| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675 |
- //===================================================================================
- // Copyright (c) 2021 Advanced Micro Devices, Inc. All rights reserved.
- //
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files(the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and / or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions :
- //
- // The above copyright notice and this permission notice shall be included in
- // all copies or substantial portions of the Software.
- //
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
- // THE SOFTWARE.
- //
- //==================================================================================
- // Ref: GPUOpen-Tools/Compressonator
- ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- // Copyright (c) 2016, Intel Corporation
- // Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
- // documentation files (the "Software"), to deal in the Software without restriction, including without limitation
- // the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
- // permit persons to whom the Software is furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all copies or substantial portions of
- // the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
- // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
- // TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- //--------------------------------------
- // Common BC7 Header
- //--------------------------------------
- #include "bc7_encode_kernel.h"
- //#define USE_ICMP
- #ifndef ASPM_OPENCL
- //#define USE_NEW_SINGLE_HEADER_INTERFACES
- #endif
- #ifdef USE_NEW_SINGLE_HEADER_INTERFACES
- #define USE_CMPMSC
- //#define USE_MSC
- //#define USE_INT
- //#define USE_RGBCX_RDO
- //#define USE_VOLT
- //#define USE_ICBC
- #endif
- #include "bc7_common_encoder.h"
- #ifndef ASPM
- //---------------------------------------------
- // Predefinitions for GPU and CPU compiled code
- //---------------------------------------------
- INLINE CGU_INT a_compare(const void* arg1, const void* arg2)
- {
- if (((CMP_di*)arg1)->image - ((CMP_di*)arg2)->image > 0)
- return 1;
- if (((CMP_di*)arg1)->image - ((CMP_di*)arg2)->image < 0)
- return -1;
- return 0;
- };
- #endif
- #ifndef ASPM_GPU
- CMP_GLOBAL BC7_EncodeRamps BC7EncodeRamps
- #ifndef ASPM
- = {0}
- #endif
- ;
- //---------------------------------------------
- // CPU: Computes max of two float values
- //---------------------------------------------
- float bc7_maxf(float l1, float r1)
- {
- return (l1 > r1 ? l1 : r1);
- }
- //---------------------------------------------
- // CPU: Computes max of two float values
- //---------------------------------------------
- float bc7_minf(float l1, float r1)
- {
- return (l1 < r1 ? l1 : r1);
- }
- #endif
- INLINE CGV_INT shift_right_epocode(CGV_INT v, CGU_INT bits)
- {
- return v >> bits; // (perf warning expected)
- }
- INLINE CGV_INT expand_epocode(CGV_INT v, CGU_INT bits)
- {
- CGV_INT vv = v << (8 - bits);
- return vv + shift_right_epocode(vv, bits);
- }
- // valid bit range is 0..8
- CGU_INT expandbits(CGU_INT bits, CGU_INT v)
- {
- return (v << (8 - bits) | v >> (2 * bits - 8));
- }
- CMP_EXPORT CGU_INT bc7_isa()
- {
- #ifndef ASPM_GPU
- #if defined(ISPC_TARGET_SSE2)
- ASPM_PRINT(("SSE2"));
- return 0;
- #elif defined(ISPC_TARGET_SSE4)
- ASPM_PRINT(("SSE4"));
- return 1;
- #elif defined(ISPC_TARGET_AVX)
- ASPM_PRINT(("AVX"));
- return 2;
- #elif defined(ISPC_TARGET_AVX2)
- ASPM_PRINT(("AVX2"));
- return 3;
- #else
- ASPM_PRINT(("CPU"));
- #endif
- #endif
- return -1;
- }
- CMP_EXPORT void init_BC7ramps()
- {
- #ifdef ASPM_GPU
- #else
- CMP_STATIC CGU_BOOL g_rampsInitialized = FALSE;
- if (g_rampsInitialized == TRUE)
- return;
- g_rampsInitialized = TRUE;
- BC7EncodeRamps.ramp_init = TRUE;
- //bc7_isa(); ASPM_PRINT((" INIT Ramps\n"));
- CGU_INT bits;
- CGU_INT p1;
- CGU_INT p2;
- CGU_INT clogBC7;
- CGU_INT index;
- CGU_INT j;
- CGU_INT o1;
- CGU_INT o2;
- CGU_INT maxi = 0;
- for (bits = BIT_BASE; bits < BIT_RANGE; bits++)
- {
- for (p1 = 0; p1 < (1 << bits); p1++)
- {
- BC7EncodeRamps.ep_d[BTT(bits)][p1] = expandbits(bits, p1);
- } //p1
- } //bits<BIT_RANGE
- for (clogBC7 = LOG_CL_BASE; clogBC7 < LOG_CL_RANGE; clogBC7++)
- {
- for (bits = BIT_BASE; bits < BIT_RANGE; bits++)
- {
- #ifdef USE_BC7_RAMP
- for (p1 = 0; p1 < (1 << bits); p1++)
- {
- for (p2 = 0; p2 < (1 << bits); p2++)
- {
- for (index = 0; index < (1 << clogBC7); index++)
- {
- if (index > maxi)
- maxi = index;
- BC7EncodeRamps.ramp[(CLT(clogBC7) * 4 * 256 * 256 * 16) + (BTT(bits) * 256 * 256 * 16) + (p1 * 256 * 16) + (p2 * 16) + index] =
- //floor((CGV_FLOAT)BC7EncodeRamps.ep_d[BTT(bits)][p1] + rampWeights[clogBC7][index] * (CGV_FLOAT)((BC7EncodeRamps.ep_d[BTT(bits)][p2] - BC7EncodeRamps.ep_d[BTT(bits)][p1]))+ 0.5F);
- floor(BC7EncodeRamps.ep_d[BTT(bits)][p1] +
- rampWeights[clogBC7][index] * ((BC7EncodeRamps.ep_d[BTT(bits)][p2] - BC7EncodeRamps.ep_d[BTT(bits)][p1])) + 0.5F);
- } //index<(1 << clogBC7)
- } //p2<(1 << bits)
- } //p1<(1 << bits)
- #endif
- #ifdef USE_BC7_SP_ERR_IDX
- for (j = 0; j < 256; j++)
- {
- for (o1 = 0; o1 < 2; o1++)
- {
- for (o2 = 0; o2 < 2; o2++)
- {
- for (index = 0; index < 16; index++)
- {
- BC7EncodeRamps.sp_idx[(CLT(clogBC7) * 4 * 256 * 2 * 2 * 16 * 2) + (BTT(bits) * 256 * 2 * 2 * 16 * 2) + (j * 2 * 2 * 16 * 2) +
- (o1 * 2 * 16 * 2) + (o2 * 16 * 2) + (index * 2) + 0] = 0;
- BC7EncodeRamps.sp_idx[(CLT(clogBC7) * 4 * 256 * 2 * 2 * 16 * 2) + (BTT(bits) * 256 * 2 * 2 * 16 * 2) + (j * 2 * 2 * 16 * 2) +
- (o1 * 2 * 16 * 2) + (o2 * 16 * 2) + (index * 2) + 1] = 255;
- BC7EncodeRamps.sp_err[(CLT(clogBC7) * 4 * 256 * 2 * 2 * 16) + (BTT(bits) * 256 * 2 * 2 * 16) + (j * 2 * 2 * 16) + (o1 * 2 * 16) +
- (o2 * 16) + index] = 255;
- } // i<16
- } //o2<2;
- } //o1<2
- } //j<256
- for (p1 = 0; p1 < (1 << bits); p1++)
- {
- for (p2 = 0; p2 < (1 << bits); p2++)
- {
- for (index = 0; index < (1 << clogBC7); index++)
- {
- #ifdef USE_BC7_RAMP
- CGV_INT floatf =
- (CGV_INT)
- BC7EncodeRamps.ramp[(CLT(clogBC7) * 4 * 256 * 256 * 16) + (BTT(bits) * 256 * 256 * 16) + (p1 * 256 * 16) + (p2 * 16) + index];
- #else
- CGV_INT floatf =
- floor((CGV_FLOAT)BC7EncodeRamps.ep_d[BTT(bits)][p1] +
- rampWeights[clogBC7][index] * (CGV_FLOAT)((BC7EncodeRamps.ep_d[BTT(bits)][p2] - BC7EncodeRamps.ep_d[BTT(bits)][p1])) + 0.5F);
- #endif
- BC7EncodeRamps.sp_idx[(CLT(clogBC7) * 4 * 256 * 2 * 2 * 16 * 2) + (BTT(bits) * 256 * 2 * 2 * 16 * 2) + (floatf * 2 * 2 * 16 * 2) +
- ((p1 & 0x1) * 2 * 16 * 2) + ((p2 & 0x1) * 16 * 2) + (index * 2) + 0] = p1;
- BC7EncodeRamps.sp_idx[(CLT(clogBC7) * 4 * 256 * 2 * 2 * 16 * 2) + (BTT(bits) * 256 * 2 * 2 * 16 * 2) + (floatf * 2 * 2 * 16 * 2) +
- ((p1 & 0x1) * 2 * 16 * 2) + ((p2 & 0x1) * 16 * 2) + (index * 2) + 1] = p2;
- BC7EncodeRamps.sp_err[(CLT(clogBC7) * 4 * 256 * 2 * 2 * 16) + (BTT(bits) * 256 * 2 * 2 * 16) + (floatf * 2 * 2 * 16) +
- ((p1 & 0x1) * 2 * 16) + (p2 & 0x1 * 16) + index] = 0;
- } //i<(1 << clogBC7)
- } //p2
- } //p1<(1 << bits)
- for (j = 0; j < 256; j++)
- {
- for (o1 = 0; o1 < 2; o1++)
- {
- for (o2 = 0; o2 < 2; o2++)
- {
- for (index = 0; index < (1 << clogBC7); index++)
- {
- if ( // check for unitialized sp_idx
- (BC7EncodeRamps.sp_idx[(CLT(clogBC7) * 4 * 256 * 2 * 2 * 16 * 2) + (BTT(bits) * 256 * 2 * 2 * 16 * 2) + (j * 2 * 2 * 16 * 2) +
- (o1 * 2 * 16 * 2) + (o2 * 16 * 2) + (index * 2) + 0] == 0) &&
- (BC7EncodeRamps.sp_idx[(CLT(clogBC7) * 4 * 256 * 2 * 2 * 16 * 2) + (BTT(bits) * 256 * 2 * 2 * 16 * 2) + (j * 2 * 2 * 16 * 2) +
- (o1 * 2 * 16 * 2) + (o2 * 16 * 2) + (index * 2) + 1] == 255))
- {
- CGU_INT k;
- CGU_INT tf;
- CGU_INT tc;
- for (k = 1; k < 256; k++)
- {
- tf = j - k;
- tc = j + k;
- if ((tf >= 0 && BC7EncodeRamps.sp_err[(CLT(clogBC7) * 4 * 256 * 2 * 2 * 16) + (BTT(bits) * 256 * 2 * 2 * 16) +
- (tf * 2 * 2 * 16) + (o1 * 2 * 16) + (o2 * 16) + index] == 0))
- {
- BC7EncodeRamps.sp_idx[(CLT(clogBC7) * 4 * 256 * 2 * 2 * 16 * 2) + (BTT(bits) * 256 * 2 * 2 * 16 * 2) +
- (j * 2 * 2 * 16 * 2) + (o1 * 2 * 16 * 2) + (o2 * 16 * 2) + (index * 2) + 0] =
- BC7EncodeRamps.sp_idx[(CLT(clogBC7) * 4 * 256 * 2 * 2 * 16 * 2) + (BTT(bits) * 256 * 2 * 2 * 16 * 2) +
- (tf * 2 * 2 * 16 * 2) + (o1 * 2 * 16 * 2) + (o2 * 16 * 2) + (index * 2) + 0];
- BC7EncodeRamps.sp_idx[(CLT(clogBC7) * 4 * 256 * 2 * 2 * 16 * 2) + (BTT(bits) * 256 * 2 * 2 * 16 * 2) +
- (j * 2 * 2 * 16 * 2) + (o1 * 2 * 16 * 2) + (o2 * 16 * 2) + (index * 2) + 1] =
- BC7EncodeRamps.sp_idx[(CLT(clogBC7) * 4 * 256 * 2 * 2 * 16 * 2) + (BTT(bits) * 256 * 2 * 2 * 16 * 2) +
- (tf * 2 * 2 * 16 * 2) + (o1 * 2 * 16 * 2) + (o2 * 16 * 2) + (index * 2) + 1];
- break;
- }
- else if ((tc < 256 && BC7EncodeRamps.sp_err[(CLT(clogBC7) * 4 * 256 * 2 * 2 * 16) + (BTT(bits) * 256 * 2 * 2 * 16) +
- (tc * 2 * 2 * 16) + (o1 * 2 * 16) + (o2 * 16) + index] == 0))
- {
- BC7EncodeRamps.sp_idx[(CLT(clogBC7) * 4 * 256 * 2 * 2 * 16 * 2) + (BTT(bits) * 256 * 2 * 2 * 16 * 2) +
- (j * 2 * 2 * 16 * 2) + (o1 * 2 * 16 * 2) + (o2 * 16 * 2) + (index * 2) + 0] =
- BC7EncodeRamps.sp_idx[(CLT(clogBC7) * 4 * 256 * 2 * 2 * 16 * 2) + (BTT(bits) * 256 * 2 * 2 * 16 * 2) +
- (tc * 2 * 2 * 16 * 2) + (o1 * 2 * 16 * 2) + (o2 * 16 * 2) + (index * 2) + 0];
- break;
- }
- }
- //BC7EncodeRamps.sp_err[(CLT(clogBC7)*4*256*2*2*16)+(BTT(bits)*256*2*2*16)+(j*2*2*16)+(o1*2*16)+(o2*16)+index] = (CGV_FLOAT) k;
- BC7EncodeRamps.sp_err[(CLT(clogBC7) * 4 * 256 * 2 * 2 * 16) + (BTT(bits) * 256 * 2 * 2 * 16) + (j * 2 * 2 * 16) +
- (o1 * 2 * 16) + (o2 * 16) + index] = (CGU_UINT8)k;
- } //sp_idx < 0
- } //i<(1 << clogBC7)
- } //o2
- } //o1
- } //j
- #endif
- } //bits<BIT_RANGE
- } //clogBC7<LOG_CL_RANGE
- #endif
- }
- //----------------------------------------------------------
- //====== Common BC7 ASPM Code used for SPMD (CPU/GPU) ======
- //----------------------------------------------------------
- #define SOURCE_BLOCK_SIZE 16 // Size of a source block in pixels (each pixel has RGBA:8888 channels)
- #define COMPRESSED_BLOCK_SIZE 16 // Size of a compressed block in bytes
- #define MAX_CHANNELS 4
- #define MAX_SUBSETS 3 // Maximum number of possible subsets
- #define MAX_SUBSET_SIZE 16 // Largest possible size for an individual subset
- #ifndef ASPM_GPU
- extern "C" CGU_INT timerStart(CGU_INT id);
- extern "C" CGU_INT timerEnd(CGU_INT id);
- #define TIMERSTART(x) timerStart(x)
- #define TIMEREND(x) timerEnd(x)
- #else
- #define TIMERSTART(x)
- #define TIMEREND(x)
- #endif
- #ifdef ASPM_GPU
- #define GATHER_UINT8(x, y) x[y]
- #else
- #define GATHER_UINT8(x, y) gather_uint8(x, y)
- #endif
- // INLINE CGV_UINT8 gather_uint8 (CMP_CONSTANT CGU_UINT8 * __constant uniform ptr, CGV_INT idx)
- // {
- // return ptr[idx]; // (perf warning expected)
- // }
- //
- // INLINE CGV_UINT8 gather_cmpout(CMP_CONSTANT CGV_UINT8 * __constant uniform ptr, CGU_INT idx)
- // {
- // return ptr[idx]; // (perf warning expected)
- // }
- //
- //INLINE CGV_UINT8 gather_index(CMP_CONSTANT varying CGV_UINT8* __constant uniform ptr, CGV_INT idx)
- //{
- // return ptr[idx]; // (perf warning expected)
- //}
- //
- //INLINE void scatter_index(CGV_UINT8* ptr, CGV_INT idx, CGV_UINT8 value)
- //{
- // ptr[idx] = value; // (perf warning expected)
- //}
- //
- #ifdef USE_VARYING
- INLINE CGV_INT gather_epocode(CMP_CONSTANT CGV_INT* ptr, CGV_INT idx)
- {
- return ptr[idx]; // (perf warning expected)
- }
- #endif
- INLINE CGV_UINT32 gather_partid(CMP_CONSTANT CGV_UINT32* uniform ptr, CGV_INT idx)
- {
- return ptr[idx]; // (perf warning expected)
- }
- //INLINE CGV_UINT8 gather_vuint8(CMP_CONSTANT varying CGV_UINT8* __constant uniform ptr, CGV_INT idx)
- //{
- // return ptr[idx]; // (perf warning expected)
- //}
- INLINE void cmp_swap_epo(CGV_INT u[], CGV_INT v[], CGV_INT n)
- {
- for (CGU_INT i = 0; i < n; i++)
- {
- CGV_INT t = u[i];
- u[i] = v[i];
- v[i] = t;
- }
- }
- INLINE void cmp_swap_index(CGV_UINT8 u[], CGV_UINT8 v[], CGU_INT n)
- {
- for (CGU_INT i = 0; i < n; i++)
- {
- CGV_UINT8 t = u[i];
- u[i] = v[i];
- v[i] = t;
- }
- }
- void cmp_memsetBC7(CGV_UINT8 ptr[], CGV_UINT8 value, CGU_UINT32 size)
- {
- for (CGV_UINT32 i = 0; i < size; i++)
- {
- ptr[i] = value;
- }
- }
- void cmp_memcpy(CMP_GLOBAL CGU_UINT8 dst[], CGU_UINT8 src[], CGU_UINT32 size)
- {
- #ifdef ASPM_GPU
- for (CGV_INT i = 0; i < size; i++)
- {
- dst[i] = src[i];
- }
- #else
- memcpy(dst, src, size);
- #endif
- }
- INLINE CGV_FLOAT sq_image(CGV_FLOAT v)
- {
- return v * v;
- }
- INLINE CGV_INT clampEPO(CGV_INT v, CGV_INT a, CGV_INT b)
- {
- if (v < a)
- return a;
- else if (v > b)
- return b;
- return v;
- }
- INLINE CGV_UINT8 clampIndex(CGV_UINT8 v, CGV_UINT8 a, CGV_UINT8 b)
- {
- if (v < a)
- return a;
- else if (v > b)
- return b;
- return v;
- }
- INLINE CGV_UINT32 shift_right_uint32(CGV_UINT32 v, CGU_INT bits)
- {
- return v >> bits; // (perf warning expected)
- }
- INLINE CGV_UINT8 shift_right_uint8(CGV_UINT8 v, CGU_UINT8 bits)
- {
- return v >> bits; // (perf warning expected)
- }
- INLINE CGV_UINT8 shift_right_uint8V(CGV_UINT8 v, CGV_UINT8 bits)
- {
- return v >> bits; // (perf warning expected)
- }
- // valid bit range is 0..8
- INLINE CGV_INT expandEPObits(CGV_INT v, uniform CGV_INT bits)
- {
- CGV_INT vv = v << (8 - bits);
- return vv + shift_right_uint32(vv, bits);
- }
- CGV_FLOAT err_absf(CGV_FLOAT a)
- {
- return a > 0.0F ? a : -a;
- }
- CGV_FLOAT img_absf(CGV_FLOAT a)
- {
- return a > 0.0F ? a : -a;
- }
- CGU_UINT8 min8(CGU_UINT8 a, CGU_UINT8 b)
- {
- return a < b ? a : b;
- }
- CGU_UINT8 max8(CGU_UINT8 a, CGU_UINT8 b)
- {
- return a > b ? a : b;
- }
- void pack_index(CGV_UINT32 packed_index[2], CGV_UINT8 src_index[MAX_SUBSET_SIZE])
- {
- // Converts from unpacked index to packed index
- packed_index[0] = 0x0000;
- packed_index[1] = 0x0000;
- CGV_UINT8 shift = 0; // was CGV_UINT8
- for (CGU_INT k = 0; k < 16; k++)
- {
- packed_index[k / 8] |= (CGV_UINT32)(src_index[k] & 0x0F) << shift;
- shift += 4;
- }
- }
- void unpack_index(CGV_UINT8 unpacked_index[MAX_SUBSET_SIZE], CGV_UINT32 src_packed[2])
- {
- // Converts from packed index to unpacked index
- CGV_UINT8 shift = 0; // was CGV_UINT8
- for (CGV_UINT8 k = 0; k < 16; k++)
- {
- unpacked_index[k] = (CGV_UINT8)(src_packed[k / 8] >> shift) & 0xF;
- if (k == 7)
- shift = 0;
- else
- shift += 4;
- }
- }
- //====================================== CMP MATH UTILS ============================================
- CGV_FLOAT err_Total(CGV_FLOAT image_src1[SOURCE_BLOCK_SIZE * MAX_CHANNELS],
- CGV_FLOAT image_src2[SOURCE_BLOCK_SIZE * MAX_CHANNELS],
- CGV_INT numEntries, // < 16
- CGU_UINT8 channels3or4)
- { // IN: 3 = RGB or 4 = RGBA (4 = MAX_CHANNELS)
- CGV_FLOAT err_t = 0.0F;
- for (CGU_UINT8 ch = 0; ch < channels3or4; ch++)
- for (CGV_INT k = 0; k < numEntries; k++)
- {
- err_t = err_t + sq_image(image_src1[k + ch * SOURCE_BLOCK_SIZE] - image_src2[k + ch * SOURCE_BLOCK_SIZE]);
- }
- return err_t;
- };
- void GetImageCentered(CGV_FLOAT image_centered_out[SOURCE_BLOCK_SIZE * MAX_CHANNELS],
- CGV_FLOAT mean_out[MAX_CHANNELS],
- CGV_FLOAT image_src[SOURCE_BLOCK_SIZE * MAX_CHANNELS],
- CGV_INT numEntries, // < 16
- CGU_UINT8 channels3or4)
- { // IN: 3 = RGB or 4 = RGBA (4 = MAX_CHANNELS)
- for (CGU_UINT8 ch = 0; ch < channels3or4; ch++)
- {
- mean_out[ch] = 0.0F;
- if (numEntries > 0)
- {
- for (CGV_INT k = 0; k < numEntries; k++)
- {
- mean_out[ch] = mean_out[ch] + image_src[k + (ch * SOURCE_BLOCK_SIZE)];
- }
- mean_out[ch] /= numEntries;
- for (CGV_INT k = 0; k < numEntries; k++)
- image_centered_out[k + (ch * SOURCE_BLOCK_SIZE)] = image_src[k + (ch * SOURCE_BLOCK_SIZE)] - mean_out[ch];
- }
- }
- }
- void GetCovarianceVector(CGV_FLOAT covariance_out[MAX_CHANNELS * MAX_CHANNELS], // OUT: Covariance vector
- CGV_FLOAT image_centered[SOURCE_BLOCK_SIZE * MAX_CHANNELS],
- CGV_INT numEntries, // < 16
- CGU_UINT8 channels3or4)
- { // IN: 3 = RGB or 4 = RGBA (4 = MAX_CHANNELS)
- for (CGU_UINT8 ch1 = 0; ch1 < channels3or4; ch1++)
- for (CGU_UINT8 ch2 = 0; ch2 <= ch1; ch2++)
- {
- covariance_out[ch1 + ch2 * 4] = 0;
- for (CGV_INT k = 0; k < numEntries; k++)
- covariance_out[ch1 + ch2 * 4] += image_centered[k + (ch1 * SOURCE_BLOCK_SIZE)] * image_centered[k + (ch2 * SOURCE_BLOCK_SIZE)];
- }
- for (CGU_UINT8 ch1 = 0; ch1 < channels3or4; ch1++)
- for (CGU_UINT8 ch2 = ch1 + 1; ch2 < channels3or4; ch2++)
- covariance_out[ch1 + ch2 * 4] = covariance_out[ch2 + ch1 * 4];
- }
- void GetProjecedImage(CGV_FLOAT projection_out[SOURCE_BLOCK_SIZE], //output projected data
- CGV_FLOAT image_centered[SOURCE_BLOCK_SIZE * MAX_CHANNELS],
- CGV_INT numEntries, // < 16
- CGV_FLOAT EigenVector[MAX_CHANNELS],
- CGU_UINT8 channels3or4)
- { // 3 = RGB or 4 = RGBA
- projection_out[0] = 0.0F;
- // EigenVector must be normalized
- for (CGV_INT k = 0; k < numEntries; k++)
- {
- projection_out[k] = 0.0F;
- for (CGU_UINT8 ch = 0; ch < channels3or4; ch++)
- {
- projection_out[k] = projection_out[k] + (image_centered[k + (ch * SOURCE_BLOCK_SIZE)] * EigenVector[ch]);
- }
- }
- }
- INLINE CGV_UINT8 get_partition_subset(CGV_INT part_id, CGU_INT maxSubsets, CGV_INT index)
- {
- if (maxSubsets == 2)
- {
- CGV_UINT32 mask_packed = subset_mask_table[part_id];
- return ((mask_packed & (0x01 << index)) ? 1 : 0); // This can be moved to caller, just return mask!!
- }
- // 3 region subsets
- part_id += 64;
- CGV_UINT32 mask0 = subset_mask_table[part_id] & 0xFFFF;
- CGV_UINT32 mask1 = subset_mask_table[part_id] >> 16;
- CGV_UINT32 mask = 0x01 << index;
- return ((mask1 & mask) ? 2 : 0 + (mask0 & mask) ? 1 : 0); // This can be moved to caller, just return mask!!
- }
- void GetPartitionSubSet_mode01237(CGV_FLOAT subsets_out[MAX_SUBSETS][SOURCE_BLOCK_SIZE][MAX_CHANNELS], // OUT: Subset pattern mapped with image src colors
- CGV_INT entryCount_out[MAX_SUBSETS], // OUT: Number of entries per subset
- CGV_UINT8 partition, // Partition Shape 0..63
- CGV_FLOAT image_src[SOURCE_BLOCK_SIZE * MAX_CHANNELS], // Image colors
- CGU_INT blockMode, // [0,1,2,3 or 7]
- CGU_UINT8 channels3or4)
- { // 3 = RGB or 4 = RGBA (4 = MAX_CHANNELS)
- CGU_UINT8 maxSubsets = 2;
- if (blockMode == 0 || blockMode == 2)
- maxSubsets = 3;
- entryCount_out[0] = 0;
- entryCount_out[1] = 0;
- entryCount_out[2] = 0;
- for (CGV_INT i = 0; i < MAX_SUBSET_SIZE; i++)
- {
- CGV_UINT8 subset = get_partition_subset(partition, maxSubsets, i);
- for (CGU_INT ch = 0; ch < 3; ch++)
- subsets_out[subset][entryCount_out[subset]][ch] = image_src[i + (ch * SOURCE_BLOCK_SIZE)];
- //subsets_out[subset*64+(entryCount_out[subset]*MAX_CHANNELS+ch)] = image_src[i+(ch*SOURCE_BLOCK_SIZE)];
- // if we have only 3 channels then set the alpha subset to 0
- if (channels3or4 == 3)
- subsets_out[subset][entryCount_out[subset]][3] = 0.0F;
- else
- subsets_out[subset][entryCount_out[subset]][3] = image_src[i + (COMP_ALPHA * SOURCE_BLOCK_SIZE)];
- entryCount_out[subset]++;
- }
- }
- INLINE void GetClusterMean(CGV_FLOAT cluster_mean_out[SOURCE_BLOCK_SIZE][MAX_CHANNELS],
- CGV_FLOAT image_src[SOURCE_BLOCK_SIZE * MAX_CHANNELS],
- CGV_UINT8 index_in[MAX_SUBSET_SIZE],
- CGV_INT numEntries, // < 16
- CGU_UINT8 channels3or4)
- { // IN: 3 = RGB or 4 = RGBA (4 = MAX_CHANNELS)
- // unused index values are underfined
- CGV_UINT8 i_cnt[MAX_SUBSET_SIZE];
- CGV_UINT8 i_comp[MAX_SUBSET_SIZE];
- for (CGV_INT i = 0; i < numEntries; i++)
- for (CGU_UINT8 ch = 0; ch < channels3or4; ch++)
- {
- CGV_UINT8 idx = index_in[i] & 0x0F;
- cluster_mean_out[idx][ch] = 0;
- i_cnt[idx] = 0;
- }
- CGV_UINT8 ic = 0; // was CGV_INT
- for (CGV_INT i = 0; i < numEntries; i++)
- {
- CGV_UINT8 idx = index_in[i] & 0x0F;
- if (i_cnt[idx] == 0)
- i_comp[ic++] = idx;
- i_cnt[idx]++;
- for (CGU_UINT8 ch = 0; ch < channels3or4; ch++)
- {
- cluster_mean_out[idx][ch] += image_src[i + (ch * SOURCE_BLOCK_SIZE)];
- }
- }
- for (CGU_UINT8 ch = 0; ch < channels3or4; ch++)
- for (CGU_INT i = 0; i < ic; i++)
- {
- if (i_cnt[i_comp[i]] != 0)
- {
- CGV_UINT8 icmp = i_comp[i];
- cluster_mean_out[icmp][ch] = (CGV_FLOAT)floor((cluster_mean_out[icmp][ch] / (CGV_FLOAT)i_cnt[icmp]) + 0.5F);
- }
- }
- }
- INLINE void GetImageMean(CGV_FLOAT image_mean_out[SOURCE_BLOCK_SIZE * MAX_CHANNELS],
- CGV_FLOAT image_src[SOURCE_BLOCK_SIZE * MAX_CHANNELS],
- CGV_INT numEntries,
- CGU_UINT8 channels)
- {
- for (CGU_UINT8 ch = 0; ch < channels; ch++)
- image_mean_out[ch] = 0;
- for (CGV_INT i = 0; i < numEntries; i++)
- for (CGU_UINT8 ch = 0; ch < channels; ch++)
- image_mean_out[ch] += image_src[i + ch * SOURCE_BLOCK_SIZE];
- for (CGU_UINT8 ch = 0; ch < channels; ch++)
- image_mean_out[ch] /= (CGV_FLOAT)numEntries; // Performance Warning: Conversion from unsigned int to float is slow. Use "int" if possible
- }
- // calculate an eigen vector corresponding to a biggest eigen value
- // will work for non-zero non-negative matricies only
- void GetEigenVector(CGV_FLOAT EigenVector_out[MAX_CHANNELS], // Normalized Eigen Vector output
- CGV_FLOAT CovarianceVector[MAX_CHANNELS * MAX_CHANNELS], // Covariance Vector
- CGU_UINT8 channels3or4)
- { // IN: 3 = RGB or 4 = RGBA
- CGV_FLOAT vector_covIn[MAX_CHANNELS * MAX_CHANNELS];
- CGV_FLOAT vector_covOut[MAX_CHANNELS * MAX_CHANNELS];
- CGV_FLOAT vector_maxCovariance;
- for (CGU_UINT8 ch1 = 0; ch1 < channels3or4; ch1++)
- for (CGU_UINT8 ch2 = 0; ch2 < channels3or4; ch2++)
- {
- vector_covIn[ch1 + ch2 * 4] = CovarianceVector[ch1 + ch2 * 4];
- }
- vector_maxCovariance = 0;
- for (CGU_UINT8 ch = 0; ch < channels3or4; ch++)
- {
- if (vector_covIn[ch + ch * 4] > vector_maxCovariance)
- vector_maxCovariance = vector_covIn[ch + ch * 4];
- }
- // Normalize Input Covariance Vector
- for (CGU_UINT8 ch1 = 0; ch1 < channels3or4; ch1++)
- for (CGU_UINT8 ch2 = 0; ch2 < channels3or4; ch2++)
- {
- if (vector_maxCovariance > 0)
- vector_covIn[ch1 + ch2 * 4] = vector_covIn[ch1 + ch2 * 4] / vector_maxCovariance;
- }
- for (CGU_UINT8 ch1 = 0; ch1 < channels3or4; ch1++)
- {
- for (CGU_UINT8 ch2 = 0; ch2 < channels3or4; ch2++)
- {
- CGV_FLOAT vector_temp_cov = 0;
- for (CGU_UINT8 ch3 = 0; ch3 < channels3or4; ch3++)
- {
- vector_temp_cov = vector_temp_cov + vector_covIn[ch1 + ch3 * 4] * vector_covIn[ch3 + ch2 * 4];
- }
- vector_covOut[ch1 + ch2 * 4] = vector_temp_cov;
- }
- }
- vector_maxCovariance = 0;
- CGV_INT maxCovariance_channel = 0;
- for (CGU_UINT8 ch = 0; ch < channels3or4; ch++)
- {
- if (vector_covOut[ch + ch * 4] > vector_maxCovariance)
- {
- maxCovariance_channel = ch;
- vector_maxCovariance = vector_covOut[ch + ch * 4];
- }
- }
- CGV_FLOAT vector_t = 0;
- for (CGU_UINT8 ch = 0; ch < channels3or4; ch++)
- {
- vector_t = vector_t + vector_covOut[maxCovariance_channel + ch * 4] * vector_covOut[maxCovariance_channel + ch * 4];
- EigenVector_out[ch] = vector_covOut[maxCovariance_channel + ch * 4];
- }
- // Normalize the Eigen Vector
- vector_t = sqrt(vector_t);
- for (CGU_UINT8 ch = 0; ch < channels3or4; ch++)
- {
- if (vector_t > 0)
- EigenVector_out[ch] = EigenVector_out[ch] / vector_t;
- }
- }
- CGV_UINT8 index_collapse(CGV_UINT8 index[MAX_SUBSET_SIZE], CGV_INT numEntries)
- {
- CGV_UINT8 minIndex = index[0];
- CGV_UINT8 MaxIndex = index[0];
- for (CGV_INT k = 1; k < numEntries; k++)
- {
- if (index[k] < minIndex)
- minIndex = index[k];
- if (index[k] > MaxIndex)
- MaxIndex = index[k];
- }
- CGV_UINT8 D = 1;
- for (CGV_UINT8 d = 2; d <= MaxIndex - minIndex; d++)
- {
- for (CGV_INT ent = 0; ent < numEntries; ent++)
- {
- if ((index[ent] - minIndex) % d != 0)
- {
- if (ent >= numEntries)
- D = d;
- break;
- }
- }
- }
- for (CGV_INT k = 0; k < numEntries; k++)
- {
- index[k] = (index[k] - minIndex) / D;
- }
- for (CGV_INT k = 1; k < numEntries; k++)
- {
- if (index[k] > MaxIndex)
- MaxIndex = index[k];
- }
- return (MaxIndex);
- }
- void sortProjected_indexs(CGV_UINT8 index_ordered[MAX_SUBSET_SIZE],
- CGV_FLOAT projection[SOURCE_BLOCK_SIZE],
- CGV_INT numEntries // max 16
- )
- {
- CMP_di what[SOURCE_BLOCK_SIZE];
- for (CGV_UINT8 i = 0; i < numEntries; i++)
- {
- what[i].index = i;
- what[i].image = projection[i];
- }
- CGV_UINT8 tmp_index;
- CGV_FLOAT tmp_image;
- for (CGV_INT i = 1; i < numEntries; i++)
- {
- for (CGV_INT j = i; j > 0; j--)
- {
- if (what[j - 1].image > what[j].image)
- {
- tmp_index = what[j].index;
- tmp_image = what[j].image;
- what[j].index = what[j - 1].index;
- what[j].image = what[j - 1].image;
- what[j - 1].index = tmp_index;
- what[j - 1].image = tmp_image;
- }
- }
- }
- for (CGV_INT i = 0; i < numEntries; i++)
- index_ordered[i] = what[i].index;
- };
- void sortPartitionProjection(CGV_FLOAT projection[MAX_PARTITION_ENTRIES],
- CGV_UINT8 order[MAX_PARTITION_ENTRIES],
- CGU_UINT8 numPartitions // max 64
- )
- {
- CMP_du what[MAX_PARTITION_ENTRIES];
- for (CGU_UINT8 Parti = 0; Parti < numPartitions; Parti++)
- {
- what[Parti].index = Parti;
- what[Parti].image = projection[Parti];
- }
- CGV_UINT8 index;
- CGV_FLOAT data;
- for (CGU_UINT8 Parti = 1; Parti < numPartitions; Parti++)
- {
- for (CGU_UINT8 Partj = Parti; Partj > 0; Partj--)
- {
- if (what[Partj - 1].image > what[Partj].image)
- {
- index = what[Partj].index;
- data = what[Partj].image;
- what[Partj].index = what[Partj - 1].index;
- what[Partj].image = what[Partj - 1].image;
- what[Partj - 1].index = index;
- what[Partj - 1].image = data;
- }
- }
- }
- for (CGU_UINT8 Parti = 0; Parti < numPartitions; Parti++)
- order[Parti] = what[Parti].index;
- };
- void cmp_Write8Bit(CGV_UINT8 base[], CGU_INT* uniform offset, CGU_INT bits, CGV_UINT8 bitVal)
- {
- base[*offset / 8] |= bitVal << (*offset % 8);
- if (*offset % 8 + bits > 8)
- {
- base[*offset / 8 + 1] |= shift_right_uint8(bitVal, 8 - *offset % 8);
- }
- *offset += bits;
- }
- void cmp_Write8BitV(CGV_UINT8 base[], CGV_INT offset, CGU_INT bits, CGV_UINT8 bitVal)
- {
- base[offset / 8] |= bitVal << (offset % 8);
- if (offset % 8 + bits > 8)
- {
- base[offset / 8 + 1] |= shift_right_uint8V(bitVal, 8 - offset % 8);
- }
- }
- INLINE CGV_INT ep_find_floor(CGV_FLOAT v, CGU_UINT8 bits, CGV_UINT8 use_par, CGV_UINT8 odd)
- {
- CGV_INT i1 = 0;
- CGV_INT i2 = 1 << (bits - use_par);
- odd = use_par ? odd : 0;
- while (i2 - i1 > 1)
- {
- CGV_INT j = (i1 + i2) / 2; // Warning in ASMP code
- CGV_INT ep_d = expandEPObits((j << use_par) + odd, bits);
- if (v >= ep_d)
- i1 = j;
- else
- i2 = j;
- }
- return (i1 << use_par) + odd;
- }
- //==========================================================
- // Not used for Modes 4&5
- INLINE CGV_FLOAT GetRamp(CGU_INT clogBC7, // ramp bits Valid range 2..4
- CGU_INT bits, // Component Valid range 5..8
- CGV_INT p1, // 0..255
- CGV_INT p2, // 0..255
- CGV_UINT8 index)
- { // 0..15
- #ifdef ASPM_GPU // GPU Code
- CGV_FLOAT rampf = 0.0F;
- CGV_INT e1 = expand_epocode(p1, bits);
- CGV_INT e2 = expand_epocode(p2, bits);
- CGV_FLOAT ramp = gather_epocode(rampI, clogBC7 * 16 + index) / 64.0F;
- rampf = floor(e1 + ramp * (e2 - e1) + 0.5F); // returns 0..255 values
- return rampf;
- #else // CPU ASPM Code
- #ifdef USE_BC7_RAMP
- CGV_FLOAT rampf = BC7EncodeRamps.ramp[(CLT(clogBC7) * 4 * 256 * 256 * 16) + (BTT(bits) * 256 * 256 * 16) + (p1 * 256 * 16) + (p2 * 16) + index];
- return rampf;
- #else
- return (CGV_FLOAT)floor((CGV_FLOAT)BC7EncodeRamps.ep_d[BTT(bits)][p1] +
- rampWeights[clogBC7][index] * (CGV_FLOAT)((BC7EncodeRamps.ep_d[BTT(bits)][p2] - BC7EncodeRamps.ep_d[BTT(bits)][p1])) + 0.5F);
- #endif
- #endif
- }
- // Not used for Modes 4&5
- INLINE CGV_FLOAT get_sperr(CGU_INT clogBC7, // ramp bits Valid range 2..4
- CGU_INT bits, // Component Valid range 5..8
- CGV_INT p1, // 0..255
- CGU_INT t1,
- CGU_INT t2,
- CGV_UINT8 index)
- {
- #ifdef ASPM_GPU
- return 0.0F;
- #else
- #ifdef USE_BC7_SP_ERR_IDX
- if (BC7EncodeRamps.ramp_init)
- return BC7EncodeRamps
- .sp_err[(CLT(clogBC7) * 4 * 256 * 2 * 2 * 16) + (BTT(bits) * 256 * 2 * 2 * 16) + (p1 * 2 * 2 * 16) + (t1 * 2 * 16) + (t2 * 16) + index];
- else
- return 0.0F;
- #else
- return 0.0F;
- #endif
- #endif
- }
- INLINE void get_fixuptable(CGV_INT fixup[3], CGV_INT part_id)
- {
- CGV_INT skip_packed = FIXUPINDEX[part_id]; // gather_int2(FIXUPINDEX, part_id);
- fixup[0] = 0;
- fixup[1] = skip_packed >> 4;
- fixup[2] = skip_packed & 15;
- }
- //===================================== COMPRESS CODE =============================================
- INLINE void SetDefaultIndex(CGV_UINT8 index_io[MAX_SUBSET_SIZE])
- {
- // Use this a final call
- for (CGU_INT i = 0; i < MAX_SUBSET_SIZE; i++)
- index_io[i] = 0;
- }
- INLINE void SetDefaultEPOCode(CGV_INT epo_code_io[8], CGV_INT R, CGV_INT G, CGV_INT B, CGV_INT A)
- {
- epo_code_io[0] = R;
- epo_code_io[1] = G;
- epo_code_io[2] = B;
- epo_code_io[3] = A;
- epo_code_io[4] = R;
- epo_code_io[5] = G;
- epo_code_io[6] = B;
- epo_code_io[7] = A;
- }
- void GetProjectedIndex(CGV_UINT8 projected_index_out[MAX_SUBSET_SIZE], //output: index, uncentered, in the range 0..clusters-1
- CGV_FLOAT image_projected[SOURCE_BLOCK_SIZE], // image_block points, might be uncentered
- CGV_INT clusters, // clusters: number of points in the ramp (max 16)
- CGV_INT numEntries)
- { // n - number of points in v_ max 15
- CMP_di what[SOURCE_BLOCK_SIZE];
- CGV_FLOAT image_v[SOURCE_BLOCK_SIZE];
- CGV_FLOAT image_z[SOURCE_BLOCK_SIZE];
- CGV_FLOAT image_l;
- CGV_FLOAT image_mm;
- CGV_FLOAT image_r = 0.0F;
- CGV_FLOAT image_dm = 0.0F;
- CGV_FLOAT image_min;
- CGV_FLOAT image_max;
- CGV_FLOAT image_s;
- SetDefaultIndex(projected_index_out);
- image_min = image_projected[0];
- image_max = image_projected[0];
- for (CGV_INT i = 1; i < numEntries; i++)
- {
- if (image_min < image_projected[i])
- image_min = image_projected[i];
- if (image_max > image_projected[i])
- image_max = image_projected[i];
- }
- CGV_FLOAT img_diff = image_max - image_min;
- if (img_diff == 0.0f)
- return;
- if (cmp_isnan(img_diff))
- return;
- image_s = (clusters - 1) / img_diff;
- for (CGV_UINT8 i = 0; i < numEntries; i++)
- {
- image_v[i] = image_projected[i] * image_s;
- image_z[i] = floor(image_v[i] + 0.5F - image_min * image_s);
- projected_index_out[i] = (CGV_UINT8)image_z[i];
- what[i].image = image_v[i] - image_z[i] - image_min * image_s;
- what[i].index = i;
- image_dm += what[i].image;
- image_r += what[i].image * what[i].image;
- }
- if (numEntries * image_r - image_dm * image_dm >= (CGV_FLOAT)(numEntries - 1) / 8)
- {
- image_dm /= numEntries;
- for (CGV_INT i = 0; i < numEntries; i++)
- what[i].image -= image_dm;
- CGV_UINT8 tmp_index;
- CGV_FLOAT tmp_image;
- for (CGV_INT i = 1; i < numEntries; i++)
- {
- for (CGV_INT j = i; j > 0; j--)
- {
- if (what[j - 1].image > what[j].image)
- {
- tmp_index = what[j].index;
- tmp_image = what[j].image;
- what[j].index = what[j - 1].index;
- what[j].image = what[j - 1].image;
- what[j - 1].index = tmp_index;
- what[j - 1].image = tmp_image;
- }
- }
- }
- // got into fundamental simplex
- // move coordinate system origin to its center
- // i=0 < numEntries avoids varying int division by 0
- for (CGV_INT i = 0; i < numEntries; i++)
- {
- what[i].image = what[i].image - (CGV_FLOAT)(((2.0f * i + 1) - numEntries) / (2.0f * numEntries));
- }
- image_mm = 0.0F;
- image_l = 0.0F;
- CGV_INT j = -1;
- for (CGV_INT i = 0; i < numEntries; i++)
- {
- image_l += what[i].image;
- if (image_l < image_mm)
- {
- image_mm = image_l;
- j = i;
- }
- }
- j = j + 1;
- // avoid j = j%numEntries us this
- while (j > numEntries)
- j = j - numEntries;
- for (CGV_INT i = j; i < numEntries; i++)
- {
- CGV_UINT8 idx = what[i].index;
- CGV_UINT8 pidx = projected_index_out[idx] + 1; //gather_index(projected_index_out,idx)+1;
- projected_index_out[idx] = pidx; // scatter_index(projected_index_out,idx,pidx);
- }
- }
- // get minimum index
- CGV_UINT8 index_min = projected_index_out[0];
- for (CGV_INT i = 1; i < numEntries; i++)
- {
- if (projected_index_out[i] < index_min)
- index_min = projected_index_out[i];
- }
- // reposition all index by min index (using min index as 0)
- for (CGV_INT i = 0; i < numEntries; i++)
- {
- projected_index_out[i] = clampIndex(projected_index_out[i] - index_min, 0, 15);
- }
- }
- CGV_FLOAT GetQuantizeIndex(CGV_UINT32 index_packed_out[2],
- CGV_UINT8 index_out[MAX_SUBSET_SIZE], // OUT:
- CGV_FLOAT image_src[SOURCE_BLOCK_SIZE * MAX_CHANNELS],
- CGV_INT numEntries, //IN: range 0..15 (MAX_SUBSET_SIZE)
- CGU_INT numClusters,
- CGU_UINT8 channels3or4)
- { // IN: 3 = RGB or 4 = RGBA (4 = MAX_CHANNELS)
- CGV_FLOAT image_centered[SOURCE_BLOCK_SIZE * MAX_CHANNELS];
- CGV_FLOAT image_mean[MAX_CHANNELS];
- CGV_FLOAT eigen_vector[MAX_CHANNELS];
- CGV_FLOAT covariance_vector[MAX_CHANNELS * MAX_CHANNELS];
- GetImageCentered(image_centered, image_mean, image_src, numEntries, channels3or4);
- GetCovarianceVector(covariance_vector, image_centered, numEntries, channels3or4);
- //-----------------------------------------------------
- // check if all covariances are the same
- // if so then set all index to same value 0 and return
- // use EPSILON to set the limit for all same limit
- //-----------------------------------------------------
- CGV_FLOAT image_covt = 0.0F;
- for (CGU_UINT8 ch = 0; ch < channels3or4; ch++)
- image_covt = image_covt + covariance_vector[ch + ch * 4];
- if (image_covt < EPSILON)
- {
- SetDefaultIndex(index_out);
- index_packed_out[0] = 0;
- index_packed_out[1] = 0;
- return 0.;
- }
- GetEigenVector(eigen_vector, covariance_vector, channels3or4);
- CGV_FLOAT image_projected[SOURCE_BLOCK_SIZE];
- GetProjecedImage(image_projected, image_centered, numEntries, eigen_vector, channels3or4);
- GetProjectedIndex(index_out, image_projected, numClusters, numEntries);
- //==========================================
- // Refine
- //==========================================
- CGV_FLOAT image_q = 0.0F;
- for (CGU_UINT8 ch = 0; ch < channels3or4; ch++)
- {
- eigen_vector[ch] = 0;
- for (CGV_INT k = 0; k < numEntries; k++)
- eigen_vector[ch] = eigen_vector[ch] + image_centered[k + (ch * SOURCE_BLOCK_SIZE)] * index_out[k];
- image_q = image_q + eigen_vector[ch] * eigen_vector[ch];
- }
- image_q = sqrt(image_q);
- // direction needs to be normalized
- if (image_q != 0.0F)
- for (CGU_UINT8 ch = 0; ch < channels3or4; ch++)
- eigen_vector[ch] = eigen_vector[ch] / image_q;
- // Get new projected data
- GetProjecedImage(image_projected, image_centered, numEntries, eigen_vector, channels3or4);
- GetProjectedIndex(index_out, image_projected, numClusters, numEntries);
- // pack the index for use in icmp
- pack_index(index_packed_out, index_out);
- //===========================
- // Calc Error
- //===========================
- // Get the new image based on new index
- CGV_FLOAT image_t = 0.0F;
- CGV_FLOAT index_average = 0.0F;
- for (CGV_INT ik = 0; ik < numEntries; ik++)
- {
- index_average = index_average + index_out[ik];
- image_t = image_t + index_out[ik] * index_out[ik];
- }
- index_average = index_average / (CGV_FLOAT)numEntries;
- image_t = image_t - index_average * index_average * (CGV_FLOAT)numEntries;
- if (image_t != 0.0F)
- image_t = 1.0F / image_t;
- for (CGU_UINT8 ch = 0; ch < channels3or4; ch++)
- {
- eigen_vector[ch] = 0;
- for (CGV_INT nk = 0; nk < numEntries; nk++)
- eigen_vector[ch] = eigen_vector[ch] + image_centered[nk + (ch * SOURCE_BLOCK_SIZE)] * index_out[nk];
- }
- CGV_FLOAT image_decomp[SOURCE_BLOCK_SIZE * MAX_CHANNELS];
- for (CGV_INT i = 0; i < numEntries; i++)
- for (CGU_UINT8 ch = 0; ch < channels3or4; ch++)
- image_decomp[i + (ch * SOURCE_BLOCK_SIZE)] = image_mean[ch] + eigen_vector[ch] * image_t * (index_out[i] - index_average);
- CGV_FLOAT err_1 = err_Total(image_src, image_decomp, numEntries, channels3or4);
- return err_1;
- // return 0.0F;
- }
- CGV_FLOAT quant_solid_color(CGV_UINT8 index_out[MAX_SUBSET_SIZE],
- CGV_INT epo_code_out[2 * MAX_CHANNELS],
- CGV_FLOAT image_src[SOURCE_BLOCK_SIZE * MAX_CHANNELS],
- CGV_INT numEntries,
- CGU_UINT8 Mi_, // last cluster
- CGU_UINT8 bits[3], // including parity
- CGU_INT type,
- CGU_UINT8 channels3or4 // IN: 3 = RGB or 4 = RGBA (4 = MAX_CHANNELS)
- )
- {
- CGU_INT clogBC7 = 0;
- CGU_INT iv = Mi_ + 1;
- while (iv >>= 1)
- clogBC7++;
- // init epo_0
- CGV_INT epo_0[2 * MAX_CHANNELS];
- SetDefaultEPOCode(epo_0, 0xFF, 0, 0, 0);
- CGV_UINT8 image_log = 0;
- CGV_UINT8 image_idx = 0;
- CGU_BOOL use_par = FALSE;
- if (type != 0)
- use_par = TRUE;
- CGV_FLOAT error_1 = CMP_FLOAT_MAX;
- for (CGU_INT pn = 0; pn < npv_nd[channels3or4 - 3][type] && (error_1 != 0.0F); pn++)
- {
- //1
- CGU_INT o1[2 * MAX_CHANNELS]; // = { 0,2 };
- CGU_INT o2[2 * MAX_CHANNELS]; // = { 0,2 };
- for (CGU_UINT8 ch = 0; ch < channels3or4; ch++)
- {
- //A
- o2[ch] = o1[ch] = 0;
- o2[4 + ch] = o1[4 + ch] = 2;
- if (use_par == TRUE)
- {
- if (par_vectors_nd[channels3or4 - 3][type][pn][0][ch])
- o1[ch] = 1;
- else
- o1[4 + ch] = 1;
- if (par_vectors_nd[channels3or4 - 3][type][pn][1][ch])
- o2[ch] = 1;
- else
- o2[4 + ch] = 1;
- }
- } //A
- CGV_INT image_tcr[MAX_CHANNELS];
- CGV_INT epo_dr_0[MAX_CHANNELS];
- CGV_FLOAT error_tr;
- CGV_FLOAT error_0 = CMP_FLOAT_MAX;
- for (CGV_UINT8 iclogBC7 = 0; iclogBC7 < (1 << clogBC7) && (error_0 != 0); iclogBC7++)
- {
- //E
- CGV_FLOAT error_t = 0;
- CGV_INT t1o[MAX_CHANNELS], t2o[MAX_CHANNELS];
- for (CGU_UINT8 ch1 = 0; ch1 < channels3or4; ch1++)
- {
- // D
- CGV_FLOAT error_ta = CMP_FLOAT_MAX;
- for (CGU_INT t1 = o1[ch1]; t1 < o1[4 + ch1]; t1++)
- {
- // C
- // This is needed for non-integer mean points of "collapsed" sets
- for (CGU_INT t2 = o2[ch1]; t2 < o2[4 + ch1]; t2++)
- {
- // B
- CGV_INT image_tf;
- CGV_INT image_tc;
- image_tf = (CGV_INT)floor(image_src[COMP_RED + (ch1 * SOURCE_BLOCK_SIZE)]);
- image_tc = (CGV_INT)ceil(image_src[COMP_RED + (ch1 * SOURCE_BLOCK_SIZE)]);
- #ifdef USE_BC7_SP_ERR_IDX
- CGV_FLOAT err_tf = get_sperr(clogBC7, bits[ch1], image_tf, t1, t2, iclogBC7);
- CGV_FLOAT err_tc = get_sperr(clogBC7, bits[ch1], image_tc, t1, t2, iclogBC7);
- if (err_tf > err_tc)
- image_tcr[ch1] = image_tc;
- else if (err_tf < err_tc)
- image_tcr[ch1] = image_tf;
- else
- image_tcr[ch1] = (CGV_INT)floor(image_src[COMP_RED + (ch1 * SOURCE_BLOCK_SIZE)] + 0.5F);
- //image_tcr[ch1] = image_tf + (image_tc - image_tf)/2;
- //===============================
- // Refine this for better quality!
- //===============================
- error_tr = get_sperr(clogBC7, bits[ch1], image_tcr[ch1], t1, t2, iclogBC7);
- error_tr = (error_tr * error_tr) + 2 * error_tr * img_absf(image_tcr[ch1] - image_src[COMP_RED + (ch1 * SOURCE_BLOCK_SIZE)]) +
- (image_tcr[ch1] - image_src[COMP_RED + (ch1 * SOURCE_BLOCK_SIZE)]) *
- (image_tcr[ch1] - image_src[COMP_RED + (ch1 * SOURCE_BLOCK_SIZE)]);
- if (error_tr < error_ta)
- {
- error_ta = error_tr;
- t1o[ch1] = t1;
- t2o[ch1] = t2;
- epo_dr_0[ch1] = clampEPO(image_tcr[ch1], 0, 255);
- }
- #else
- image_tcr[ch1] = floor(image_src[COMP_RED + (ch1 * SOURCE_BLOCK_SIZE)] + 0.5F);
- error_ta = 0;
- t1o[ch1] = t1;
- t2o[ch1] = t2;
- epo_dr_0[ch1] = clampEPO(image_tcr[ch1], 0, 255);
- #endif
- } // B
- } //C
- error_t += error_ta;
- } // D
- if (error_t < error_0)
- {
- // We have a solid color: Use image src if on GPU
- image_log = iclogBC7;
- image_idx = image_log;
- #ifdef ASPM_GPU // This needs improving
- CGV_FLOAT MinC[4] = {255, 255, 255, 255};
- CGV_FLOAT MaxC[4] = {0, 0, 0, 0};
- // get min max colors
- for (CGU_UINT8 ch = 0; ch < channels3or4; ch++)
- for (CGV_INT k = 0; k < numEntries; k++)
- {
- if (image_src[k + ch * SOURCE_BLOCK_SIZE] < MinC[ch])
- MinC[ch] = image_src[k + ch * SOURCE_BLOCK_SIZE];
- if (image_src[k + ch * SOURCE_BLOCK_SIZE] > MaxC[ch])
- MaxC[ch] = image_src[k + ch * SOURCE_BLOCK_SIZE];
- }
- for (CGU_UINT8 ch = 0; ch < channels3or4; ch++)
- {
- epo_0[ch] = MinC[ch];
- epo_0[4 + ch] = MaxC[ch];
- }
- #else // This is good on CPU
- for (CGU_UINT8 ch = 0; ch < channels3or4; ch++)
- {
- #ifdef USE_BC7_SP_ERR_IDX
- if (BC7EncodeRamps.ramp_init)
- {
- CGV_INT index = (CLT(clogBC7) * 4 * 256 * 2 * 2 * 16 * 2) + (BTT(bits[ch]) * 256 * 2 * 2 * 16 * 2) + (epo_dr_0[ch] * 2 * 2 * 16 * 2) +
- (t1o[ch] * 2 * 16 * 2) + (t2o[ch] * 16 * 2) + (iclogBC7 * 2);
- epo_0[ch] = BC7EncodeRamps.sp_idx[index + 0] & 0xFF; // gather_epocode(u_BC7Encode->sp_idx,index+0)&0xFF;
- epo_0[4 + ch] = BC7EncodeRamps.sp_idx[index + 1] & 0xFF; // gather_epocode(u_BC7Encode->sp_idx,index+1)&0xFF;
- }
- else
- {
- epo_0[ch] = 0;
- epo_0[4 + ch] = 0;
- }
- #else
- epo_0[ch] = 0;
- epo_0[4 + ch] = 0;
- #endif
- }
- #endif
- error_0 = error_t;
- }
- //if (error_0 == 0)
- // break;
- } // E
- if (error_0 < error_1)
- {
- image_idx = image_log;
- for (CGU_UINT8 chE = 0; chE < channels3or4; chE++)
- {
- epo_code_out[chE] = epo_0[chE];
- epo_code_out[4 + chE] = epo_0[4 + chE];
- }
- error_1 = error_0;
- }
- } //1
- // Get Image error
- CGV_FLOAT image_decomp[SOURCE_BLOCK_SIZE * MAX_CHANNELS];
- for (CGV_INT i = 0; i < numEntries; i++)
- {
- index_out[i] = image_idx;
- for (CGU_UINT8 ch = 0; ch < channels3or4; ch++)
- {
- image_decomp[i + (ch * SOURCE_BLOCK_SIZE)] = GetRamp(clogBC7, bits[ch], epo_code_out[ch], epo_code_out[4 + ch], image_idx);
- }
- }
- // Do we need to do this rather then err_1 * numEntries
- CGV_FLOAT error_quant;
- error_quant = err_Total(image_src, image_decomp, numEntries, channels3or4);
- return error_quant;
- //return err_1 * numEntries;
- }
- CGV_FLOAT requantized_image_err(CGV_UINT8 index_out[MAX_SUBSET_SIZE],
- CGV_INT epo_code[2 * MAX_CHANNELS],
- CGU_INT clogBC7,
- CGU_UINT8 max_bits[MAX_CHANNELS],
- CGV_FLOAT image_src[SOURCE_BLOCK_SIZE * MAX_CHANNELS],
- CGV_INT numEntries, // max 16
- CGU_UINT8 channels3or4)
- { // IN: 3 = RGB or 4 = RGBA (4 = MAX_CHANNELS)
- //=========================================
- // requantized image based on new epo_code
- //=========================================
- CGV_FLOAT image_requantize[SOURCE_BLOCK_SIZE][MAX_CHANNELS];
- CGV_FLOAT err_r = 0.0F;
- for (CGU_UINT8 ch = 0; ch < channels3or4; ch++)
- {
- for (CGU_INT k = 0; k < SOURCE_BLOCK_SIZE; k++)
- {
- image_requantize[k][ch] = GetRamp(clogBC7, max_bits[ch], epo_code[ch], epo_code[4 + ch], (CGV_UINT8)k);
- }
- }
- //=========================================
- // Calc the error for the requantized image
- //=========================================
- for (CGV_INT k = 0; k < numEntries; k++)
- {
- CGV_FLOAT err_cmin = CMP_FLOAT_MAX;
- CGV_INT hold_index_j = 0;
- for (CGV_INT iclogBC7 = 0; iclogBC7 < (1 << clogBC7); iclogBC7++)
- {
- CGV_FLOAT image_err = 0.0F;
- for (CGU_UINT8 ch = 0; ch < channels3or4; ch++)
- {
- image_err += sq_image(image_requantize[iclogBC7][ch] - image_src[k + (ch * SOURCE_BLOCK_SIZE)]);
- }
- if (image_err < err_cmin)
- {
- err_cmin = image_err;
- hold_index_j = iclogBC7;
- }
- }
- index_out[k] = (CGV_UINT8)hold_index_j;
- err_r += err_cmin;
- }
- return err_r;
- }
- CGU_BOOL get_ideal_cluster(CGV_FLOAT image_out[2 * MAX_CHANNELS],
- CGV_UINT8 index_in[MAX_SUBSET_SIZE],
- CGU_INT Mi_,
- CGV_FLOAT image_src[SOURCE_BLOCK_SIZE * MAX_CHANNELS],
- CGV_INT numEntries,
- CGU_UINT8 channels3or4)
- {
- // get ideal cluster centers
- CGV_FLOAT image_cluster_mean[SOURCE_BLOCK_SIZE][MAX_CHANNELS];
- GetClusterMean(image_cluster_mean, image_src, index_in, numEntries, channels3or4); // unrounded
- CGV_FLOAT image_matrix0[2] = {0, 0}; // matrix /inverse matrix
- CGV_FLOAT image_matrix1[2] = {0, 0}; // matrix /inverse matrix
- CGV_FLOAT image_rp[2 * MAX_CHANNELS]; // right part for RMS fit problem
- for (CGU_INT i = 0; i < 2 * MAX_CHANNELS; i++)
- image_rp[i] = 0;
- // weight with cnt if runnning on compacted index
- for (CGV_INT k = 0; k < numEntries; k++)
- {
- image_matrix0[0] += (Mi_ - index_in[k]) * (Mi_ - index_in[k]);
- image_matrix0[1] += index_in[k] * (Mi_ - index_in[k]); // im is symmetric
- image_matrix1[1] += index_in[k] * index_in[k];
- for (CGU_UINT8 ch = 0; ch < channels3or4; ch++)
- {
- image_rp[ch] += (Mi_ - index_in[k]) * image_cluster_mean[index_in[k]][ch];
- image_rp[4 + ch] += index_in[k] * image_cluster_mean[index_in[k]][ch];
- }
- }
- CGV_FLOAT matrix_dd = image_matrix0[0] * image_matrix1[1] - image_matrix0[1] * image_matrix0[1];
- // assert(matrix_dd !=0);
- // matrix_dd=0 means that index_cidx[k] and (Mi_-index_cidx[k]) collinear which implies only one active index;
- // taken care of separately
- if (matrix_dd == 0)
- {
- for (CGU_UINT8 ch = 0; ch < channels3or4; ch++)
- {
- image_out[ch] = 0;
- image_out[4 + ch] = 0;
- }
- return FALSE;
- }
- image_matrix1[0] = image_matrix0[0];
- image_matrix0[0] = image_matrix1[1] / matrix_dd;
- image_matrix1[1] = image_matrix1[0] / matrix_dd;
- image_matrix1[0] = image_matrix0[1] = -image_matrix0[1] / matrix_dd;
- CGV_FLOAT Mif = (CGV_FLOAT)Mi_;
- for (CGU_UINT8 ch = 0; ch < channels3or4; ch++)
- {
- image_out[ch] = (image_matrix0[0] * image_rp[ch] + image_matrix0[1] * image_rp[4 + ch]) * Mif;
- image_out[4 + ch] = (image_matrix1[0] * image_rp[ch] + image_matrix1[1] * image_rp[4 + ch]) * Mif;
- }
- return TRUE;
- }
- CGV_FLOAT shake(CGV_INT epo_code_shaker_out[2 * MAX_CHANNELS],
- CGV_FLOAT image_ep[2 * MAX_CHANNELS],
- CGV_UINT8 index_cidx[MAX_SUBSET_SIZE],
- CGV_FLOAT image_src[SOURCE_BLOCK_SIZE * MAX_CHANNELS],
- CGU_INT clogBC7,
- CGU_INT type,
- CGU_UINT8 max_bits[MAX_CHANNELS],
- CGU_UINT8 use_par,
- CGV_INT numEntries, // max 16
- CGU_UINT8 channels3or4)
- {
- #define SHAKESIZE1 1
- #define SHAKESIZE2 2
- // shake single or - cartesian
- // shake odd/odd and even/even or - same parity
- // shake odd/odd odd/even , even/odd and even/even - bcc
- CGV_FLOAT best_err = CMP_FLOAT_MAX;
- CGV_FLOAT err_ed[16] = {0};
- CGV_INT epo_code_par[2][2][2][MAX_CHANNELS];
- for (CGU_UINT8 ch = 0; ch < channels3or4; ch++)
- {
- CGU_UINT8 ppA = 0;
- CGU_UINT8 ppB = 0;
- CGU_UINT8 rr = (use_par ? 2 : 1);
- CGV_INT epo_code_epi[2][2]; // first/second, coord, begin rage end range
- for (ppA = 0; ppA < rr; ppA++)
- { // loop max =2
- for (ppB = 0; ppB < rr; ppB++)
- { //loop max =2
- // set default ranges
- epo_code_epi[0][0] = epo_code_epi[0][1] = ep_find_floor(image_ep[ch], max_bits[ch], use_par, ppA);
- epo_code_epi[1][0] = epo_code_epi[1][1] = ep_find_floor(image_ep[4 + ch], max_bits[ch], use_par, ppB);
- // set begin range
- epo_code_epi[0][0] -= ((epo_code_epi[0][0] < SHAKESIZE1 ? epo_code_epi[0][0] : SHAKESIZE1)) & (~use_par);
- epo_code_epi[1][0] -= ((epo_code_epi[1][0] < SHAKESIZE1 ? epo_code_epi[1][0] : SHAKESIZE1)) & (~use_par);
- // set end range
- epo_code_epi[0][1] +=
- ((1 << max_bits[ch]) - 1 - epo_code_epi[0][1] < SHAKESIZE2 ? (1 << max_bits[ch]) - 1 - epo_code_epi[0][1] : SHAKESIZE2) & (~use_par);
- epo_code_epi[1][1] +=
- ((1 << max_bits[ch]) - 1 - epo_code_epi[1][1] < SHAKESIZE2 ? (1 << max_bits[ch]) - 1 - epo_code_epi[1][1] : SHAKESIZE2) & (~use_par);
- CGV_INT step = (1 << use_par);
- err_ed[(ppA * 8) + (ppB * 4) + ch] = CMP_FLOAT_MAX;
- for (CGV_INT epo_p1 = epo_code_epi[0][0]; epo_p1 <= epo_code_epi[0][1]; epo_p1 += step)
- {
- for (CGV_INT epo_p2 = epo_code_epi[1][0]; epo_p2 <= epo_code_epi[1][1]; epo_p2 += step)
- {
- CGV_FLOAT image_square_diff = 0.0F;
- CGV_INT _mc = numEntries;
- CGV_FLOAT image_ramp;
- while (_mc > 0)
- {
- image_ramp = GetRamp(clogBC7, max_bits[ch], epo_p1, epo_p2, index_cidx[_mc - 1]);
- image_square_diff += sq_image(image_ramp - image_src[(_mc - 1) + (ch * SOURCE_BLOCK_SIZE)]);
- _mc--;
- }
- if (image_square_diff < err_ed[(ppA * 8) + (ppB * 4) + ch])
- {
- err_ed[(ppA * 8) + (ppB * 4) + ch] = image_square_diff;
- epo_code_par[ppA][ppB][0][ch] = epo_p1;
- epo_code_par[ppA][ppB][1][ch] = epo_p2;
- }
- }
- }
- } // pp1
- } // pp0
- } // j
- //---------------------------------------------------------
- for (CGU_INT pn = 0; pn < npv_nd[channels3or4 - 3][type]; pn++)
- {
- CGV_FLOAT err_2 = 0.0F;
- CGU_INT d1;
- CGU_INT d2;
- for (CGU_UINT8 ch = 0; ch < channels3or4; ch++)
- {
- d1 = par_vectors_nd[channels3or4 - 3][type][pn][0][ch];
- d2 = par_vectors_nd[channels3or4 - 3][type][pn][1][ch];
- err_2 += err_ed[(d1 * 8) + (d2 * 4) + ch];
- }
- if (err_2 < best_err)
- {
- best_err = err_2;
- for (CGU_UINT8 ch = 0; ch < channels3or4; ch++)
- {
- d1 = par_vectors_nd[channels3or4 - 3][type][pn][0][ch];
- d2 = par_vectors_nd[channels3or4 - 3][type][pn][1][ch];
- epo_code_shaker_out[ch] = epo_code_par[d1][d2][0][ch];
- epo_code_shaker_out[4 + ch] = epo_code_par[d1][d2][1][ch];
- }
- }
- }
- return best_err;
- }
- CGV_FLOAT optimize_IndexAndEndPoints(CGV_UINT8 index_io[MAX_SUBSET_SIZE],
- CGV_INT epo_code_out[8],
- CGV_FLOAT image_src[SOURCE_BLOCK_SIZE * MAX_CHANNELS],
- CGV_INT numEntries, // max 16
- CGU_UINT8 Mi_, // last cluster , This should be no larger than 16
- CGU_UINT8 bits, // total for all components
- CGU_UINT8 channels3or4, // IN: 3 = RGB or 4 = RGBA (4 = MAX_CHANNELS)
- uniform CMP_GLOBAL BC7_Encode u_BC7Encode[])
- {
- CGV_FLOAT err_best = CMP_FLOAT_MAX;
- CGU_INT type;
- CGU_UINT8 channels2 = 2 * channels3or4;
- type = bits % channels2;
- CGU_UINT8 use_par = (type != 0);
- CGU_UINT8 max_bits[MAX_CHANNELS];
- for (CGU_UINT8 ch = 0; ch < channels3or4; ch++)
- max_bits[ch] = (bits + channels2 - 1) / channels2;
- CGU_INT iv;
- CGU_INT clogBC7 = 0;
- iv = Mi_;
- while (iv >>= 1)
- clogBC7++;
- CGU_INT clt_clogBC7 = CLT(clogBC7);
- if (clt_clogBC7 > 3)
- {
- ASPM_PRINT(("Err: optimize_IndexAndEndPoints, clt_clogBC7\n"));
- return CMP_FLOAT_MAX;
- }
- Mi_ = Mi_ - 1;
- CGV_UINT8 MaxIndex;
- CGV_UINT8 index_tmp[MAX_SUBSET_SIZE];
- CGU_INT maxTry = 5;
- CGV_UINT8 index_best[MAX_SUBSET_SIZE];
- for (CGV_INT k = 0; k < numEntries; k++)
- {
- index_best[k] = index_tmp[k] = clampIndex(index_io[k], 0, 15);
- }
- CGV_INT epo_code_best[2 * MAX_CHANNELS];
- SetDefaultEPOCode(epo_code_out, 0xFF, 0, 0, 0);
- SetDefaultEPOCode(epo_code_best, 0, 0, 0, 0);
- CGV_FLOAT err_requant = 0.0F;
- MaxIndex = index_collapse(index_tmp, numEntries);
- //===============================
- // we have a solid color 4x4 block
- //===============================
- if (MaxIndex == 0)
- {
- return quant_solid_color(index_io, epo_code_out, image_src, numEntries, Mi_, max_bits, type, channels3or4);
- }
- do
- {
- //===============================
- // We have ramp colors to process
- //===============================
- CGV_FLOAT err_cluster = CMP_FLOAT_MAX;
- CGV_FLOAT err_shake;
- CGV_UINT8 index_cluster[MAX_PARTITION_ENTRIES];
- for (CGV_UINT8 index_slope = 1; (MaxIndex != 0) && (index_slope * MaxIndex <= Mi_); index_slope++)
- {
- for (CGV_UINT8 index_offset = 0; index_offset <= Mi_ - index_slope * MaxIndex; index_offset++)
- {
- //-------------------------------------
- // set a new index data to try
- //-------------------------------------
- for (CGV_INT k = 0; k < numEntries; k++)
- index_cluster[k] = index_tmp[k] * index_slope + index_offset;
- CGV_FLOAT image_cluster[2 * MAX_CHANNELS];
- CGV_INT epo_code_shake[2 * MAX_CHANNELS];
- SetDefaultEPOCode(epo_code_shake, 0, 0, 0xFF, 0);
- if (get_ideal_cluster(image_cluster, index_cluster, Mi_, image_src, numEntries, channels3or4) == FALSE)
- {
- break;
- }
- err_shake = shake(epo_code_shake, // return new epo
- image_cluster,
- index_cluster,
- image_src,
- clogBC7,
- type,
- max_bits,
- use_par,
- numEntries, // max 16
- channels3or4);
- if (err_shake < err_cluster)
- {
- err_cluster = err_shake;
- for (CGU_UINT8 ch = 0; ch < channels3or4; ch++)
- {
- epo_code_best[ch] = clampEPO(epo_code_shake[ch], 0, 255);
- epo_code_best[4 + ch] = clampEPO(epo_code_shake[4 + ch], 0, 255);
- }
- }
- }
- }
- CGV_INT change = 0;
- CGV_INT better = 0;
- if ((err_cluster != CMP_FLOAT_MAX))
- {
- //=========================
- // test results for quality
- //=========================
- err_requant = requantized_image_err(index_best, // new index results
- epo_code_best, // prior result input
- clogBC7,
- max_bits,
- image_src,
- numEntries,
- channels3or4);
- // change/better
- // Has the index values changed from that last set
- for (CGV_INT k = 0; k < numEntries; k++)
- change = change || (index_cluster[k] != index_best[k]);
- if (err_requant < err_best)
- {
- better = 1;
- for (CGV_INT k = 0; k < numEntries; k++)
- {
- index_io[k] = index_tmp[k] = index_best[k];
- }
- for (CGU_UINT8 ch = 0; ch < channels3or4; ch++)
- {
- epo_code_out[ch] = epo_code_best[0 * 4 + ch];
- epo_code_out[4 + ch] = epo_code_best[1 * 4 + ch];
- }
- err_best = err_requant;
- }
- }
- // Early out if we have our target err
- if (err_best <= u_BC7Encode->errorThreshold)
- {
- break;
- }
- CGV_INT done;
- done = !(change && better);
- if ((maxTry > 0) && (!done))
- {
- maxTry--;
- MaxIndex = index_collapse(index_tmp, numEntries);
- }
- else
- {
- maxTry = 0;
- }
- } while (maxTry);
- if (err_best == CMP_FLOAT_MAX)
- {
- ASPM_PRINT(("Err: requantized_image_err\n"));
- }
- return err_best;
- }
- CGU_UINT8 get_partitionsToTry(uniform CMP_GLOBAL BC7_Encode u_BC7Encode[], CGU_UINT8 maxPartitions)
- {
- CGU_FLOAT u_minPartitionSearchSize = 0.30f;
- if (u_BC7Encode->quality <= BC7_qFAST_THRESHOLD)
- { // Using this to match performance and quality of CPU code
- u_minPartitionSearchSize = u_minPartitionSearchSize + (u_BC7Encode->quality * BC7_qFAST_THRESHOLD);
- }
- else
- {
- u_minPartitionSearchSize = u_BC7Encode->quality;
- }
- return (CGU_UINT8)(maxPartitions * u_minPartitionSearchSize);
- }
- INLINE void cmp_encode_swap(CGV_INT endpoint[], CGU_INT channels, CGV_UINT8 block_index[MAX_SUBSET_SIZE], CGU_INT bits)
- {
- CGU_INT levels = 1 << bits;
- if (block_index[0] >= levels / 2)
- {
- cmp_swap_epo(&endpoint[0], &endpoint[channels], channels);
- for (CGU_INT k = 0; k < SOURCE_BLOCK_SIZE; k++)
- #ifdef ASPM_GPU
- block_index[k] = (levels - 1) - block_index[k];
- #else
- block_index[k] = CGV_UINT8(levels - 1) - block_index[k];
- #endif
- }
- }
- void cmp_encode_index(CGV_UINT8 data[16], CGU_INT* uniform pPos, CGV_UINT8 block_index[MAX_SUBSET_SIZE], CGU_INT bits)
- {
- cmp_Write8Bit(data, pPos, bits - 1, block_index[0]);
- for (CGU_INT j = 1; j < SOURCE_BLOCK_SIZE; j++)
- {
- CGV_UINT8 qbits = block_index[j] & 0xFF;
- cmp_Write8Bit(data, pPos, bits, qbits);
- }
- }
- void encode_endpoint(CGV_UINT8 data[16], CGU_INT* uniform pPos, CGV_UINT8 block_index[16], CGU_INT bits, CGV_UINT32 flips)
- {
- CGU_INT levels = 1 << bits;
- CGV_INT flips_shifted = flips;
- for (CGU_INT k1 = 0; k1 < 16; k1++)
- {
- CGV_UINT8 qbits_shifted = block_index[k1];
- for (CGU_INT k2 = 0; k2 < 8; k2++)
- {
- CGV_INT q = qbits_shifted & 15;
- if ((flips_shifted & 1) > 0)
- q = (levels - 1) - q;
- if (k1 == 0 && k2 == 0)
- cmp_Write8Bit(data, pPos, bits - 1, CMP_STATIC_CAST(CGV_UINT8, q));
- else
- cmp_Write8Bit(data, pPos, bits, CMP_STATIC_CAST(CGV_UINT8, q));
- qbits_shifted >>= 4;
- flips_shifted >>= 1;
- }
- }
- }
- INLINE CGV_UINT32 pow32(CGV_UINT32 x)
- {
- return 1 << x;
- }
- void Encode_mode01237(CGU_INT blockMode,
- CGV_UINT8 bestPartition,
- CGV_UINT32 packedEndpoints[6],
- CGV_UINT8 index16[16],
- CGV_UINT8 cmp_out[COMPRESSED_BLOCK_SIZE])
- {
- CGU_INT partitionBits;
- CGU_UINT32 componentBits;
- CGU_UINT8 maxSubsets;
- CGU_INT channels;
- CGU_UINT8 indexBits;
- switch (blockMode)
- {
- case 0:
- componentBits = 4;
- maxSubsets = 3;
- partitionBits = 4;
- channels = 3;
- indexBits = 3;
- break;
- case 2:
- componentBits = 5;
- maxSubsets = 3;
- partitionBits = 6;
- channels = 3;
- indexBits = 2;
- break;
- case 3:
- componentBits = 7;
- maxSubsets = 2;
- partitionBits = 6;
- channels = 3;
- indexBits = 2;
- break;
- case 7:
- componentBits = 5;
- maxSubsets = 2;
- partitionBits = 6;
- channels = 4;
- indexBits = 2;
- break;
- default:
- case 1:
- componentBits = 6;
- maxSubsets = 2;
- partitionBits = 6;
- channels = 3;
- indexBits = 3;
- break;
- }
- CGV_UINT8 blockindex[SOURCE_BLOCK_SIZE];
- CGV_INT indexBitsV = indexBits;
- for (CGU_INT k = 0; k < COMPRESSED_BLOCK_SIZE; k++)
- cmp_out[k] = 0;
- // mode 0 = 1, mode 1 = 01, mode 2 = 001, mode 3 = 0001, ...
- CGU_INT bitPosition = blockMode;
- cmp_Write8Bit(cmp_out, &bitPosition, 1, 1);
- // Write partition bits
- cmp_Write8Bit(cmp_out, &bitPosition, partitionBits, bestPartition);
- // Sort out the index set and tag whether we need to flip the
- // endpoints to get the correct state in the implicit index bits
- // The implicitly encoded MSB of the fixup index must be 0
- CGV_INT fixup[3];
- get_fixuptable(fixup, (maxSubsets == 2 ? bestPartition : bestPartition + 64));
- // Extract indices and mark subsets that need to have their colours flipped to get the
- // right state for the implicit MSB of the fixup index
- CGV_INT flipColours[3] = {0, 0, 0};
- for (CGV_INT k = 0; k < SOURCE_BLOCK_SIZE; k++)
- {
- blockindex[k] = index16[k];
- for (CGU_UINT8 j = 0; j < maxSubsets; j++)
- {
- if (k == fixup[j])
- {
- if (blockindex[k] & (1 << (indexBitsV - 1)))
- {
- flipColours[j] = 1;
- }
- }
- }
- }
- // Now we must flip the endpoints where necessary so that the implicitly encoded
- // index bits have the correct state
- for (CGU_INT subset = 0; subset < maxSubsets; subset++)
- {
- if (flipColours[subset] == 1)
- {
- CGV_UINT32 temp = packedEndpoints[subset * 2 + 0];
- packedEndpoints[subset * 2 + 0] = packedEndpoints[subset * 2 + 1];
- packedEndpoints[subset * 2 + 1] = temp;
- }
- }
- // ...next flip the indices where necessary
- for (CGV_INT k = 0; k < SOURCE_BLOCK_SIZE; k++)
- {
- CGV_UINT8 partsub = get_partition_subset(bestPartition, maxSubsets, k);
- if (flipColours[partsub] == 1)
- {
- blockindex[k] = ((1 << indexBitsV) - 1) - blockindex[k];
- }
- }
- // Endpoints are stored in the following order RRRR GGGG BBBB (AAAA) (PPPP)
- // i.e. components are packed together
- CGV_UINT32 unpackedColours[MAX_SUBSETS * 2 * MAX_CHANNELS];
- CGV_UINT8 parityBits[MAX_SUBSETS][2];
- // Unpack the colour values for the subsets
- for (CGU_INT subset = 0; subset < maxSubsets; subset++)
- {
- CGV_UINT32 packedColours[2] = {packedEndpoints[subset * 2 + 0], packedEndpoints[subset * 2 + 1]};
- if (blockMode == 0 || blockMode == 3 || blockMode == 7)
- { // TWO_PBIT
- parityBits[subset][0] = packedColours[0] & 1;
- parityBits[subset][1] = packedColours[1] & 1;
- packedColours[0] >>= 1;
- packedColours[1] >>= 1;
- }
- else if (blockMode == 1)
- { // ONE_PBIT
- parityBits[subset][0] = packedColours[1] & 1;
- parityBits[subset][1] = packedColours[1] & 1;
- packedColours[0] >>= 1;
- packedColours[1] >>= 1;
- }
- else if (blockMode == 2)
- {
- parityBits[subset][0] = 0;
- parityBits[subset][1] = 0;
- }
- for (CGU_INT ch = 0; ch < channels; ch++)
- {
- unpackedColours[(subset * 2 + 0) * MAX_CHANNELS + ch] = packedColours[0] & ((1 << componentBits) - 1);
- unpackedColours[(subset * 2 + 1) * MAX_CHANNELS + ch] = packedColours[1] & ((1 << componentBits) - 1);
- packedColours[0] >>= componentBits;
- packedColours[1] >>= componentBits;
- }
- }
- // Loop over component
- for (CGU_INT ch = 0; ch < channels; ch++)
- {
- // loop over subsets
- for (CGU_INT subset = 0; subset < maxSubsets; subset++)
- {
- cmp_Write8Bit(cmp_out, &bitPosition, componentBits, unpackedColours[(subset * 2 + 0) * MAX_CHANNELS + ch] & 0xFF);
- cmp_Write8Bit(cmp_out, &bitPosition, componentBits, unpackedColours[(subset * 2 + 1) * MAX_CHANNELS + ch] & 0xFF);
- }
- }
- // write parity bits
- if (blockMode != 2)
- {
- for (CGV_INT subset = 0; subset < maxSubsets; subset++)
- {
- if (blockMode == 1)
- { // ONE_PBIT
- cmp_Write8Bit(cmp_out, &bitPosition, 1, parityBits[subset][0] & 0x01);
- }
- else
- { // TWO_PBIT
- cmp_Write8Bit(cmp_out, &bitPosition, 1, parityBits[subset][0] & 0x01);
- cmp_Write8Bit(cmp_out, &bitPosition, 1, parityBits[subset][1] & 0x01);
- }
- }
- }
- // Encode the index bits
- CGV_INT bitPositionV = bitPosition;
- for (CGV_INT k = 0; k < SOURCE_BLOCK_SIZE; k++)
- {
- CGV_UINT8 partsub = get_partition_subset(bestPartition, maxSubsets, k);
- // If this is a fixup index then drop the MSB which is implicitly 0
- if (k == fixup[partsub])
- {
- cmp_Write8BitV(cmp_out, bitPositionV, indexBits - 1, blockindex[k] & 0x07F);
- bitPositionV += indexBits - 1;
- }
- else
- {
- cmp_Write8BitV(cmp_out, bitPositionV, indexBits, blockindex[k]);
- bitPositionV += indexBits;
- }
- }
- }
- void Encode_mode4(CGV_UINT8 cmp_out[COMPRESSED_BLOCK_SIZE], varying cmp_mode_parameters* uniform params)
- {
- CGU_INT bitPosition = 4; // Position the pointer at the LSB
- for (CGU_INT k = 0; k < COMPRESSED_BLOCK_SIZE; k++)
- cmp_out[k] = 0;
- // mode 4 (5 bits) 00001
- cmp_Write8Bit(cmp_out, &bitPosition, 1, 1);
- // rotation 2 bits
- cmp_Write8Bit(cmp_out, &bitPosition, 2, CMP_STATIC_CAST(CGV_UINT8, params->rotated_channel));
- // idxMode 1 bit
- cmp_Write8Bit(cmp_out, &bitPosition, 1, CMP_STATIC_CAST(CGV_UINT8, params->idxMode));
- CGU_INT idxBits[2] = {2, 3};
- if (params->idxMode)
- {
- idxBits[0] = 3;
- idxBits[1] = 2;
- // Indicate if we need to fixup the index
- cmp_swap_index(params->color_index, params->alpha_index, 16);
- cmp_encode_swap(params->alpha_qendpoint, 4, params->color_index, 2);
- cmp_encode_swap(params->color_qendpoint, 4, params->alpha_index, 3);
- }
- else
- {
- cmp_encode_swap(params->color_qendpoint, 4, params->color_index, 2);
- cmp_encode_swap(params->alpha_qendpoint, 4, params->alpha_index, 3);
- }
- // color endpoints 5 bits each
- // R0 : R1
- // G0 : G1
- // B0 : B1
- for (CGU_INT component = 0; component < 3; component++)
- {
- cmp_Write8Bit(cmp_out, &bitPosition, 5, CMP_STATIC_CAST(CGV_UINT8, params->color_qendpoint[component]));
- cmp_Write8Bit(cmp_out, &bitPosition, 5, CMP_STATIC_CAST(CGV_UINT8, params->color_qendpoint[4 + component]));
- }
- // alpha endpoints (6 bits each)
- // A0 : A1
- cmp_Write8Bit(cmp_out, &bitPosition, 6, CMP_STATIC_CAST(CGV_UINT8, params->alpha_qendpoint[0]));
- cmp_Write8Bit(cmp_out, &bitPosition, 6, CMP_STATIC_CAST(CGV_UINT8, params->alpha_qendpoint[4]));
- // index 2 bits each (31 bits total)
- cmp_encode_index(cmp_out, &bitPosition, params->color_index, 2);
- // index 3 bits each (47 bits total)
- cmp_encode_index(cmp_out, &bitPosition, params->alpha_index, 3);
- }
- void Encode_mode5(CGV_UINT8 cmp_out[COMPRESSED_BLOCK_SIZE], varying cmp_mode_parameters* uniform params)
- {
- for (CGU_INT k = 0; k < COMPRESSED_BLOCK_SIZE; k++)
- cmp_out[k] = 0;
- // mode 5 bits = 000001
- CGU_INT bitPosition = 5; // Position the pointer at the LSB
- cmp_Write8Bit(cmp_out, &bitPosition, 1, 1);
- // Write 2 bit rotation
- cmp_Write8Bit(cmp_out, &bitPosition, 2, CMP_STATIC_CAST(CGV_UINT8, params->rotated_channel));
- cmp_encode_swap(params->color_qendpoint, 4, params->color_index, 2);
- cmp_encode_swap(params->alpha_qendpoint, 4, params->alpha_index, 2);
- // color endpoints (7 bits each)
- // R0 : R1
- // G0 : G1
- // B0 : B1
- for (CGU_INT component = 0; component < 3; component++)
- {
- cmp_Write8Bit(cmp_out, &bitPosition, 7, CMP_STATIC_CAST(CGV_UINT8, params->color_qendpoint[component]));
- cmp_Write8Bit(cmp_out, &bitPosition, 7, CMP_STATIC_CAST(CGV_UINT8, params->color_qendpoint[4 + component]));
- }
- // alpha endpoints (8 bits each)
- // A0 : A1
- cmp_Write8Bit(cmp_out, &bitPosition, 8, CMP_STATIC_CAST(CGV_UINT8, params->alpha_qendpoint[0]));
- cmp_Write8Bit(cmp_out, &bitPosition, 8, CMP_STATIC_CAST(CGV_UINT8, params->alpha_qendpoint[4]));
- // color index 2 bits each (31 bits total)
- // alpha index 2 bits each (31 bits total)
- cmp_encode_index(cmp_out, &bitPosition, params->color_index, 2);
- cmp_encode_index(cmp_out, &bitPosition, params->alpha_index, 2);
- }
- void Encode_mode6(CGV_UINT8 index[MAX_SUBSET_SIZE], CGV_INT epo_code[8], CGV_UINT8 cmp_out[COMPRESSED_BLOCK_SIZE])
- {
- for (CGU_INT k = 0; k < COMPRESSED_BLOCK_SIZE; k++)
- cmp_out[k] = 0;
- cmp_encode_swap(epo_code, 4, index, 4);
- // Mode = 6 bits = 0000001
- CGU_INT bitPosition = 6; // Position the pointer at the LSB
- cmp_Write8Bit(cmp_out, &bitPosition, 1, 1);
- // endpoints
- for (CGU_INT p = 0; p < 4; p++)
- {
- cmp_Write8Bit(cmp_out, &bitPosition, 7, CMP_STATIC_CAST(CGV_UINT8, epo_code[0 + p] >> 1));
- cmp_Write8Bit(cmp_out, &bitPosition, 7, CMP_STATIC_CAST(CGV_UINT8, epo_code[4 + p] >> 1));
- }
- // p bits
- cmp_Write8Bit(cmp_out, &bitPosition, 1, epo_code[0] & 1);
- cmp_Write8Bit(cmp_out, &bitPosition, 1, epo_code[4] & 1);
- // quantized values
- cmp_encode_index(cmp_out, &bitPosition, index, 4);
- }
- void Compress_mode01237(CGU_INT blockMode, BC7_EncodeState EncodeState[], uniform CMP_GLOBAL BC7_Encode u_BC7Encode[])
- {
- CGV_UINT8 storedBestindex[MAX_PARTITIONS][MAX_SUBSETS][MAX_SUBSET_SIZE];
- CGV_FLOAT storedError[MAX_PARTITIONS];
- CGV_UINT8 sortedPartition[MAX_PARTITIONS];
- EncodeState->numPartitionModes = 64;
- EncodeState->maxSubSets = 2;
- if (blockMode == 0)
- {
- EncodeState->numPartitionModes = 16;
- EncodeState->channels3or4 = 3;
- EncodeState->bits = 26;
- EncodeState->clusters = 8;
- EncodeState->componentBits = 4;
- EncodeState->maxSubSets = 3;
- }
- else if (blockMode == 2)
- {
- EncodeState->channels3or4 = 3;
- EncodeState->bits = 30;
- EncodeState->clusters = 4;
- EncodeState->componentBits = 5;
- EncodeState->maxSubSets = 3;
- }
- else if (blockMode == 1)
- {
- EncodeState->channels3or4 = 3;
- EncodeState->bits = 37;
- EncodeState->clusters = 8;
- EncodeState->componentBits = 6;
- }
- else if (blockMode == 3)
- {
- EncodeState->channels3or4 = 3;
- EncodeState->bits = 44;
- EncodeState->clusters = 4;
- EncodeState->componentBits = 7;
- }
- else if (blockMode == 7)
- {
- EncodeState->channels3or4 = 4;
- EncodeState->bits = 42; // (2* (R 5 + G 5 + B 5 + A 5)) + 2 parity bits
- EncodeState->clusters = 4;
- EncodeState->componentBits = 5; // 5 bit components
- }
- CGV_FLOAT image_subsets[MAX_SUBSETS][MAX_SUBSET_SIZE][MAX_CHANNELS];
- CGV_INT subset_entryCount[MAX_SUBSETS] = {0, 0, 0};
- // Loop over the available partitions for the block mode and quantize them
- // to figure out the best candidates for further refinement
- CGU_UINT8 mode_partitionsToTry;
- mode_partitionsToTry = get_partitionsToTry(u_BC7Encode, EncodeState->numPartitionModes);
- CGV_UINT8 bestPartition = 0;
- for (CGU_INT mode_blockPartition = 0; mode_blockPartition < mode_partitionsToTry; mode_blockPartition++)
- {
- GetPartitionSubSet_mode01237(
- image_subsets, subset_entryCount, CMP_STATIC_CAST(CGV_UINT8, mode_blockPartition), EncodeState->image_src, blockMode, EncodeState->channels3or4);
- CGV_FLOAT subset_image_src[SOURCE_BLOCK_SIZE * MAX_CHANNELS];
- CGV_UINT8 index_out1[SOURCE_BLOCK_SIZE];
- CGV_FLOAT err_quant = 0.0F;
- // Store the quntize error for this partition to be sorted and processed later
- for (CGU_INT subset = 0; subset < EncodeState->maxSubSets; subset++)
- {
- CGV_INT numEntries = subset_entryCount[subset];
- for (CGU_INT ii = 0; ii < SOURCE_BLOCK_SIZE; ii++)
- {
- subset_image_src[ii + COMP_RED * SOURCE_BLOCK_SIZE] = image_subsets[subset][ii][0];
- subset_image_src[ii + COMP_GREEN * SOURCE_BLOCK_SIZE] = image_subsets[subset][ii][1];
- subset_image_src[ii + COMP_BLUE * SOURCE_BLOCK_SIZE] = image_subsets[subset][ii][2];
- subset_image_src[ii + COMP_ALPHA * SOURCE_BLOCK_SIZE] = image_subsets[subset][ii][3];
- }
- CGV_UINT32 color_index2[2];
- err_quant += GetQuantizeIndex(color_index2, index_out1, subset_image_src, numEntries, EncodeState->clusters, EncodeState->channels3or4);
- for (CGV_INT idx = 0; idx < numEntries; idx++)
- {
- storedBestindex[mode_blockPartition][subset][idx] = index_out1[idx];
- }
- }
- storedError[mode_blockPartition] = err_quant;
- }
- // Sort the results
- sortPartitionProjection(storedError, sortedPartition, mode_partitionsToTry);
- CGV_INT epo_code[MAX_SUBSETS * 2 * MAX_CHANNELS];
- CGV_INT bestEndpoints[MAX_SUBSETS * 2 * MAX_CHANNELS];
- CGV_UINT8 bestindex[MAX_SUBSETS * MAX_SUBSET_SIZE];
- CGV_INT bestEntryCount[MAX_SUBSETS];
- CGV_UINT8 bestindex16[MAX_SUBSET_SIZE];
- // Extensive shaking is most important when the ramp is short, and
- // when we have less index. On a long ramp the quality of the
- // initial quantizing is relatively more important
- // We modulate the shake size according to the number of ramp index
- // - the more index we have the less shaking should be required to find a near
- // optimal match
- CGU_UINT8 numShakeAttempts = max8(1, min8((CGU_UINT8)floor(8 * u_BC7Encode->quality + 0.5), mode_partitionsToTry));
- CGV_FLOAT err_best = CMP_FLOAT_MAX;
- // Now do the endpoint shaking
- for (CGU_INT nSA = 0; nSA < numShakeAttempts; nSA++)
- {
- CGV_FLOAT err_optimized = 0.0F;
- CGV_UINT8 sortedBlockPartition;
- sortedBlockPartition = sortedPartition[nSA];
- //********************************************
- // Get the partition shape for the given mode
- //********************************************
- GetPartitionSubSet_mode01237(image_subsets, subset_entryCount, sortedBlockPartition, EncodeState->image_src, blockMode, EncodeState->channels3or4);
- //*****************************
- // Process the partition shape
- //*****************************
- for (CGU_INT subset = 0; subset < EncodeState->maxSubSets; subset++)
- {
- CGV_INT numEntries = subset_entryCount[subset];
- CGV_FLOAT src_image_block[SOURCE_BLOCK_SIZE * MAX_CHANNELS];
- CGV_UINT8 index_io[MAX_SUBSET_SIZE];
- CGV_INT tmp_epo_code[8];
- for (CGU_INT k = 0; k < SOURCE_BLOCK_SIZE; k++)
- {
- src_image_block[k + COMP_RED * SOURCE_BLOCK_SIZE] = image_subsets[subset][k][0];
- src_image_block[k + COMP_GREEN * SOURCE_BLOCK_SIZE] = image_subsets[subset][k][1];
- src_image_block[k + COMP_BLUE * SOURCE_BLOCK_SIZE] = image_subsets[subset][k][2];
- src_image_block[k + COMP_ALPHA * SOURCE_BLOCK_SIZE] = image_subsets[subset][k][3];
- }
- for (CGU_INT k = 0; k < MAX_SUBSET_SIZE; k++)
- {
- index_io[k] = storedBestindex[sortedBlockPartition][subset][k];
- }
- err_optimized += optimize_IndexAndEndPoints(index_io,
- tmp_epo_code,
- src_image_block,
- numEntries,
- CMP_STATIC_CAST(CGU_INT8, EncodeState->clusters), // Mi_
- EncodeState->bits,
- EncodeState->channels3or4,
- u_BC7Encode);
- for (CGU_INT k = 0; k < MAX_SUBSET_SIZE; k++)
- {
- storedBestindex[sortedBlockPartition][subset][k] = index_io[k];
- }
- for (CGU_INT ch = 0; ch < MAX_CHANNELS; ch++)
- {
- epo_code[(subset * 2 + 0) * 4 + ch] = tmp_epo_code[ch];
- epo_code[(subset * 2 + 1) * 4 + ch] = tmp_epo_code[4 + ch];
- }
- }
- //****************************************
- // Check if result is better than the last
- //****************************************
- if (err_optimized < err_best)
- {
- bestPartition = sortedBlockPartition;
- CGV_INT bestIndexCount = 0;
- for (CGU_INT subset = 0; subset < EncodeState->maxSubSets; subset++)
- {
- CGV_INT numEntries = subset_entryCount[subset];
- bestEntryCount[subset] = numEntries;
- if (numEntries)
- {
- for (CGU_INT ch = 0; ch < EncodeState->channels3or4; ch++)
- {
- bestEndpoints[(subset * 2 + 0) * 4 + ch] = epo_code[(subset * 2 + 0) * 4 + ch];
- bestEndpoints[(subset * 2 + 1) * 4 + ch] = epo_code[(subset * 2 + 1) * 4 + ch];
- }
- for (CGV_INT k = 0; k < numEntries; k++)
- {
- bestindex[subset * MAX_SUBSET_SIZE + k] = storedBestindex[sortedBlockPartition][subset][k];
- bestindex16[bestIndexCount++] = storedBestindex[sortedBlockPartition][subset][k];
- }
- }
- }
- err_best = err_optimized;
- // Early out if we found we can compress with error below the quality threshold
- if (err_best <= u_BC7Encode->errorThreshold)
- {
- break;
- }
- }
- }
- if (blockMode != 7)
- err_best += EncodeState->opaque_err;
- if (err_best > EncodeState->best_err)
- return;
- //**************************
- // Save the encoded block
- //**************************
- EncodeState->best_err = err_best;
- // Now we have all the data needed to encode the block
- // We need to pack the endpoints prior to encoding
- CGV_UINT32 packedEndpoints[MAX_SUBSETS * 2] = {0, 0, 0, 0, 0, 0};
- for (CGU_INT subset = 0; subset < EncodeState->maxSubSets; subset++)
- {
- packedEndpoints[(subset * 2) + 0] = 0;
- packedEndpoints[(subset * 2) + 1] = 0;
- if (bestEntryCount[subset])
- {
- CGU_UINT32 rightAlignment = 0;
- // Sort out parity bits
- if (blockMode != 2)
- {
- // Sort out BCC parity bits
- packedEndpoints[(subset * 2) + 0] = bestEndpoints[(subset * 2 + 0) * 4 + 0] & 1;
- packedEndpoints[(subset * 2) + 1] = bestEndpoints[(subset * 2 + 1) * 4 + 0] & 1;
- for (CGU_INT ch = 0; ch < EncodeState->channels3or4; ch++)
- {
- bestEndpoints[(subset * 2 + 0) * 4 + ch] >>= 1;
- bestEndpoints[(subset * 2 + 1) * 4 + ch] >>= 1;
- }
- rightAlignment++;
- }
- // Fixup endpoints
- for (CGU_INT ch = 0; ch < EncodeState->channels3or4; ch++)
- {
- packedEndpoints[(subset * 2) + 0] |= bestEndpoints[((subset * 2) + 0) * 4 + ch] << rightAlignment;
- packedEndpoints[(subset * 2) + 1] |= bestEndpoints[((subset * 2) + 1) * 4 + ch] << rightAlignment;
- rightAlignment += EncodeState->componentBits;
- }
- }
- }
- CGV_UINT8 idxCount[3] = {0, 0, 0};
- for (CGV_INT k = 0; k < SOURCE_BLOCK_SIZE; k++)
- {
- CGV_UINT8 partsub = get_partition_subset(bestPartition, EncodeState->maxSubSets, k);
- CGV_UINT8 idxC = idxCount[partsub];
- bestindex16[k] = bestindex[partsub * MAX_SUBSET_SIZE + idxC];
- idxCount[partsub] = idxC + 1;
- }
- Encode_mode01237(blockMode, bestPartition, packedEndpoints, bestindex16, EncodeState->cmp_out);
- }
- void Compress_mode45(CGU_INT blockMode, BC7_EncodeState EncodeState[], uniform CMP_GLOBAL BC7_Encode u_BC7Encode[])
- {
- cmp_mode_parameters best_candidate;
- EncodeState->channels3or4 = 4;
- cmp_memsetBC7((CGV_UINT8*)&best_candidate, 0, sizeof(cmp_mode_parameters));
- if (blockMode == 4)
- {
- EncodeState->max_idxMode = 2;
- EncodeState->modeBits[0] = 30; // bits = 2 * (Red 5+ Grn 5+ blu 5)
- EncodeState->modeBits[1] = 36; // bits = 2 * (Alpha 6+6+6)
- EncodeState->numClusters0[0] = 4;
- EncodeState->numClusters0[1] = 8;
- EncodeState->numClusters1[0] = 8;
- EncodeState->numClusters1[1] = 4;
- }
- else
- {
- EncodeState->max_idxMode = 1;
- EncodeState->modeBits[0] = 42; // bits = 2 * (Red 7+ Grn 7+ blu 7)
- EncodeState->modeBits[1] = 48; // bits = 2 * (Alpha 8+8+8) = 48
- EncodeState->numClusters0[0] = 4;
- EncodeState->numClusters0[1] = 4;
- EncodeState->numClusters1[0] = 4;
- EncodeState->numClusters1[1] = 4;
- }
- CGV_FLOAT src_color_Block[SOURCE_BLOCK_SIZE * MAX_CHANNELS];
- CGV_FLOAT src_alpha_Block[SOURCE_BLOCK_SIZE * MAX_CHANNELS];
- // Go through each possible rotation and selection of index rotationBits)
- for (CGU_UINT8 rotated_channel = 0; rotated_channel < EncodeState->channels3or4; rotated_channel++)
- {
- // A
- for (CGU_INT k = 0; k < SOURCE_BLOCK_SIZE; k++)
- {
- for (CGU_INT p = 0; p < 3; p++)
- {
- src_color_Block[k + p * SOURCE_BLOCK_SIZE] = EncodeState->image_src[k + componentRotations[rotated_channel][p + 1] * SOURCE_BLOCK_SIZE];
- src_alpha_Block[k + p * SOURCE_BLOCK_SIZE] = EncodeState->image_src[k + componentRotations[rotated_channel][0] * SOURCE_BLOCK_SIZE];
- }
- }
- CGV_FLOAT err_quantizer;
- CGV_FLOAT err_bestQuantizer = CMP_FLOAT_MAX;
- for (CGU_INT idxMode = 0; idxMode < EncodeState->max_idxMode; idxMode++)
- {
- // B
- CGV_UINT32 color_index2[2]; // reserved .. Not used!
- err_quantizer =
- GetQuantizeIndex(color_index2, best_candidate.color_index, src_color_Block, SOURCE_BLOCK_SIZE, EncodeState->numClusters0[idxMode], 3);
- err_quantizer +=
- GetQuantizeIndex(color_index2, best_candidate.alpha_index, src_alpha_Block, SOURCE_BLOCK_SIZE, EncodeState->numClusters1[idxMode], 3) / 3.0F;
- // If quality is high then run the full shaking for this config and
- // store the result if it beats the best overall error
- // Otherwise only run the shaking if the error is better than the best
- // quantizer error
- if (err_quantizer <= err_bestQuantizer)
- {
- err_bestQuantizer = err_quantizer;
- // Shake size gives the size of the shake cube
- CGV_FLOAT err_overallError;
- err_overallError = optimize_IndexAndEndPoints(best_candidate.color_index,
- best_candidate.color_qendpoint,
- src_color_Block,
- SOURCE_BLOCK_SIZE,
- EncodeState->numClusters0[idxMode],
- CMP_STATIC_CAST(CGU_UINT8, EncodeState->modeBits[0]),
- 3,
- u_BC7Encode);
- // Alpha scalar block
- err_overallError += optimize_IndexAndEndPoints(best_candidate.alpha_index,
- best_candidate.alpha_qendpoint,
- src_alpha_Block,
- SOURCE_BLOCK_SIZE,
- EncodeState->numClusters1[idxMode],
- CMP_STATIC_CAST(CGU_UINT8, EncodeState->modeBits[1]),
- 3,
- u_BC7Encode) / 3.0f;
- // If we beat the previous best then encode the block
- if (err_overallError < EncodeState->best_err)
- {
- best_candidate.idxMode = idxMode;
- best_candidate.rotated_channel = rotated_channel;
- if (blockMode == 4)
- Encode_mode4(EncodeState->cmp_out, &best_candidate);
- else
- Encode_mode5(EncodeState->cmp_out, &best_candidate);
- EncodeState->best_err = err_overallError;
- }
- }
- } // B
- } // A
- }
- void Compress_mode6(BC7_EncodeState EncodeState[], uniform CMP_GLOBAL BC7_Encode u_BC7Encode[])
- {
- CGV_FLOAT err;
- CGV_INT epo_code_out[8] = {0};
- CGV_UINT8 best_index_out[MAX_SUBSET_SIZE];
- CGV_UINT32 best_packedindex_out[2];
- // CGV_FLOAT block_endpoints[8];
- // icmp_get_block_endpoints(block_endpoints, EncodeState->image_src, -1, 4);
- // icmp_GetQuantizedEpoCode(epo_code_out, block_endpoints, 6,4);
- // err = icmp_GetQuantizeIndex(best_packedindex_out, best_index_out, EncodeState->image_src, 4, block_endpoints, 0,4);
- err = GetQuantizeIndex(best_packedindex_out,
- best_index_out,
- EncodeState->image_src,
- 16, // numEntries
- 16, // clusters
- 4); // channels3or4
- //*****************************
- // Process the partition shape
- //*****************************
- err = optimize_IndexAndEndPoints(best_index_out,
- epo_code_out,
- EncodeState->image_src,
- 16, //numEntries
- 16, // Mi_ = clusters
- 58, // bits
- 4, // channels3or4
- u_BC7Encode);
- //**************************
- // Save the encoded block
- //**************************
- if (err < EncodeState->best_err)
- {
- EncodeState->best_err = err;
- Encode_mode6(best_index_out, epo_code_out, EncodeState->cmp_out);
- }
- }
- void copy_BC7_Encode_settings(BC7_EncodeState EncodeState[], uniform CMP_GLOBAL BC7_Encode settings[])
- {
- EncodeState->best_err = CMP_FLOAT_MAX;
- EncodeState->validModeMask = settings->validModeMask;
- #ifdef USE_ICMP
- EncodeState->part_count = settings->part_count;
- EncodeState->channels = settings->channels;
- #endif
- }
- //===================================== COMPRESS CODE =============================================
- #ifdef USE_ICMP
- #include "external/bc7_icmp.h"
- #endif
- bool notValidBlockForMode(CGU_UINT32 blockMode, CGU_BOOL blockNeedsAlpha, CGU_BOOL blockAlphaZeroOne, uniform CMP_GLOBAL BC7_Encode u_BC7Encode[])
- {
- // Do we need to skip alpha processing blocks
- if ((blockNeedsAlpha == FALSE) && (blockMode > 3))
- {
- return TRUE;
- }
- // Optional restriction for colour-only blocks so that they
- // don't use modes that have combined colour+alpha - this
- // avoids the possibility that the encoder might choose an
- // alpha other than 1.0 (due to parity) and cause something to
- // become accidentally slightly transparent (it's possible that
- // when encoding 3-component texture applications will assume that
- // the 4th component can safely be assumed to be 1.0 all the time)
- if ((blockNeedsAlpha == FALSE) && (u_BC7Encode->colourRestrict == TRUE) && ((blockMode == 6) || (blockMode == 7)))
- { // COMBINED_ALPHA
- return TRUE;
- }
- // Optional restriction for blocks with alpha to avoid issues with
- // punch-through or thresholded alpha encoding
- if ((blockNeedsAlpha == TRUE) && (u_BC7Encode->alphaRestrict == TRUE) && (blockAlphaZeroOne == TRUE) && ((blockMode == 6) || (blockMode == 7)))
- { // COMBINED_ALPHA
- return TRUE;
- }
- return FALSE;
- }
- void BC7_CompressBlock(BC7_EncodeState EncodeState[], uniform CMP_GLOBAL BC7_Encode u_BC7Encode[])
- {
- #ifdef USE_NEW_SINGLE_HEADER_INTERFACES
- CGV_Vec4f image_src[16];
- //int px = 0;
- for (int i = 0; i < 16; i++)
- {
- image_src[i].x = EncodeState->image_src[i];
- image_src[i].y = EncodeState->image_src[i + 16];
- image_src[i].z = EncodeState->image_src[i + 32];
- image_src[i].w = EncodeState->image_src[i + 48];
- }
- CGU_Vec4ui cmp = CompressBlockBC7_UNORM(image_src, u_BC7Encode->quality);
- //EncodeState->cmp_isout16Bytes = true;
- //EncodeState->cmp_out[0] = cmp.x & 0xFF;
- //EncodeState->cmp_out[1] = (cmp.x >> 8) & 0xFF;
- //EncodeState->cmp_out[2] = (cmp.x >> 16) & 0xFF;
- //EncodeState->cmp_out[3] = (cmp.x >> 24) & 0xFF;
- //EncodeState->cmp_out[4] = cmp.y & 0xFF;
- //EncodeState->cmp_out[5] = (cmp.y >> 8) & 0xFF;
- //EncodeState->cmp_out[6] = (cmp.y >> 16) & 0xFF;
- //EncodeState->cmp_out[7] = (cmp.y >> 24) & 0xFF;
- //EncodeState->cmp_out[8] = cmp.z & 0xFF;
- //EncodeState->cmp_out[9] = (cmp.z >> 8) & 0xFF;
- //EncodeState->cmp_out[10] = (cmp.z >> 16) & 0xFF;
- //EncodeState->cmp_out[11] = (cmp.z >> 24) & 0xFF;
- //EncodeState->cmp_out[12] = cmp.w & 0xFF;
- //EncodeState->cmp_out[13] = (cmp.w >> 8) & 0xFF;
- //EncodeState->cmp_out[14] = (cmp.w >> 16) & 0xFF;
- //EncodeState->cmp_out[15] = (cmp.w >> 24) & 0xFF;
- EncodeState->cmp_isout16Bytes = false;
- EncodeState->best_cmp_out[0] = cmp.x;
- EncodeState->best_cmp_out[1] = cmp.y;
- EncodeState->best_cmp_out[2] = cmp.z;
- EncodeState->best_cmp_out[3] = cmp.w;
- return;
- #else
- CGU_BOOL blockNeedsAlpha = FALSE;
- CGU_BOOL blockAlphaZeroOne = FALSE;
- CGV_FLOAT alpha_err = 0.0f;
- CGV_FLOAT alpha_min = 255.0F;
- for (CGU_INT k = 0; k < SOURCE_BLOCK_SIZE; k++)
- {
- if (EncodeState->image_src[k + COMP_ALPHA * SOURCE_BLOCK_SIZE] < alpha_min)
- alpha_min = EncodeState->image_src[k + COMP_ALPHA * SOURCE_BLOCK_SIZE];
- alpha_err += sq_image(EncodeState->image_src[k + COMP_ALPHA * SOURCE_BLOCK_SIZE] - 255.0F);
- if (blockAlphaZeroOne == FALSE)
- {
- if ((EncodeState->image_src[k + COMP_ALPHA * SOURCE_BLOCK_SIZE] == 255.0F) || (EncodeState->image_src[k + COMP_ALPHA * SOURCE_BLOCK_SIZE] == 0.0F))
- {
- blockAlphaZeroOne = TRUE;
- }
- }
- }
- if (alpha_min != 255.0F)
- {
- blockNeedsAlpha = TRUE;
- }
- EncodeState->best_err = CMP_FLOAT_MAX;
- EncodeState->opaque_err = alpha_err;
- #ifdef USE_ICMP
- EncodeState->refineIterations = 4;
- EncodeState->fastSkipTreshold = 4;
- EncodeState->channels = 4;
- EncodeState->part_count = 64;
- EncodeState->cmp_isout16Bytes = FALSE;
- #else
- EncodeState->cmp_isout16Bytes = TRUE;
- #endif
- // We change the order in which we visit the block modes to try to maximize the chance
- // that we manage to early out as quickly as possible.
- // This is a significant performance optimization for the lower quality modes where the
- // exit threshold is higher, and also tends to improve quality (as the generally higher quality
- // modes are now enumerated earlier, so the first encoding that passes the threshold will
- // tend to pass by a greater margin than if we used a dumb ordering, and thus overall error will
- // be improved)
- CGU_INT blockModeOrder[NUM_BLOCK_TYPES] = {4, 6, 1, 3, 0, 2, 7, 5};
- // used for debugging and mode tests
- // 76543210
- // u_BC7Encode->validModeMask = 0b01000000;
- for (CGU_INT block = 0; block < NUM_BLOCK_TYPES; block++)
- {
- CGU_INT blockMode = blockModeOrder[block];
- if (u_BC7Encode->quality < BC7_qFAST_THRESHOLD)
- {
- if (notValidBlockForMode(blockMode, blockNeedsAlpha, blockAlphaZeroOne, u_BC7Encode))
- continue;
- }
- CGU_INT Mode = 0x0001 << blockMode;
- if (!(u_BC7Encode->validModeMask & Mode))
- continue;
- switch (blockMode)
- {
- // image processing with no alpha
- case 0:
- #ifdef USE_ICMP
- icmp_mode02(EncodeState);
- #else
- Compress_mode01237(blockMode, EncodeState, u_BC7Encode);
- #endif
- break;
- case 1:
- #ifdef USE_ICMP
- icmp_mode13(EncodeState);
- #else
- Compress_mode01237(blockMode, EncodeState, u_BC7Encode);
- #endif
- break;
- case 2:
- #ifdef USE_ICMP
- icmp_mode13(EncodeState);
- #else
- Compress_mode01237(blockMode, EncodeState, u_BC7Encode);
- #endif
- break;
- case 3:
- #ifdef USE_ICMP
- icmp_mode13(EncodeState);
- #else
- Compress_mode01237(blockMode, EncodeState, u_BC7Encode);
- #endif
- break;
- // image processing with alpha
- case 4:
- #ifdef USE_ICMP
- icmp_mode4(EncodeState);
- #else
- Compress_mode45(blockMode, EncodeState, u_BC7Encode);
- #endif
- break;
- case 5:
- #ifdef USE_ICMP
- icmp_mode5(EncodeState);
- #else
- Compress_mode45(blockMode, EncodeState, u_BC7Encode);
- #endif
- break;
- case 6:
- #ifdef USE_ICMP
- icmp_mode6(EncodeState);
- #else
- Compress_mode6(EncodeState, u_BC7Encode);
- #endif
- break;
- case 7:
- #ifdef USE_ICMP
- icmp_mode7(EncodeState);
- #else
- Compress_mode01237(blockMode, EncodeState, u_BC7Encode);
- #endif
- break;
- }
- // Early out if we found we can compress with error below the quality threshold
- if (EncodeState->best_err <= u_BC7Encode->errorThreshold)
- {
- break;
- }
- }
- #endif
- }
- //====================================== BC7_ENCODECLASS END =============================================
- #ifndef ASPM_GPU
- INLINE void load_block_interleaved_rgba2(CGV_FLOAT image_src[64], uniform texture_surface* uniform src, CGV_INT block_xx, CGU_INT block_yy)
- {
- for (CGU_INT y = 0; y < 4; y++)
- for (CGU_INT x = 0; x < 4; x++)
- {
- CGU_UINT32* uniform src_ptr = (CGV_UINT32*)&src->ptr[(block_yy * 4 + y) * src->stride];
- #ifdef USE_VARYING
- CGV_UINT32 rgba = gather_partid(src_ptr, block_xx * 4 + x);
- image_src[16 * 0 + y * 4 + x] = (CGV_FLOAT)((rgba >> 0) & 255);
- image_src[16 * 1 + y * 4 + x] = (CGV_FLOAT)((rgba >> 8) & 255);
- image_src[16 * 2 + y * 4 + x] = (CGV_FLOAT)((rgba >> 16) & 255);
- image_src[16 * 3 + y * 4 + x] = (CGV_FLOAT)((rgba >> 24) & 255);
- #else
- CGV_UINT32 rgba = src_ptr[block_xx * 4 + x];
- image_src[16 * 0 + y * 4 + x] = (CGU_FLOAT)((rgba >> 0) & 255);
- image_src[16 * 1 + y * 4 + x] = (CGU_FLOAT)((rgba >> 8) & 255);
- image_src[16 * 2 + y * 4 + x] = (CGU_FLOAT)((rgba >> 16) & 255);
- image_src[16 * 3 + y * 4 + x] = (CGU_FLOAT)((rgba >> 24) & 255);
- #endif
- }
- }
- #if defined(CMP_USE_FOREACH_ASPM) || defined(USE_VARYING)
- INLINE void scatter_uint2(CGU_UINT32* ptr, CGV_INT idx, CGV_UINT32 value)
- {
- ptr[idx] = value; // (perf warning expected)
- }
- #endif
- INLINE void store_data_uint32(CGU_UINT8 dst[], CGU_INT width, CGV_INT v_xx, CGU_INT yy, CGV_UINT32 data[], CGU_INT data_size)
- {
- for (CGU_INT k = 0; k < data_size; k++)
- {
- CGU_UINT32* dst_ptr = (CGV_UINT32*)&dst[(yy)*width * data_size];
- #ifdef USE_VARYING
- scatter_uint2(dst_ptr, v_xx * data_size + k, data[k]);
- #else
- dst_ptr[v_xx * data_size + k] = data[k];
- #endif
- }
- }
- #ifdef USE_VARYING
- INLINE void scatter_uint8(CGU_UINT8* ptr, CGV_UINT32 idx, CGV_UINT8 value)
- {
- ptr[idx] = value; // (perf warning expected)
- }
- #endif
- INLINE void store_data_uint8(CGU_UINT8 u_dstptr[], CGU_INT src_width, CGU_INT block_x, CGU_INT block_y, CGV_UINT8 data[], CGU_INT data_size)
- {
- for (CGU_INT k = 0; k < data_size; k++)
- {
- #ifdef USE_VARYING
- CGU_UINT8* dst_blockptr = (CGU_UINT8*)&u_dstptr[(block_y * src_width * 4)];
- scatter_uint8(dst_blockptr, k + (block_x * data_size), data[k]);
- #else
- u_dstptr[(block_y * src_width * 4) + k + (block_x * data_size)] = data[k];
- #endif
- }
- }
- INLINE void store_data_uint32(CGU_UINT8 dst[], CGV_UINT32 width, CGU_INT v_xx, CGU_INT yy, CGV_UINT8 data[], CGU_INT data_size)
- {
- for (CGU_INT k = 0; k < data_size; k++)
- {
- #if defined(CMP_USE_FOREACH_ASPM) || defined(USE_VARYING)
- CGU_UINT32* dst_ptr = (CGV_UINT32*)&dst[(yy)*width * data_size];
- scatter_uint2(dst_ptr, v_xx * data_size + k, data[k]);
- #else
- dst[((yy)*width * data_size) + v_xx * data_size + k] = data[k];
- #endif
- }
- }
- void CompressBlockBC7_XY(uniform texture_surface u_srcptr[], CGU_INT block_x, CGU_INT block_y, CGU_UINT8 u_dst[], uniform BC7_Encode u_settings[])
- {
- BC7_EncodeState _state;
- varying BC7_EncodeState* uniform state = &_state;
- copy_BC7_Encode_settings(state, u_settings);
- load_block_interleaved_rgba2(state->image_src, u_srcptr, block_x, block_y);
- BC7_CompressBlock(state, u_settings);
- if (state->cmp_isout16Bytes)
- store_data_uint8(u_dst, u_srcptr->width, block_x, block_y, state->cmp_out, 16);
- else
- store_data_uint32(u_dst, u_srcptr->width, block_x, block_y, state->best_cmp_out, 4);
- }
- CMP_EXPORT void CompressBlockBC7_encode(uniform texture_surface src[], CGU_UINT8 dst[], uniform BC7_Encode settings[])
- {
- // bc7_isa(); ASPM_PRINT(("ASPM encode [%d,%d]\n",bc7_isa(),src->width,src->height));
- for (CGU_INT u_yy = 0; u_yy < src->height / 4; u_yy++)
- #ifdef CMP_USE_FOREACH_ASPM
- foreach (v_xx = 0 ... src->width / 4)
- {
- #else
- for (CGV_INT v_xx = 0; v_xx < src->width / 4; v_xx++)
- {
- #endif
- CompressBlockBC7_XY(src, v_xx, u_yy, dst, settings);
- }
- }
- #endif
- #ifndef ASPM_GPU
- #ifndef ASPM
- //======================= DECOMPRESS =========================================
- #ifndef USE_HIGH_PRECISION_INTERPOLATION_BC7
- CGU_UINT16 aWeight2[] = {0, 21, 43, 64};
- CGU_UINT16 aWeight3[] = {0, 9, 18, 27, 37, 46, 55, 64};
- CGU_UINT16 aWeight4[] = {0, 4, 9, 13, 17, 21, 26, 30, 34, 38, 43, 47, 51, 55, 60, 64};
- CGU_UINT8 interpolate(CGU_UINT8 e0, CGU_UINT8 e1, CGU_UINT8 index, CGU_UINT8 indexprecision)
- {
- if (indexprecision == 2)
- return (CGU_UINT8)(((64 - aWeight2[index]) * CGU_UINT16(e0) + aWeight2[index] * CGU_UINT16(e1) + 32) >> 6);
- else if (indexprecision == 3)
- return (CGU_UINT8)(((64 - aWeight3[index]) * CGU_UINT16(e0) + aWeight3[index] * CGU_UINT16(e1) + 32) >> 6);
- else // indexprecision == 4
- return (CGU_UINT8)(((64 - aWeight4[index]) * CGU_UINT16(e0) + aWeight4[index] * CGU_UINT16(e1) + 32) >> 6);
- }
- #endif
- void GetBC7Ramp(CGU_UINT32 endpoint[][MAX_DIMENSION_BIG],
- CGU_FLOAT ramp[MAX_DIMENSION_BIG][(1 << MAX_INDEX_BITS)],
- CGU_UINT32 clusters[2],
- CGU_UINT32 componentBits[MAX_DIMENSION_BIG])
- {
- CGU_UINT32 ep[2][MAX_DIMENSION_BIG];
- CGU_UINT32 i;
- // Expand each endpoint component to 8 bits by shifting the MSB to bit 7
- // and then replicating the high bits to the low bits revealed by
- // the shift
- for (i = 0; i < MAX_DIMENSION_BIG; i++)
- {
- ep[0][i] = 0;
- ep[1][i] = 0;
- if (componentBits[i])
- {
- ep[0][i] = (CGU_UINT32)(endpoint[0][i] << (8 - componentBits[i]));
- ep[1][i] = (CGU_UINT32)(endpoint[1][i] << (8 - componentBits[i]));
- ep[0][i] += (CGU_UINT32)(ep[0][i] >> componentBits[i]);
- ep[1][i] += (CGU_UINT32)(ep[1][i] >> componentBits[i]);
- ep[0][i] = min8(255, max8(0, CMP_STATIC_CAST(CGU_UINT8, ep[0][i])));
- ep[1][i] = min8(255, max8(0, CMP_STATIC_CAST(CGU_UINT8, ep[1][i])));
- }
- }
- // If this block type has no explicit alpha channel
- // then make sure alpha is 1.0 for all points on the ramp
- if (!componentBits[COMP_ALPHA])
- {
- ep[0][COMP_ALPHA] = ep[1][COMP_ALPHA] = 255;
- }
- CGU_UINT32 rampIndex = clusters[0];
- rampIndex = (CGU_UINT32)(log((double)rampIndex) / log(2.0));
- // Generate colours for the RGB ramp
- for (i = 0; i < clusters[0]; i++)
- {
- #ifdef USE_HIGH_PRECISION_INTERPOLATION_BC7
- ramp[COMP_RED][i] =
- (CGU_FLOAT)floor((ep[0][COMP_RED] * (1.0 - rampLerpWeightsBC7[rampIndex][i])) + (ep[1][COMP_RED] * rampLerpWeightsBC7[rampIndex][i]) + 0.5);
- ramp[COMP_RED][i] = bc7_minf(255.0, bc7_maxf(0., ramp[COMP_RED][i]));
- ramp[COMP_GREEN][i] =
- (CGU_FLOAT)floor((ep[0][COMP_GREEN] * (1.0 - rampLerpWeightsBC7[rampIndex][i])) + (ep[1][COMP_GREEN] * rampLerpWeightsBC7[rampIndex][i]) + 0.5);
- ramp[COMP_GREEN][i] = bc7_minf(255.0, bc7_maxf(0., ramp[COMP_GREEN][i]));
- ramp[COMP_BLUE][i] =
- (CGU_FLOAT)floor((ep[0][COMP_BLUE] * (1.0 - rampLerpWeightsBC7[rampIndex][i])) + (ep[1][COMP_BLUE] * rampLerpWeightsBC7[rampIndex][i]) + 0.5);
- ramp[COMP_BLUE][i] = bc7_minf(255.0, bc7_maxf(0., ramp[COMP_BLUE][i]));
- #else
- ramp[COMP_RED][i] = interpolate(ep[0][COMP_RED], ep[1][COMP_RED], i, rampIndex);
- ramp[COMP_GREEN][i] = interpolate(ep[0][COMP_GREEN], ep[1][COMP_GREEN], i, rampIndex);
- ramp[COMP_BLUE][i] = interpolate(ep[0][COMP_BLUE], ep[1][COMP_BLUE], i, rampIndex);
- #endif
- }
- rampIndex = clusters[1];
- rampIndex = (CGU_UINT32)(log((CGU_FLOAT)rampIndex) / log(2.0));
- if (!componentBits[COMP_ALPHA])
- {
- for (i = 0; i < clusters[1]; i++)
- {
- ramp[COMP_ALPHA][i] = 255.;
- }
- }
- else
- {
- // Generate alphas
- for (i = 0; i < clusters[1]; i++)
- {
- #ifdef USE_HIGH_PRECISION_INTERPOLATION_BC7
- ramp[COMP_ALPHA][i] =
- (CGU_FLOAT)floor((ep[0][COMP_ALPHA] * (1.0 - rampLerpWeightsBC7[rampIndex][i])) + (ep[1][COMP_ALPHA] * rampLerpWeightsBC7[rampIndex][i]) + 0.5);
- ramp[COMP_ALPHA][i] = bc7_minf(255.0, bc7_maxf(0., ramp[COMP_ALPHA][i]));
- #else
- ramp[COMP_ALPHA][i] = interpolate(ep[0][COMP_ALPHA], ep[1][COMP_ALPHA], i, rampIndex);
- #endif
- }
- }
- }
- //
- // Bit reader - reads one bit from a buffer at the current bit offset
- // and increments the offset
- //
- CGU_UINT32 ReadBit(const CGU_UINT8 base[], CGU_UINT32& m_bitPosition)
- {
- int byteLocation;
- int remainder;
- CGU_UINT32 bit = 0;
- byteLocation = m_bitPosition / 8;
- remainder = m_bitPosition % 8;
- bit = base[byteLocation];
- bit >>= remainder;
- bit &= 0x1;
- // Increment bit position
- m_bitPosition++;
- return (bit);
- }
- void DecompressDualIndexBlock(CGU_UINT8 out[MAX_SUBSET_SIZE][MAX_DIMENSION_BIG],
- const CGU_UINT8 in[COMPRESSED_BLOCK_SIZE],
- CGU_UINT32 endpoint[2][MAX_DIMENSION_BIG],
- CGU_UINT32& m_bitPosition,
- CGU_UINT32 m_rotation,
- CGU_UINT32 m_blockMode,
- CGU_UINT32 m_indexSwap,
- CGU_UINT32 m_componentBits[MAX_DIMENSION_BIG])
- {
- CGU_UINT32 i, j, k;
- CGU_FLOAT ramp[MAX_DIMENSION_BIG][1 << MAX_INDEX_BITS];
- CGU_UINT32 blockIndices[2][MAX_SUBSET_SIZE];
- CGU_UINT32 clusters[2];
- clusters[0] = 1 << bti[m_blockMode].indexBits[0];
- clusters[1] = 1 << bti[m_blockMode].indexBits[1];
- if (m_indexSwap)
- {
- CGU_UINT32 temp = clusters[0];
- clusters[0] = clusters[1];
- clusters[1] = temp;
- }
- GetBC7Ramp(endpoint, ramp, clusters, m_componentBits);
- // Extract the indices
- for (i = 0; i < 2; i++)
- {
- for (j = 0; j < MAX_SUBSET_SIZE; j++)
- {
- blockIndices[i][j] = 0;
- // If this is a fixup index then clear the implicit bit
- if (j == 0)
- {
- blockIndices[i][j] &= ~(1 << (bti[m_blockMode].indexBits[i] - 1U));
- for (k = 0; k < static_cast<CGU_UINT32>(bti[m_blockMode].indexBits[i] - 1); k++)
- {
- blockIndices[i][j] |= (CGU_UINT32)ReadBit(in, m_bitPosition) << k;
- }
- }
- else
- {
- for (k = 0; k < bti[m_blockMode].indexBits[i]; k++)
- {
- blockIndices[i][j] |= (CGU_UINT32)ReadBit(in, m_bitPosition) << k;
- }
- }
- }
- }
- // Generate block colours
- for (i = 0; i < MAX_SUBSET_SIZE; i++)
- {
- out[i][COMP_ALPHA] = (CGU_UINT8)ramp[COMP_ALPHA][blockIndices[m_indexSwap ^ 1][i]];
- out[i][COMP_RED] = (CGU_UINT8)ramp[COMP_RED][blockIndices[m_indexSwap][i]];
- out[i][COMP_GREEN] = (CGU_UINT8)ramp[COMP_GREEN][blockIndices[m_indexSwap][i]];
- out[i][COMP_BLUE] = (CGU_UINT8)ramp[COMP_BLUE][blockIndices[m_indexSwap][i]];
- }
- // Resolve the component rotation
- CGU_INT8 swap;
- for (i = 0; i < MAX_SUBSET_SIZE; i++)
- {
- switch (m_rotation)
- {
- case 0:
- // Do nothing
- break;
- case 1:
- // Swap A and R
- swap = out[i][COMP_ALPHA];
- out[i][COMP_ALPHA] = out[i][COMP_RED];
- out[i][COMP_RED] = swap;
- break;
- case 2:
- // Swap A and G
- swap = out[i][COMP_ALPHA];
- out[i][COMP_ALPHA] = out[i][COMP_GREEN];
- out[i][COMP_GREEN] = swap;
- break;
- case 3:
- // Swap A and B
- swap = out[i][COMP_ALPHA];
- out[i][COMP_ALPHA] = out[i][COMP_BLUE];
- out[i][COMP_BLUE] = swap;
- break;
- }
- }
- }
- void DecompressBC7_internal(CGU_UINT8 out[MAX_SUBSET_SIZE][MAX_DIMENSION_BIG], const CGU_UINT8 in[COMPRESSED_BLOCK_SIZE], const BC7_Encode* u_BC7Encode)
- {
- if (u_BC7Encode)
- {
- }
- CGU_UINT32 i, j;
- CGU_UINT32 blockIndices[MAX_SUBSET_SIZE];
- CGU_UINT32 endpoint[MAX_SUBSETS][2][MAX_DIMENSION_BIG];
- CGU_UINT32 m_blockMode;
- CGU_UINT32 m_partition;
- CGU_UINT32 m_rotation;
- CGU_UINT32 m_indexSwap;
- CGU_UINT32 m_bitPosition;
- CGU_UINT32 m_componentBits[MAX_DIMENSION_BIG];
- m_blockMode = 0;
- m_partition = 0;
- m_rotation = 0;
- m_indexSwap = 0;
- // Position the read pointer at the LSB of the block
- m_bitPosition = 0;
- while (!ReadBit(in, m_bitPosition) && (m_blockMode < 8))
- {
- m_blockMode++;
- }
- if (m_blockMode > 7)
- {
- // Something really bad happened...
- return;
- }
- for (i = 0; i < bti[m_blockMode].rotationBits; i++)
- {
- m_rotation |= ReadBit(in, m_bitPosition) << i;
- }
- for (i = 0; i < bti[m_blockMode].indexModeBits; i++)
- {
- m_indexSwap |= ReadBit(in, m_bitPosition) << i;
- }
- for (i = 0; i < bti[m_blockMode].partitionBits; i++)
- {
- m_partition |= ReadBit(in, m_bitPosition) << i;
- }
- if (bti[m_blockMode].encodingType == NO_ALPHA)
- {
- m_componentBits[COMP_ALPHA] = 0;
- m_componentBits[COMP_RED] = m_componentBits[COMP_GREEN] = m_componentBits[COMP_BLUE] = bti[m_blockMode].vectorBits / 3;
- }
- else if (bti[m_blockMode].encodingType == COMBINED_ALPHA)
- {
- m_componentBits[COMP_ALPHA] = m_componentBits[COMP_RED] = m_componentBits[COMP_GREEN] = m_componentBits[COMP_BLUE] = bti[m_blockMode].vectorBits / 4;
- }
- else if (bti[m_blockMode].encodingType == SEPARATE_ALPHA)
- {
- m_componentBits[COMP_ALPHA] = bti[m_blockMode].scalarBits;
- m_componentBits[COMP_RED] = m_componentBits[COMP_GREEN] = m_componentBits[COMP_BLUE] = bti[m_blockMode].vectorBits / 3;
- }
- CGU_UINT32 subset, ep, component;
- // Endpoints are stored in the following order RRRR GGGG BBBB (AAAA) (PPPP)
- // i.e. components are packed together
- // Loop over components
- for (component = 0; component < MAX_DIMENSION_BIG; component++)
- {
- // loop over subsets
- for (subset = 0; subset < (int)bti[m_blockMode].subsetCount; subset++)
- {
- // Loop over endpoints
- for (ep = 0; ep < 2; ep++)
- {
- endpoint[subset][ep][component] = 0;
- for (j = 0; j < m_componentBits[component]; j++)
- {
- endpoint[subset][ep][component] |= ReadBit(in, m_bitPosition) << j;
- }
- }
- }
- }
- // Now get any parity bits
- if (bti[m_blockMode].pBitType != NO_PBIT)
- {
- for (subset = 0; subset < (int)bti[m_blockMode].subsetCount; subset++)
- {
- CGU_UINT32 pBit[2];
- if (bti[m_blockMode].pBitType == ONE_PBIT)
- {
- pBit[0] = ReadBit(in, m_bitPosition);
- pBit[1] = pBit[0];
- }
- else if (bti[m_blockMode].pBitType == TWO_PBIT)
- {
- pBit[0] = ReadBit(in, m_bitPosition);
- pBit[1] = ReadBit(in, m_bitPosition);
- }
- for (component = 0; component < MAX_DIMENSION_BIG; component++)
- {
- if (m_componentBits[component])
- {
- endpoint[subset][0][component] <<= 1;
- endpoint[subset][1][component] <<= 1;
- endpoint[subset][0][component] |= pBit[0];
- endpoint[subset][1][component] |= pBit[1];
- }
- }
- }
- }
- if (bti[m_blockMode].pBitType != NO_PBIT)
- {
- // Now that we've unpacked the parity bits, update the component size information
- // for the ramp generator
- for (j = 0; j < MAX_DIMENSION_BIG; j++)
- {
- if (m_componentBits[j])
- {
- m_componentBits[j] += 1;
- }
- }
- }
- // If this block has two independent sets of indices then put it to that decoder
- if (bti[m_blockMode].encodingType == SEPARATE_ALPHA)
- {
- DecompressDualIndexBlock(out, in, endpoint[0], m_bitPosition, m_rotation, m_blockMode, m_indexSwap, m_componentBits);
- return;
- }
- CGU_UINT32 fixup[MAX_SUBSETS] = {0, 0, 0};
- switch (bti[m_blockMode].subsetCount)
- {
- case 3:
- fixup[1] = BC7_FIXUPINDICES_LOCAL[2][m_partition][1];
- fixup[2] = BC7_FIXUPINDICES_LOCAL[2][m_partition][2];
- break;
- case 2:
- fixup[1] = BC7_FIXUPINDICES_LOCAL[1][m_partition][1];
- break;
- default:
- break;
- }
- //--------------------------------------------------------------------
- // New Code : Possible replacement for BC7_PARTITIONS for CPU code
- //--------------------------------------------------------------------
- // Extract index bits
- // for (i = 0; i < MAX_SUBSET_SIZE; i++)
- // {
- // CGV_UINT8 p = get_partition_subset(m_partition, bti[m_blockMode].subsetCount - 1, i);
- // //CGU_UINT32 p = partitionTable[i];
- // blockIndices[i] = 0;
- // CGU_UINT32 bitsToRead = bti[m_blockMode].indexBits[0];
- //
- // // If this is a fixup index then set the implicit bit
- // if (i == fixup[p])
- // {
- // blockIndices[i] &= ~(1 << (bitsToRead - 1));
- // bitsToRead--;
- // }
- //
- // for (j = 0; j < bitsToRead; j++)
- // {
- // blockIndices[i] |= ReadBit(in, m_bitPosition) << j;
- // }
- // }
- CGU_UINT8* partitionTable = (CGU_UINT8*)BC7_PARTITIONS[bti[m_blockMode].subsetCount - 1][m_partition];
- // Extract index bits
- for (i = 0; i < MAX_SUBSET_SIZE; i++)
- {
- CGU_UINT8 p = partitionTable[i];
- blockIndices[i] = 0;
- CGU_UINT8 bitsToRead = bti[m_blockMode].indexBits[0];
- // If this is a fixup index then set the implicit bit
- if (i == fixup[p])
- {
- blockIndices[i] &= ~(1 << (bitsToRead - 1));
- bitsToRead--;
- }
- for (j = 0; j < bitsToRead; j++)
- {
- blockIndices[i] |= ReadBit(in, m_bitPosition) << j;
- }
- }
- // Get the ramps
- CGU_UINT32 clusters[2];
- clusters[0] = clusters[1] = 1 << bti[m_blockMode].indexBits[0];
- // Colour Ramps
- CGU_FLOAT c[MAX_SUBSETS][MAX_DIMENSION_BIG][1 << MAX_INDEX_BITS];
- for (i = 0; i < (int)bti[m_blockMode].subsetCount; i++)
- {
- // Unpack the colours
- GetBC7Ramp(endpoint[i], c[i], clusters, m_componentBits);
- }
- //--------------------------------------------------------------------
- // New Code : Possible replacement for BC7_PARTITIONS for CPU code
- //--------------------------------------------------------------------
- // Generate the block colours.
- // for (i = 0; i < MAX_SUBSET_SIZE; i++)
- // {
- // CGV_UINT8 p = get_partition_subset(m_partition, bti[m_blockMode].subsetCount - 1, i);
- // out[i][0] = c[p][0][blockIndices[i]];
- // out[i][1] = c[p][1][blockIndices[i]];
- // out[i][2] = c[p][2][blockIndices[i]];
- // out[i][3] = c[p][3][blockIndices[i]];
- // }
- // Generate the block colours.
- for (i = 0; i < MAX_SUBSET_SIZE; i++)
- {
- for (j = 0; j < MAX_DIMENSION_BIG; j++)
- {
- out[i][j] = (CGU_UINT8)c[partitionTable[i]][j][blockIndices[i]];
- }
- }
- }
- void CompressBlockBC7_Internal(CGU_UINT8 image_src[SOURCE_BLOCK_SIZE][4],
- CMP_GLOBAL CGV_UINT8 cmp_out[COMPRESSED_BLOCK_SIZE],
- uniform CMP_GLOBAL BC7_Encode u_BC7Encode[])
- {
- BC7_EncodeState _state = {0};
- varying BC7_EncodeState* uniform state = &_state;
- copy_BC7_Encode_settings(state, u_BC7Encode);
- CGU_UINT8 offsetR = 0;
- CGU_UINT8 offsetG = 16;
- CGU_UINT8 offsetB = 32;
- CGU_UINT8 offsetA = 48;
- for (CGU_UINT8 i = 0; i < SOURCE_BLOCK_SIZE; i++)
- {
- state->image_src[offsetR++] = (CGV_FLOAT)image_src[i][0];
- state->image_src[offsetG++] = (CGV_FLOAT)image_src[i][1];
- state->image_src[offsetB++] = (CGV_FLOAT)image_src[i][2];
- state->image_src[offsetA++] = (CGV_FLOAT)image_src[i][3];
- }
- BC7_CompressBlock(state, u_BC7Encode);
- if (state->cmp_isout16Bytes)
- {
- for (CGU_UINT8 i = 0; i < COMPRESSED_BLOCK_SIZE; i++)
- {
- cmp_out[i] = state->cmp_out[i];
- }
- }
- else
- {
- #ifdef ASPM_GPU
- cmp_memcpy(cmp_out, (CGU_UINT8*)state->best_cmp_out, 16);
- #else
- memcpy(cmp_out, state->best_cmp_out, 16);
- #endif
- }
- }
- //======================= CPU USER INTERFACES ====================================
- int CMP_CDECL CreateOptionsBC7(void** options)
- {
- (*options) = new BC7_Encode;
- if (!options)
- return CGU_CORE_ERR_NEWMEM;
- init_BC7ramps();
- SetDefaultBC7Options((BC7_Encode*)(*options));
- return CGU_CORE_OK;
- }
- int CMP_CDECL DestroyOptionsBC7(void* options)
- {
- if (!options)
- return CGU_CORE_ERR_INVALIDPTR;
- BC7_Encode* BCOptions = reinterpret_cast<BC7_Encode*>(options);
- delete BCOptions;
- return CGU_CORE_OK;
- }
- int CMP_CDECL SetErrorThresholdBC7(void* options, CGU_FLOAT minThreshold, CGU_FLOAT maxThreshold)
- {
- if (!options)
- return CGU_CORE_ERR_INVALIDPTR;
- BC7_Encode* BC7optionsDefault = (BC7_Encode*)options;
- if (minThreshold < 0.0f)
- minThreshold = 0.0f;
- if (maxThreshold < 0.0f)
- maxThreshold = 0.0f;
- BC7optionsDefault->minThreshold = minThreshold;
- BC7optionsDefault->maxThreshold = maxThreshold;
- return CGU_CORE_OK;
- }
- int CMP_CDECL SetQualityBC7(void* options, CGU_FLOAT fquality)
- {
- if (!options)
- return CGU_CORE_ERR_INVALIDPTR;
- BC7_Encode* BC7optionsDefault = (BC7_Encode*)options;
- if (fquality < 0.0f)
- fquality = 0.0f;
- else if (fquality > 1.0f)
- fquality = 1.0f;
- BC7optionsDefault->quality = fquality;
- // Set Error Thresholds
- BC7optionsDefault->errorThreshold = BC7optionsDefault->maxThreshold * (1.0f - fquality);
- if (fquality > BC7_qFAST_THRESHOLD)
- BC7optionsDefault->errorThreshold += BC7optionsDefault->minThreshold;
- return CGU_CORE_OK;
- }
- int CMP_CDECL SetMaskBC7(void* options, CGU_UINT8 mask)
- {
- if (!options)
- return CGU_CORE_ERR_INVALIDPTR;
- BC7_Encode* BC7options = (BC7_Encode*)options;
- BC7options->validModeMask = mask;
- return CGU_CORE_OK;
- }
- int CMP_CDECL SetAlphaOptionsBC7(void* options, CGU_BOOL imageNeedsAlpha, CGU_BOOL colourRestrict, CGU_BOOL alphaRestrict)
- {
- if (!options)
- return CGU_CORE_ERR_INVALIDPTR;
- BC7_Encode* u_BC7Encode = (BC7_Encode*)options;
- u_BC7Encode->imageNeedsAlpha = imageNeedsAlpha;
- u_BC7Encode->colourRestrict = colourRestrict;
- u_BC7Encode->alphaRestrict = alphaRestrict;
- return CGU_CORE_OK;
- }
- int CMP_CDECL CompressBlockBC7(const unsigned char* srcBlock, unsigned int srcStrideInBytes, CMP_GLOBAL unsigned char cmpBlock[16], const void* options = NULL)
- {
- CMP_Vec4uc inBlock[SOURCE_BLOCK_SIZE];
- //----------------------------------
- // Fill the inBlock with source data
- //----------------------------------
- CGU_INT srcpos = 0;
- CGU_INT dstptr = 0;
- for (CGU_UINT8 row = 0; row < 4; row++)
- {
- srcpos = row * srcStrideInBytes;
- for (CGU_UINT8 col = 0; col < 4; col++)
- {
- inBlock[dstptr].x = CGU_UINT8(srcBlock[srcpos++]);
- inBlock[dstptr].y = CGU_UINT8(srcBlock[srcpos++]);
- inBlock[dstptr].z = CGU_UINT8(srcBlock[srcpos++]);
- inBlock[dstptr].w = CGU_UINT8(srcBlock[srcpos++]);
- dstptr++;
- }
- }
- BC7_Encode* u_BC7Encode = (BC7_Encode*)options;
- BC7_Encode BC7EncodeDefault = {0};
- if (u_BC7Encode == NULL)
- {
- u_BC7Encode = &BC7EncodeDefault;
- SetDefaultBC7Options(u_BC7Encode);
- init_BC7ramps();
- }
- BC7_EncodeState EncodeState
- #ifndef ASPM
- = { 0 }
- #endif
- ;
- EncodeState.best_err = CMP_FLOAT_MAX;
- EncodeState.validModeMask = u_BC7Encode->validModeMask;
- EncodeState.part_count = u_BC7Encode->part_count;
- EncodeState.channels = CMP_STATIC_CAST(CGU_UINT8, u_BC7Encode->channels);
- CGU_UINT8 offsetR = 0;
- CGU_UINT8 offsetG = 16;
- CGU_UINT8 offsetB = 32;
- CGU_UINT8 offsetA = 48;
- CGU_UINT32 offsetSRC = 0;
- for (CGU_UINT8 i = 0; i < SOURCE_BLOCK_SIZE; i++)
- {
- EncodeState.image_src[offsetR++] = (CGV_FLOAT)inBlock[offsetSRC].x;
- EncodeState.image_src[offsetG++] = (CGV_FLOAT)inBlock[offsetSRC].y;
- EncodeState.image_src[offsetB++] = (CGV_FLOAT)inBlock[offsetSRC].z;
- EncodeState.image_src[offsetA++] = (CGV_FLOAT)inBlock[offsetSRC].w;
- offsetSRC++;
- }
- BC7_CompressBlock(&EncodeState, u_BC7Encode);
- if (EncodeState.cmp_isout16Bytes)
- {
- for (CGU_UINT8 i = 0; i < COMPRESSED_BLOCK_SIZE; i++)
- {
- cmpBlock[i] = EncodeState.cmp_out[i];
- }
- }
- else
- {
- memcpy(cmpBlock, EncodeState.best_cmp_out, 16);
- }
- return CGU_CORE_OK;
- }
- int CMP_CDECL DecompressBlockBC7(const unsigned char cmpBlock[16], unsigned char srcBlock[64], const void* options = NULL)
- {
- BC7_Encode* u_BC7Encode = (BC7_Encode*)options;
- BC7_Encode BC7EncodeDefault = {0}; // for q = 0.05
- if (u_BC7Encode == NULL)
- {
- // set for q = 1.0
- u_BC7Encode = &BC7EncodeDefault;
- SetDefaultBC7Options(u_BC7Encode);
- init_BC7ramps();
- }
- DecompressBC7_internal((CGU_UINT8(*)[4])srcBlock, (CGU_UINT8*)cmpBlock, u_BC7Encode);
- return CGU_CORE_OK;
- }
- #endif
- #endif
- //============================================== OpenCL USER INTERFACE ====================================================
- #ifdef ASPM_OPENCL
- CMP_STATIC CMP_KERNEL void CMP_GPUEncoder(uniform CMP_GLOBAL const CGU_Vec4uc ImageSource[],
- CMP_GLOBAL CGV_UINT8 ImageDestination[],
- uniform CMP_GLOBAL Source_Info SourceInfo[],
- uniform CMP_GLOBAL BC7_Encode BC7Encode[])
- {
- CGU_INT xID = 0;
- CGU_INT yID = 0;
- xID = get_global_id(0); // ToDo: Define a size_t 32 bit and 64 bit based on clGetDeviceInfo
- yID = get_global_id(1);
- CGU_INT srcWidth = SourceInfo->m_src_width;
- CGU_INT srcHeight = SourceInfo->m_src_height;
- if (xID >= (srcWidth / BlockX))
- return;
- if (yID >= (srcHeight / BlockY))
- return;
- //ASPM_PRINT(("[ASPM_OCL] %d %d size %d\n",xID,yID,sizeof(BC7_Encode)));
- CGU_INT destI = (xID * COMPRESSED_BLOCK_SIZE) + (yID * (srcWidth / BlockX) * COMPRESSED_BLOCK_SIZE);
- CGU_INT srcindex = 4 * (yID * srcWidth + xID);
- CGU_INT blkindex = 0;
- BC7_EncodeState EncodeState;
- cmp_memsetBC7((CGV_UINT8*)&EncodeState, 0, sizeof(EncodeState));
- copy_BC7_Encode_settings(&EncodeState, BC7Encode);
- //Check if it is a complete 4X4 block
- if (((xID + 1) * BlockX <= srcWidth) && ((yID + 1) * BlockY <= srcHeight))
- {
- srcWidth = srcWidth - 4;
- for (CGU_INT j = 0; j < 4; j++)
- {
- for (CGU_INT i = 0; i < 4; i++)
- {
- EncodeState.image_src[blkindex + 0 * SOURCE_BLOCK_SIZE] = ImageSource[srcindex].x;
- EncodeState.image_src[blkindex + 1 * SOURCE_BLOCK_SIZE] = ImageSource[srcindex].y;
- EncodeState.image_src[blkindex + 2 * SOURCE_BLOCK_SIZE] = ImageSource[srcindex].z;
- EncodeState.image_src[blkindex + 3 * SOURCE_BLOCK_SIZE] = ImageSource[srcindex].w;
- blkindex++;
- srcindex++;
- }
- srcindex += srcWidth;
- }
- BC7_CompressBlock(&EncodeState, BC7Encode);
- //printf("CMP %x %x %x %x %x %x %x %x\n",
- // EncodeState.cmp_out[0],
- // EncodeState.cmp_out[1],
- // EncodeState.cmp_out[2],
- // EncodeState.cmp_out[3],
- // EncodeState.cmp_out[4],
- // EncodeState.cmp_out[5],
- // EncodeState.cmp_out[6],
- // EncodeState.cmp_out[7]
- // );
- for (CGU_INT i = 0; i < COMPRESSED_BLOCK_SIZE; i++)
- {
- ImageDestination[destI + i] = EncodeState.cmp_out[i];
- }
- }
- else
- {
- ASPM_PRINT(("[ASPM_GPU] Unable to process, make sure image size is divisible by 4"));
- }
- }
- #endif
|