| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351 |
- // Copyright (c) 2019 Google LLC
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include "source/fuzz/fuzzer_pass_construct_composites.h"
- #include <memory>
- #include "source/fuzz/available_instructions.h"
- #include "source/fuzz/fuzzer_util.h"
- #include "source/fuzz/transformation_composite_construct.h"
- namespace spvtools {
- namespace fuzz {
- FuzzerPassConstructComposites::FuzzerPassConstructComposites(
- opt::IRContext* ir_context, TransformationContext* transformation_context,
- FuzzerContext* fuzzer_context,
- protobufs::TransformationSequence* transformations,
- bool ignore_inapplicable_transformations)
- : FuzzerPass(ir_context, transformation_context, fuzzer_context,
- transformations, ignore_inapplicable_transformations) {}
- void FuzzerPassConstructComposites::Apply() {
- // Gather up the ids of all composite types, but skip block-/buffer
- // block-decorated struct types.
- std::vector<uint32_t> composite_type_ids;
- for (auto& inst : GetIRContext()->types_values()) {
- if (fuzzerutil::IsCompositeType(
- GetIRContext()->get_type_mgr()->GetType(inst.result_id())) &&
- !fuzzerutil::HasBlockOrBufferBlockDecoration(GetIRContext(),
- inst.result_id())) {
- composite_type_ids.push_back(inst.result_id());
- }
- }
- if (composite_type_ids.empty()) {
- // There are no composite types, so this fuzzer pass cannot do anything.
- return;
- }
- AvailableInstructions available_composite_constituents(
- GetIRContext(),
- [this](opt::IRContext* ir_context, opt::Instruction* inst) -> bool {
- if (!inst->result_id() || !inst->type_id()) {
- return false;
- }
- // If the id is irrelevant, we can use it since it will not
- // participate in DataSynonym fact. Otherwise, we should be able
- // to produce a synonym out of the id.
- return GetTransformationContext()->GetFactManager()->IdIsIrrelevant(
- inst->result_id()) ||
- fuzzerutil::CanMakeSynonymOf(ir_context,
- *GetTransformationContext(), *inst);
- });
- ForEachInstructionWithInstructionDescriptor(
- [this, &available_composite_constituents, &composite_type_ids](
- opt::Function* /*unused*/, opt::BasicBlock* /*unused*/,
- opt::BasicBlock::iterator inst_it,
- const protobufs::InstructionDescriptor& instruction_descriptor)
- -> void {
- // Randomly decide whether to try inserting a composite construction
- // here.
- if (!GetFuzzerContext()->ChoosePercentage(
- GetFuzzerContext()->GetChanceOfConstructingComposite())) {
- return;
- }
- // Check whether it is legitimate to insert a composite construction
- // before the instruction.
- if (!fuzzerutil::CanInsertOpcodeBeforeInstruction(
- spv::Op::OpCompositeConstruct, inst_it)) {
- return;
- }
- // For each instruction that is available at this program point (i.e. an
- // instruction that is global or whose definition strictly dominates the
- // program point) and suitable for making a synonym of, associate it
- // with the id of its result type.
- TypeIdToInstructions type_id_to_available_instructions;
- auto available_instructions =
- available_composite_constituents.GetAvailableBeforeInstruction(
- &*inst_it);
- for (uint32_t available_instruction_index = 0;
- available_instruction_index < available_instructions.size();
- available_instruction_index++) {
- opt::Instruction* inst =
- available_instructions[available_instruction_index];
- type_id_to_available_instructions[inst->type_id()].push_back(
- inst->result_id());
- }
- // At this point, |composite_type_ids| captures all the composite types
- // we could try to create, while |type_id_to_available_instructions|
- // captures all the available result ids we might use, organized by
- // type.
- // Now we choose a composite type to construct, building it from
- // available constituent components and using zero constants if suitable
- // components are not available.
- std::vector<uint32_t> constructor_arguments;
- uint32_t chosen_composite_type =
- composite_type_ids[GetFuzzerContext()->RandomIndex(
- composite_type_ids)];
- // Construct a composite of this type, using an appropriate helper
- // method depending on the kind of composite type.
- auto composite_type_inst =
- GetIRContext()->get_def_use_mgr()->GetDef(chosen_composite_type);
- switch (composite_type_inst->opcode()) {
- case spv::Op::OpTypeArray:
- constructor_arguments = FindComponentsToConstructArray(
- *composite_type_inst, type_id_to_available_instructions);
- break;
- case spv::Op::OpTypeMatrix:
- constructor_arguments = FindComponentsToConstructMatrix(
- *composite_type_inst, type_id_to_available_instructions);
- break;
- case spv::Op::OpTypeStruct:
- constructor_arguments = FindComponentsToConstructStruct(
- *composite_type_inst, type_id_to_available_instructions);
- break;
- case spv::Op::OpTypeVector:
- constructor_arguments = FindComponentsToConstructVector(
- *composite_type_inst, type_id_to_available_instructions);
- break;
- default:
- assert(false &&
- "The space of possible composite types should be covered "
- "by the above cases.");
- break;
- }
- assert(!constructor_arguments.empty());
- // Make and apply a transformation.
- ApplyTransformation(TransformationCompositeConstruct(
- chosen_composite_type, constructor_arguments,
- instruction_descriptor, GetFuzzerContext()->GetFreshId()));
- });
- }
- std::vector<uint32_t>
- FuzzerPassConstructComposites::FindComponentsToConstructArray(
- const opt::Instruction& array_type_instruction,
- const TypeIdToInstructions& type_id_to_available_instructions) {
- assert(array_type_instruction.opcode() == spv::Op::OpTypeArray &&
- "Precondition: instruction must be an array type.");
- // Get the element type for the array.
- auto element_type_id = array_type_instruction.GetSingleWordInOperand(0);
- // Get all instructions at our disposal that compute something of this element
- // type.
- auto available_instructions =
- type_id_to_available_instructions.find(element_type_id);
- uint32_t array_length =
- GetIRContext()
- ->get_def_use_mgr()
- ->GetDef(array_type_instruction.GetSingleWordInOperand(1))
- ->GetSingleWordInOperand(0);
- std::vector<uint32_t> result;
- for (uint32_t index = 0; index < array_length; index++) {
- if (available_instructions == type_id_to_available_instructions.cend()) {
- // No suitable instructions are available, so use a zero constant
- result.push_back(FindOrCreateZeroConstant(element_type_id, true));
- } else {
- result.push_back(
- available_instructions->second[GetFuzzerContext()->RandomIndex(
- available_instructions->second)]);
- }
- }
- return result;
- }
- std::vector<uint32_t>
- FuzzerPassConstructComposites::FindComponentsToConstructMatrix(
- const opt::Instruction& matrix_type_instruction,
- const TypeIdToInstructions& type_id_to_available_instructions) {
- assert(matrix_type_instruction.opcode() == spv::Op::OpTypeMatrix &&
- "Precondition: instruction must be a matrix type.");
- // Get the element type for the matrix.
- auto element_type_id = matrix_type_instruction.GetSingleWordInOperand(0);
- // Get all instructions at our disposal that compute something of this element
- // type.
- auto available_instructions =
- type_id_to_available_instructions.find(element_type_id);
- std::vector<uint32_t> result;
- for (uint32_t index = 0;
- index < matrix_type_instruction.GetSingleWordInOperand(1); index++) {
- if (available_instructions == type_id_to_available_instructions.cend()) {
- // No suitable components are available, so use a zero constant.
- result.push_back(FindOrCreateZeroConstant(element_type_id, true));
- } else {
- result.push_back(
- available_instructions->second[GetFuzzerContext()->RandomIndex(
- available_instructions->second)]);
- }
- }
- return result;
- }
- std::vector<uint32_t>
- FuzzerPassConstructComposites::FindComponentsToConstructStruct(
- const opt::Instruction& struct_type_instruction,
- const TypeIdToInstructions& type_id_to_available_instructions) {
- assert(struct_type_instruction.opcode() == spv::Op::OpTypeStruct &&
- "Precondition: instruction must be a struct type.");
- std::vector<uint32_t> result;
- // Consider the type of each field of the struct.
- for (uint32_t in_operand_index = 0;
- in_operand_index < struct_type_instruction.NumInOperands();
- in_operand_index++) {
- auto element_type_id =
- struct_type_instruction.GetSingleWordInOperand(in_operand_index);
- // Find the instructions at our disposal that compute something of the field
- // type.
- auto available_instructions =
- type_id_to_available_instructions.find(element_type_id);
- if (available_instructions == type_id_to_available_instructions.cend()) {
- // No suitable component is available for this element type, so use a zero
- // constant.
- result.push_back(FindOrCreateZeroConstant(element_type_id, true));
- } else {
- result.push_back(
- available_instructions->second[GetFuzzerContext()->RandomIndex(
- available_instructions->second)]);
- }
- }
- return result;
- }
- std::vector<uint32_t>
- FuzzerPassConstructComposites::FindComponentsToConstructVector(
- const opt::Instruction& vector_type_instruction,
- const TypeIdToInstructions& type_id_to_available_instructions) {
- assert(vector_type_instruction.opcode() == spv::Op::OpTypeVector &&
- "Precondition: instruction must be a vector type.");
- // Get details of the type underlying the vector, and the width of the vector,
- // for convenience.
- auto element_type_id = vector_type_instruction.GetSingleWordInOperand(0);
- auto element_type = GetIRContext()->get_type_mgr()->GetType(element_type_id);
- auto element_count = vector_type_instruction.GetSingleWordInOperand(1);
- // Collect a mapping, from type id to width, for scalar/vector types that are
- // smaller in width than |vector_type|, but that have the same underlying
- // type. For example, if |vector_type| is vec4, the mapping will be:
- // { float -> 1, vec2 -> 2, vec3 -> 3 }
- // The mapping will have missing entries if some of these types do not exist.
- std::map<uint32_t, uint32_t> smaller_vector_type_id_to_width;
- // Add the underlying type. This id must exist, in order for |vector_type| to
- // exist.
- smaller_vector_type_id_to_width[element_type_id] = 1;
- // Now add every vector type with width at least 2, and less than the width of
- // |vector_type|.
- for (uint32_t width = 2; width < element_count; width++) {
- opt::analysis::Vector smaller_vector_type(element_type, width);
- auto smaller_vector_type_id =
- GetIRContext()->get_type_mgr()->GetId(&smaller_vector_type);
- // We might find that there is no declared type of this smaller width.
- // For example, a module can declare vec4 without having declared vec2 or
- // vec3.
- if (smaller_vector_type_id) {
- smaller_vector_type_id_to_width[smaller_vector_type_id] = width;
- }
- }
- // Now we know the types that are available to us, we set about populating a
- // vector of the right length. We do this by deciding, with no order in mind,
- // which instructions we will use to populate the vector, and subsequently
- // randomly choosing an order. This is to avoid biasing construction of
- // vectors with smaller vectors to the left and scalars to the right. That is
- // a concern because, e.g. in the case of populating a vec4, if we populate
- // the constructor instructions left-to-right, we can always choose a vec3 to
- // construct the first three elements, but can only choose a vec3 to construct
- // the last three elements if we chose a float to construct the first element
- // (otherwise there will not be space left for a vec3).
- uint32_t vector_slots_used = 0;
- // The instructions result ids we will use to construct the vector, in no
- // particular order at this stage.
- std::vector<uint32_t> result;
- while (vector_slots_used < element_count) {
- std::vector<uint32_t> instructions_to_choose_from;
- for (auto& entry : smaller_vector_type_id_to_width) {
- if (entry.second >
- std::min(element_count - 1, element_count - vector_slots_used)) {
- continue;
- }
- auto available_instructions =
- type_id_to_available_instructions.find(entry.first);
- if (available_instructions == type_id_to_available_instructions.cend()) {
- continue;
- }
- instructions_to_choose_from.insert(instructions_to_choose_from.end(),
- available_instructions->second.begin(),
- available_instructions->second.end());
- }
- // If there are no instructions to choose from then use a zero constant,
- // otherwise select one of the instructions at random.
- uint32_t id_of_instruction_to_use =
- instructions_to_choose_from.empty()
- ? FindOrCreateZeroConstant(element_type_id, true)
- : instructions_to_choose_from[GetFuzzerContext()->RandomIndex(
- instructions_to_choose_from)];
- opt::Instruction* instruction_to_use =
- GetIRContext()->get_def_use_mgr()->GetDef(id_of_instruction_to_use);
- result.push_back(instruction_to_use->result_id());
- auto chosen_type =
- GetIRContext()->get_type_mgr()->GetType(instruction_to_use->type_id());
- if (chosen_type->AsVector()) {
- assert(chosen_type->AsVector()->element_type() == element_type);
- assert(chosen_type->AsVector()->element_count() < element_count);
- assert(chosen_type->AsVector()->element_count() <=
- element_count - vector_slots_used);
- vector_slots_used += chosen_type->AsVector()->element_count();
- } else {
- assert(chosen_type == element_type);
- vector_slots_used += 1;
- }
- }
- assert(vector_slots_used == element_count);
- GetFuzzerContext()->Shuffle(&result);
- return result;
- }
- } // namespace fuzz
- } // namespace spvtools
|