| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194 |
- // Copyright (C) 2009-2018, Panagiotis Christopoulos Charitos and contributors.
- // All rights reserved.
- // Code licensed under the BSD License.
- // http://www.anki3d.org/LICENSE
- // Contains functions for light calculations
- #ifndef ANKI_SHADERS_LIGHT_FUNCTIONS_GLSL
- #define ANKI_SHADERS_LIGHT_FUNCTIONS_GLSL
- #include "shaders/Functions.glsl"
- #include "shaders/Pack.glsl"
- const float LIGHT_FRUSTUM_NEAR_PLANE = 0.1 / 4.0;
- const uint SHADOW_SAMPLE_COUNT = 16;
- const float ESM_CONSTANT = 40.0;
- // Fresnel term unreal
- vec3 F_Unreal(vec3 specular, float VoH)
- {
- return specular + (1.0 - specular) * pow(2.0, (-5.55473 * VoH - 6.98316) * VoH);
- }
- // Fresnel Schlick: "An Inexpensive BRDF Model for Physically-Based Rendering"
- // It has lower VGRPs than F_Unreal
- vec3 F_Schlick(vec3 specular, float VoH)
- {
- float a = 1.0 - VoH;
- float a2 = a * a;
- float a5 = a2 * a2 * a; // a5 = a^5
- return /*saturate(50.0 * specular.g) */ a5 + (1.0 - a5) * specular;
- }
- // D(n,h) aka NDF: GGX Trowbridge-Reitz
- float D_GGX(float roughness, float NoH)
- {
- float a = roughness * roughness;
- float a2 = a * a;
- float D = (NoH * a2 - NoH) * NoH + 1.0;
- return a2 / (PI * D * D);
- }
- // Visibility term: Geometric shadowing divided by BRDF denominator
- float V_Schlick(float roughness, float NoV, float NoL)
- {
- float k = (roughness * roughness) * 0.5;
- float Vis_SchlickV = NoV * (1.0 - k) + k;
- float Vis_SchlickL = NoL * (1.0 - k) + k;
- return 0.25 / (Vis_SchlickV * Vis_SchlickL);
- }
- vec3 envBRDF(vec3 specular, float roughness, sampler2D integrationLut, float NoV)
- {
- float a = roughness * roughness;
- float a2 = a * a;
- vec2 envBRDF = textureLod(integrationLut, vec2(a2, NoV), 0.0).xy;
- return specular * envBRDF.x + /*min(1.0, 50.0 * specular.g) */ envBRDF.y;
- }
- vec3 diffuseLambert(vec3 diffuse)
- {
- return diffuse * (1.0 / PI);
- }
- // Performs BRDF specular lighting
- vec3 computeSpecularColorBrdf(GbufferInfo gbuffer, vec3 viewDir, vec3 frag2Light)
- {
- vec3 H = normalize(frag2Light + viewDir);
- float NoL = max(EPSILON, dot(gbuffer.normal, frag2Light));
- float VoH = max(EPSILON, dot(viewDir, H));
- float NoH = max(EPSILON, dot(gbuffer.normal, H));
- float NoV = max(EPSILON, dot(gbuffer.normal, viewDir));
- // F
- #if 0
- vec3 F = F_Unreal(gbuffer.specular, VoH);
- #else
- vec3 F = F_Schlick(gbuffer.specular, VoH);
- #endif
- // D
- float D = D_GGX(gbuffer.roughness, NoH);
- // Vis
- float V = V_Schlick(gbuffer.roughness, NoV, NoL);
- return F * (V * D);
- }
- float computeSpotFactor(vec3 l, float outerCos, float innerCos, vec3 spotDir)
- {
- float costheta = -dot(l, spotDir);
- float spotFactor = smoothstep(outerCos, innerCos, costheta);
- return spotFactor;
- }
- uint computeShadowSampleCount(const uint COUNT, float zVSpace)
- {
- const float MAX_DISTANCE = 5.0;
- float z = max(zVSpace, -MAX_DISTANCE);
- float sampleCountf = float(COUNT) + z * (float(COUNT) / MAX_DISTANCE);
- sampleCountf = max(sampleCountf, 1.0);
- uint sampleCount = uint(sampleCountf);
- return sampleCount;
- }
- float computeShadowFactorSpot(mat4 lightProjectionMat, vec3 worldPos, float distance, sampler2D spotMapArr)
- {
- vec4 texCoords4 = lightProjectionMat * vec4(worldPos, 1.0);
- vec3 texCoords3 = texCoords4.xyz / texCoords4.w;
- const float near = LIGHT_FRUSTUM_NEAR_PLANE;
- const float far = distance;
- float linearDepth = linearizeDepth(texCoords3.z, near, far);
- float shadowFactor = textureLod(spotMapArr, texCoords3.xy, 0.0).r;
- return saturate(exp(ESM_CONSTANT * (shadowFactor - linearDepth)));
- }
- float computeShadowFactorOmni(vec3 frag2Light, float radius, uvec2 atlasTiles, float tileSize, sampler2D shadowMap)
- {
- vec3 dir = -frag2Light;
- vec3 dirabs = abs(dir);
- float dist = max(dirabs.x, max(dirabs.y, dirabs.z));
- const float near = LIGHT_FRUSTUM_NEAR_PLANE;
- const float far = radius;
- float linearDepth = (dist - near) / (far - near);
- // Read tex
- float shadowFactor;
- {
- // Convert cube coords
- uint faceIdxu;
- vec2 uv = convertCubeUvsu(dir, faceIdxu);
- // Compute atlas tile
- atlasTiles >>= uvec2(faceIdxu * 5u);
- atlasTiles &= uvec2(31u);
- // Compute UV
- uv = (uv + vec2(atlasTiles)) * tileSize;
- // Sample
- shadowFactor = textureLod(shadowMap, uv, 0.0).r;
- }
- return saturate(exp(ESM_CONSTANT * (shadowFactor - linearDepth)));
- }
- // Compute the cubemap texture lookup vector given the reflection vector (r) the radius squared of the probe (R2) and
- // the frag pos in sphere space (f)
- vec3 computeCubemapVecAccurate(in vec3 r, in float R2, in vec3 f)
- {
- // Compute the collision of the r to the inner part of the sphere
- // From now on we work on the sphere's space
- // Project the center of the sphere (it's zero now since we are in sphere space) in ray "f,r"
- vec3 p = f - r * dot(f, r);
- // The collision to the sphere is point x where x = p + T * r
- // Because of the pythagorean theorem: R^2 = dot(p, p) + dot(T * r, T * r)
- // solving for T, T = R / |p|
- // then x becomes x = sqrt(R^2 - dot(p, p)) * r + p;
- float pp = dot(p, p);
- pp = min(pp, R2);
- float sq = sqrt(R2 - pp);
- vec3 x = p + sq * r;
- return x;
- }
- // Cheap version of computeCubemapVecAccurate
- vec3 computeCubemapVecCheap(in vec3 r, in float R2, in vec3 f)
- {
- return r;
- }
- float computeAttenuationFactor(float lightRadius, vec3 frag2Light)
- {
- float fragLightDist = dot(frag2Light, frag2Light);
- float att = 1.0 - fragLightDist * lightRadius;
- att = max(0.0, att);
- return att * att;
- }
- #endif
|