss
  2882. memcpy(&mapped[sbtRecordSize * record++], &handles[g_gr->getDeviceCapabilities().m_shaderGroupHandleSize * missGroupIdx],
  2883. g_gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2884. memcpy(&mapped[sbtRecordSize * record++], &handles[g_gr->getDeviceCapabilities().m_shaderGroupHandleSize * shadowMissGroupIdx],
  2885. g_gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2886. // Small box
  2887. memcpy(&mapped[sbtRecordSize * record++], &handles[g_gr->getDeviceCapabilities().m_shaderGroupHandleSize * lambertianChitGroupIdx],
  2888. g_gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2889. memcpy(&mapped[sbtRecordSize * record++], &handles[g_gr->getDeviceCapabilities().m_shaderGroupHandleSize * shadowAhitGroupIdx],
  2890. g_gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2891. // Big box
  2892. memcpy(&mapped[sbtRecordSize * record++], &handles[g_gr->getDeviceCapabilities().m_shaderGroupHandleSize * lambertianChitGroupIdx],
  2893. g_gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2894. memcpy(&mapped[sbtRecordSize * record++], &handles[g_gr->getDeviceCapabilities().m_shaderGroupHandleSize * shadowAhitGroupIdx],
  2895. g_gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2896. // Room
  2897. memcpy(&mapped[sbtRecordSize * record++], &handles[g_gr->getDeviceCapabilities().m_shaderGroupHandleSize * lambertianRoomChitGroupIdx],
  2898. g_gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2899. memcpy(&mapped[sbtRecordSize * record++], &handles[g_gr->getDeviceCapabilities().m_shaderGroupHandleSize * shadowAhitGroupIdx],
  2900. g_gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2901. // Light
  2902. memcpy(&mapped[sbtRecordSize * record++], &handles[g_gr->getDeviceCapabilities().m_shaderGroupHandleSize * emissiveChitGroupIdx],
  2903. g_gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2904. memcpy(&mapped[sbtRecordSize * record++], &handles[g_gr->getDeviceCapabilities().m_shaderGroupHandleSize * shadowAhitGroupIdx],
  2905. g_gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2906. sbt->unmap();
  2907. }
  2908. // Create lights
  2909. BufferPtr lightBuffer;
  2910. constexpr U32 lightCount = 1;
  2911. {
  2912. BufferInitInfo inf;
  2913. inf.m_mapAccess = BufferMapAccessBit::kWrite;
  2914. inf.m_usage = BufferUsageBit::kAllStorage;
  2915. inf.m_size = sizeof(Light) * lightCount;
  2916. lightBuffer = g_gr->newBuffer(inf);
  2917. WeakArray<Light, PtrSize> lights = lightBuffer->map<Light>(0, lightCount, BufferMapAccessBit::kWrite);
  2918. lights[0].m_min = geometries[GeomWhat::LIGHT].m_aabb.getMin().xyz;
  2919. lights[0].m_max = geometries[GeomWhat::LIGHT].m_aabb.getMax().xyz;
  2920. lights[0].m_intensity = Vec3(1.0f);
  2921. lightBuffer->unmap();
  2922. }
  2923. // Draw
  2924. constexpr U32 ITERATIONS = 100 * 8;
  2925. for(U32 i = 0; i < ITERATIONS; ++i)
  2926. {
  2927. HighRezTimer timer;
  2928. timer.start();
  2929. const Mat4 viewMat = Mat4::lookAt(Vec3(278.0f, 278.0f, -800.0f), Vec3(278.0f, 278.0f, 0.0f), Vec3(0.0f, 1.0f, 0.0f)).getInverse();
  2930. const Mat4 projMat = Mat4::calculatePerspectiveProjectionMatrix(toRad(40.0f) * WIDTH / HEIGHT, toRad(40.0f), 0.01f, 2000.0f);
  2931. CommandBufferInitInfo cinit;
  2932. cinit.m_flags = CommandBufferFlag::kGeneralWork | CommandBufferFlag::kComputeWork | CommandBufferFlag::kSmallBatch;
  2933. CommandBufferPtr cmdb = g_gr->newCommandBuffer(cinit);
  2934. if(i == 0)
  2935. {
  2936. for(const Geom& g : geometries)
  2937. {
  2938. setAccelerationStructureBarrier(cmdb, g.m_blas, AccelerationStructureUsageBit::kNone, AccelerationStructureUsageBit::kBuild);
  2939. }
  2940. for(const Geom& g : geometries)
  2941. {
  2942. BufferInitInfo scratchInit;
  2943. scratchInit.m_size = g.m_blas->getBuildScratchBufferSize();
  2944. scratchInit.m_usage = BufferUsageBit::kAccelerationStructureBuildScratch;
  2945. BufferPtr scratchBuff = GrManager::getSingleton().newBuffer(scratchInit);
  2946. cmdb->buildAccelerationStructure(g.m_blas.get(), BufferView(scratchBuff.get()));
  2947. }
  2948. for(const Geom& g : geometries)
  2949. {
  2950. setAccelerationStructureBarrier(cmdb, g.m_blas, AccelerationStructureUsageBit::kBuild, AccelerationStructureUsageBit::kAttach);
  2951. }
  2952. setAccelerationStructureBarrier(cmdb, tlas, AccelerationStructureUsageBit::kNone, AccelerationStructureUsageBit::kBuild);
  2953. BufferInitInfo scratchInit;
  2954. scratchInit.m_size = tlas->getBuildScratchBufferSize();
  2955. scratchInit.m_usage = BufferUsageBit::kAccelerationStructureBuildScratch;
  2956. BufferPtr scratchBuff = GrManager::getSingleton().newBuffer(scratchInit);
  2957. cmdb->buildAccelerationStructure(tlas.get(), BufferView(scratchBuff.get()));
  2958. setAccelerationStructureBarrier(cmdb, tlas, AccelerationStructureUsageBit::kBuild, AccelerationStructureUsageBit::kTraceRaysRead);
  2959. }
  2960. TexturePtr presentTex = g_gr->acquireNextPresentableTexture();
  2961. TextureViewPtr presentView;
  2962. {
  2963. TextureViewInitInfo inf;
  2964. inf.m_texture = presentTex.get();
  2965. presentView = g_gr->newTextureView(inf);
  2966. }
  2967. TextureViewPtr offscreenView, offscreenHistoryView;
  2968. {
  2969. TextureViewInitInfo inf;
  2970. inf.m_texture = offscreenRts[i & 1].get();
  2971. offscreenView = g_gr->newTextureView(inf);
  2972. inf.m_texture = offscreenRts[(i + 1) & 1].get();
  2973. offscreenHistoryView = g_gr->newTextureView(inf);
  2974. }
  2975. setTextureBarrier(cmdb, offscreenRts[i & 1], TextureUsageBit::kNone, TextureUsageBit::kUavTraceRaysWrite, TextureSubresourceInfo());
  2976. setTextureBarrier(cmdb, offscreenRts[(i + 1) & 1], TextureUsageBit::kUavComputeRead, TextureUsageBit::kUavTraceRaysRead,
  2977. TextureSubresourceInfo());
  2978. cmdb->bindStorageBuffer(0, 0, BufferView(modelBuffer.get()));
  2979. cmdb->bindStorageBuffer(0, 1, BufferView(lightBuffer.get()));
  2980. cmdb->bindAccelerationStructure(1, 0, tlas.get());
  2981. cmdb->bindStorageTexture(1, 1, offscreenHistoryView.get());
  2982. cmdb->bindStorageTexture(1, 2, offscreenView.get());
  2983. cmdb->bindShaderProgram(rtProg.get());
  2984. PushConstants pc;
  2985. pc.m_vp = projMat * viewMat;
  2986. pc.m_cameraPos = Vec3(278.0f, 278.0f, -800.0f);
  2987. pc.m_lightCount = lightCount;
  2988. pc.m_frame = i;
  2989. cmdb->setFastConstants(&pc, sizeof(pc));
  2990. const U32 sbtRecordSize = g_gr->getDeviceCapabilities().m_sbtRecordAlignment;
  2991. cmdb->dispatchRays(BufferView(sbt.get()), sbtRecordSize, U32(GeomWhat::kCount) * 2, 2, WIDTH, HEIGHT, 1);
  2992. // Copy to present
  2993. setTextureBarrier(cmdb, offscreenRts[i & 1], TextureUsageBit::kUavTraceRaysWrite, TextureUsageBit::kUavComputeRead,
  2994. TextureSubresourceInfo());
  2995. setTextureBarrier(cmdb, presentTex, TextureUsageBit::kNone, TextureUsageBit::kUavCompute, TextureSubresourceInfo());
  2996. cmdb->bindStorageTexture(0, 0, offscreenView.get());
  2997. cmdb->bindStorageTexture(0, 1, presentView.get());
  2998. cmdb->bindShaderProgram(copyToPresentProg.get());
  2999. const U32 sizeX = (WIDTH + 8 - 1) / 8;
  3000. const U32 sizeY = (HEIGHT + 8 - 1) / 8;
  3001. cmdb->dispatchCompute(sizeX, sizeY, 1);
  3002. setTextureBarrier(cmdb, presentTex, TextureUsageBit::kUavCompute, TextureUsageBit::kPresent, TextureSubresourceInfo());
  3003. cmdb->endRecording();
  3004. GrManager::getSingleton().submit(cmdb.get());
  3005. g_gr->swapBuffers();
  3006. timer.stop();
  3007. const F32 TICK = 1.0f / 60.0f;
  3008. if(timer.getElapsedTime() < TICK)
  3009. {
  3010. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  3011. }
  3012. }
  3013. COMMON_END();
  3014. #endif
  3015. }
  3016. ANKI_TEST(Gr, AsyncCompute)
  3017. {
  3018. #if 0
  3019. COMMON_BEGIN()
  3020. constexpr U32 ARRAY_SIZE = 1000 * 1024 * 8;
  3021. // Create the counting program
  3022. static const char* PROG_SRC = R"(
  3023. layout(local_size_x = 8) in;
  3024. layout(binding = 0, std430) buffer b_buff
  3025. {
  3026. U32 u_counters[];
  3027. };
  3028. void main()
  3029. {
  3030. for(U32 i = 0u; i < gl_LocalInvocationID.x * 20u; ++i)
  3031. {
  3032. atomicAdd(u_counters[gl_GlobalInvocationID.x], i + 1u);
  3033. }
  3034. })";
  3035. ShaderPtr shader = createShader(PROG_SRC, ShaderType::kCompute, *g_gr);
  3036. ShaderProgramInitInfo sprogInit;
  3037. sprogInit.m_computeShader = shader.get();
  3038. ShaderProgramPtr incrementProg = g_gr->newShaderProgram(sprogInit);
  3039. // Create the check program
  3040. static const char* CHECK_SRC = R"(
  3041. layout(local_size_x = 8) in;
  3042. layout(binding = 0, std430) buffer b_buff
  3043. {
  3044. U32 u_counters[];
  3045. };
  3046. void main()
  3047. {
  3048. // Walk the atomics in reverse to make sure that this dispatch won't overlap with the previous one
  3049. const U32 newGlobalInvocationID = gl_NumWorkGroups.x * gl_WorkGroupSize.x - gl_GlobalInvocationID.x - 1u;
  3050. U32 expectedVal = 0u;
  3051. for(U32 i = 0u; i < (newGlobalInvocationID % gl_WorkGroupSize.x) * 20u; ++i)
  3052. {
  3053. expectedVal += i + 1u;
  3054. }
  3055. atomicCompSwap(u_counters[newGlobalInvocationID], expectedVal, 4u);
  3056. })";
  3057. shader = createShader(CHECK_SRC, ShaderType::kCompute, *g_gr);
  3058. sprogInit.m_computeShader = shader.get();
  3059. ShaderProgramPtr checkProg = g_gr->newShaderProgram(sprogInit);
  3060. // Create buffers
  3061. BufferInitInfo info;
  3062. info.m_size = sizeof(U32) * ARRAY_SIZE;
  3063. info.m_usage = BufferUsageBit::kAllCompute;
  3064. info.m_mapAccess = BufferMapAccessBit::kWrite | BufferMapAccessBit::kRead;
  3065. BufferPtr atomicsBuffer = g_gr->newBuffer(info);
  3066. U32* values = static_cast<U32*>(atomicsBuffer->map(0, kMaxPtrSize, BufferMapAccessBit::kRead | BufferMapAccessBit::kWrite));
  3067. memset(values, 0, info.m_size);
  3068. // Pre-create some CPU result buffers
  3069. DynamicArray<U32> atomicsBufferCpu;
  3070. atomicsBufferCpu.resize(ARRAY_SIZE);
  3071. DynamicArray<U32> expectedResultsBufferCpu;
  3072. expectedResultsBufferCpu.resize(ARRAY_SIZE);
  3073. for(U32 i = 0; i < ARRAY_SIZE; ++i)
  3074. {
  3075. const U32 localInvocation = i % 8;
  3076. U32 expectedVal = 4;
  3077. for(U32 j = 0; j < localInvocation * 20; ++j)
  3078. {
  3079. expectedVal += j + 1;
  3080. }
  3081. expectedResultsBufferCpu[i] = expectedVal;
  3082. }
  3083. // Create the 1st command buffer
  3084. CommandBufferInitInfo cinit;
  3085. cinit.m_flags = CommandBufferFlag::kComputeWork | CommandBufferFlag::kSmallBatch;
  3086. CommandBufferPtr incrementCmdb = g_gr->newCommandBuffer(cinit);
  3087. incrementCmdb->bindShaderProgram(incrementProg.get());
  3088. incrementCmdb->bindStorageBuffer(0, 0, BufferView(atomicsBuffer.get()));
  3089. incrementCmdb->dispatchCompute(ARRAY_SIZE / 8, 1, 1);
  3090. // Create the 2nd command buffer
  3091. cinit.m_flags = CommandBufferFlag::kGeneralWork | CommandBufferFlag::kSmallBatch;
  3092. CommandBufferPtr checkCmdb = g_gr->newCommandBuffer(cinit);
  3093. checkCmdb->bindShaderProgram(checkProg.get());
  3094. checkCmdb->bindStorageBuffer(0, 0, BufferView(atomicsBuffer.get()));
  3095. checkCmdb->dispatchCompute(ARRAY_SIZE / 8, 1, 1);
  3096. // Create the 3rd command buffer
  3097. cinit.m_flags = CommandBufferFlag::kComputeWork | CommandBufferFlag::kSmallBatch;
  3098. CommandBufferPtr incrementCmdb2 = g_gr->newCommandBuffer(cinit);
  3099. incrementCmdb2->bindShaderProgram(incrementProg.get());
  3100. incrementCmdb2->bindStorageBuffer(0, 0, BufferView(atomicsBuffer.get()));
  3101. incrementCmdb2->dispatchCompute(ARRAY_SIZE / 8, 1, 1);
  3102. // Submit
  3103. # if 1
  3104. FencePtr fence;
  3105. incrementCmdb->endRecording();
  3106. GrManager::getSingleton().submit(incrementCmdb.get(), {}, &fence);
  3107. checkCmdb->endRecording();
  3108. Fence* pFence = fence.get();
  3109. GrManager::getSingleton().submit(checkCmdb.get(), {&pFence, 1}, &fence);
  3110. incrementCmdb2->endRecording();
  3111. pFence = fence.get();
  3112. GrManager::getSingleton().submit(incrementCmdb2.get(), {&pFence, 1}, &fence);
  3113. fence->clientWait(kMaxSecond);
  3114. # else
  3115. incrementCmdb->flush();
  3116. gr->finish();
  3117. checkCmdb->flush();
  3118. gr->finish();
  3119. incrementCmdb2->flush();
  3120. gr->finish();
  3121. # endif
  3122. // Verify
  3123. memcpy(atomicsBufferCpu.getBegin(), values, atomicsBufferCpu.getSizeInBytes());
  3124. Bool correct = true;
  3125. for(U32 i = 0; i < ARRAY_SIZE; ++i)
  3126. {
  3127. correct = correct && atomicsBufferCpu[i] == expectedResultsBufferCpu[i];
  3128. if(!correct)
  3129. {
  3130. printf("%u!=%u %u\n", atomicsBufferCpu[i], expectedResultsBufferCpu[i], i);
  3131. break;
  3132. }
  3133. }
  3134. atomicsBuffer->unmap();
  3135. ANKI_TEST_EXPECT_EQ(correct, true);
  3136. COMMON_END()
  3137. #endif
  3138. }
  3139. ANKI_TEST(Gr, DrawID)
  3140. {
  3141. commonInit();
  3142. {
  3143. // Prog
  3144. constexpr const char* kVert = R"(
  3145. struct Consts
  3146. {
  3147. uint index;
  3148. int padding;
  3149. int padding1;
  3150. int padding2;
  3151. };
  3152. #if defined(__spirv__)
  3153. # define SpvDrawIndex 4426
  3154. [[vk::ext_builtin_input(SpvDrawIndex)]] const static uint gl_DrawID;
  3155. [[vk::push_constant]] ConstantBuffer<Consts> g_consts;
  3156. #else
  3157. struct U32Struct
  3158. {
  3159. uint m_data;
  3160. };
  3161. ConstantBuffer<U32Struct> g_drawIdConstant : register(b0, space%u);
  3162. # define gl_DrawID g_drawIdConstant.m_data
  3163. ConstantBuffer<Consts> g_consts : register(b0, space%u);
  3164. #endif
  3165. struct VertOut
  3166. {
  3167. float4 m_svPosition : SV_POSITION;
  3168. float3 m_color : COLOR;
  3169. };
  3170. VertOut main(uint svVertexId : SV_VERTEXID)
  3171. {
  3172. float2 verts[6] = {float2(0, 0), float2(0, 1), float2(1, 1), float2(1, 1), float2(1, 0), float2(0, 0)};
  3173. uint maxDraws = 32;
  3174. float2 pos = verts[svVertexId];
  3175. pos.x /= maxDraws;
  3176. pos.x += gl_DrawID * 1.0 / maxDraws;
  3177. pos = pos * 2.0 - 1.0;
  3178. pos.y *= -1.0;
  3179. VertOut o;
  3180. o.m_svPosition = float4(pos, 0.0, 1.0);
  3181. uint index = gl_DrawID + g_consts.index;
  3182. index = index %% 6;
  3183. o.m_color = float3(index & 1, (index / 2) & 1, (index / 3) & 1);
  3184. return o;
  3185. })";
  3186. constexpr const char* kUboFrag = R"(
  3187. struct VertOut
  3188. {
  3189. float4 m_svPosition : SV_POSITION;
  3190. float3 m_color : COLOR;
  3191. };
  3192. float4 main(VertOut i) : SV_TARGET0
  3193. {
  3194. return float4(i.m_color, 1.0);
  3195. })";
  3196. ShaderProgramPtr prog = createVertFragProg(String().sprintf(kVert, ANKI_D3D_DRAW_ID_CONSTANT_SPACE, ANKI_D3D_FAST_CONSTANTS_SPACE), kUboFrag);
  3197. constexpr U32 maxDraws = 32;
  3198. Array<DrawIndirectArgs, maxDraws> data = {};
  3199. for(DrawIndirectArgs& arg : data)
  3200. {
  3201. arg.m_instanceCount = 1;
  3202. arg.m_vertexCount = 6;
  3203. }
  3204. BufferPtr indirectArgs = createBuffer(BufferUsageBit::kIndirectDraw, ConstWeakArray(data), "indirect args");
  3205. U32 count = maxDraws;
  3206. BufferPtr indirectCount = createBuffer(BufferUsageBit::kIndirectDraw, ConstWeakArray<U32>(&count, 1), "indirect count");
  3207. const U kIterationCount = 200;
  3208. U iterations = kIterationCount;
  3209. while(iterations--)
  3210. {
  3211. HighRezTimer timer;
  3212. timer.start();
  3213. GrManager::getSingleton().beginFrame();
  3214. TexturePtr presentTex = GrManager::getSingleton().acquireNextPresentableTexture();
  3215. CommandBufferInitInfo cinit;
  3216. cinit.m_flags = CommandBufferFlag::kGeneralWork;
  3217. CommandBufferPtr cmdb = GrManager::getSingleton().newCommandBuffer(cinit);
  3218. cmdb->setViewport(0, 0, NativeWindow::getSingleton().getWidth(), NativeWindow::getSingleton().getHeight());
  3219. cmdb->bindShaderProgram(prog.get());
  3220. const TextureBarrierInfo barrier = {TextureView(presentTex.get(), TextureSubresourceDesc::all()), TextureUsageBit::kNone,
  3221. TextureUsageBit::kRtvDsvWrite};
  3222. cmdb->setPipelineBarrier({&barrier, 1}, {}, {});
  3223. cmdb->pushDebugMarker("AnKi", Vec3(1.0f, 0.0f, 0.0f));
  3224. cmdb->beginRenderPass({TextureView(presentTex.get(), TextureSubresourceDesc::firstSurface())});
  3225. UVec4 consts(iterations / 10);
  3226. cmdb->setFastConstants(&consts, sizeof(consts));
  3227. cmdb->drawIndirectCount(PrimitiveTopology::kTriangles, BufferView(indirectArgs.get()), sizeof(DrawIndirectArgs),
  3228. BufferView(indirectCount.get()), maxDraws);
  3229. cmdb->endRenderPass();
  3230. const TextureBarrierInfo barrier2 = {TextureView(presentTex.get(), TextureSubresourceDesc::all()), TextureUsageBit::kRtvDsvWrite,
  3231. TextureUsageBit::kPresent};
  3232. cmdb->setPipelineBarrier({&barrier2, 1}, {}, {});
  3233. cmdb->popDebugMarker();
  3234. cmdb->endRecording();
  3235. GrManager::getSingleton().submit(cmdb.get());
  3236. GrManager::getSingleton().endFrame();
  3237. timer.stop();
  3238. const Second kTick = 1.0f / 30.0f;
  3239. if(timer.getElapsedTime() < kTick)
  3240. {
  3241. HighRezTimer::sleep(kTick - timer.getElapsedTime());
  3242. }
  3243. }
  3244. }
  3245. commonDestroy();
  3246. }