|
|
@@ -0,0 +1,529 @@
|
|
|
+/*
|
|
|
+ * Progressive Mesh type Polygon Reduction Algorithm
|
|
|
+ *
|
|
|
+ * Original version by Stan Melax (c) 1998
|
|
|
+ * C version by Cloud Wu (c) 2020
|
|
|
+ *
|
|
|
+ * The function ProgressiveMesh() takes a model in an "indexed face
|
|
|
+ * set" sort of way. i.e. Array of vertices and Array of triangles.
|
|
|
+ * The function then does the polygon reduction algorithm
|
|
|
+ * internally and reduces the model all the way down to 0
|
|
|
+ * vertices and then returns the order in which the
|
|
|
+ * vertices are collapsed and to which neighbor each vertex
|
|
|
+ * is collapsed to. More specifically the returned "permutation"
|
|
|
+ * indicates how to reorder your vertices so you can render
|
|
|
+ * an object by using the first n vertices (for the n
|
|
|
+ * vertex version). After permuting your vertices, the
|
|
|
+ * map Array indicates to which vertex each vertex is collapsed to.
|
|
|
+ */
|
|
|
+
|
|
|
+#include <assert.h>
|
|
|
+#include <math.h>
|
|
|
+#include <stdlib.h>
|
|
|
+
|
|
|
+#define ARRAY_SIZE 16
|
|
|
+
|
|
|
+struct triangle {
|
|
|
+ int vertex[3]; // the 3 points (id) that make this tri
|
|
|
+ float normal[3]; // unit vector othogonal to this face
|
|
|
+};
|
|
|
+
|
|
|
+struct array {
|
|
|
+ int n;
|
|
|
+ int cap;
|
|
|
+ int *buffer;
|
|
|
+ int tmp[ARRAY_SIZE];
|
|
|
+};
|
|
|
+
|
|
|
+struct vertex {
|
|
|
+ float position[3]; // location of point in euclidean space
|
|
|
+ int id; // place of vertex in original Array
|
|
|
+ struct array neighbor; // adjacent vertices
|
|
|
+ struct array face; // adjacent triangles
|
|
|
+ float objdist; // cached cost of collapsing edge
|
|
|
+ int collapse; // candidate vertex (id) for collapse
|
|
|
+};
|
|
|
+
|
|
|
+struct mesh {
|
|
|
+ int n_face;
|
|
|
+ int n_vertex;
|
|
|
+ struct vertex *v;
|
|
|
+ struct triangle *t;
|
|
|
+};
|
|
|
+
|
|
|
+// vec3 math
|
|
|
+
|
|
|
+static inline void
|
|
|
+vec3_sub(const float v0[3], const float v1[3], float v[3]) {
|
|
|
+ v[0] = v0[0] - v1[0];
|
|
|
+ v[1] = v0[1] - v1[1];
|
|
|
+ v[2] = v0[2] - v1[2];
|
|
|
+}
|
|
|
+
|
|
|
+static inline void
|
|
|
+vec3_cross(const float a[3], const float b[3], float v[3]) {
|
|
|
+ v[0] = a[1]*b[2] - a[2]*b[1];
|
|
|
+ v[1] = a[2]*b[0] - a[0]*b[2];
|
|
|
+ v[2] = a[0]*b[1] - a[1]*b[0];
|
|
|
+}
|
|
|
+
|
|
|
+static inline float
|
|
|
+vec3_dot(const float a[3], const float b[3]) {
|
|
|
+ return a[0]*b[0] + a[1]*b[1] + a[2] * b[2];
|
|
|
+}
|
|
|
+
|
|
|
+static inline float
|
|
|
+vec3_length(const float v[3]) {
|
|
|
+ return sqrtf(vec3_dot(v,v));
|
|
|
+}
|
|
|
+
|
|
|
+static inline void
|
|
|
+vec3_normalize(float v[3]) {
|
|
|
+ const float invLen = 1.0f/vec3_length(v);
|
|
|
+ v[0] *= invLen;
|
|
|
+ v[1] *= invLen;
|
|
|
+ v[2] *= invLen;
|
|
|
+}
|
|
|
+
|
|
|
+// array
|
|
|
+
|
|
|
+static void
|
|
|
+array_init(struct array *a) {
|
|
|
+ a->n = 0;
|
|
|
+ a->cap = ARRAY_SIZE;
|
|
|
+ a->buffer = a->tmp;
|
|
|
+}
|
|
|
+
|
|
|
+static void
|
|
|
+array_deinit(struct array *a) {
|
|
|
+ if (a->buffer != a->tmp) {
|
|
|
+ free(a->buffer);
|
|
|
+ a->buffer = a->tmp;
|
|
|
+ a->cap = ARRAY_SIZE;
|
|
|
+ a->n = 0;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+static inline int
|
|
|
+array_index(struct array *a, int idx) {
|
|
|
+ return a->buffer[idx];
|
|
|
+}
|
|
|
+
|
|
|
+static void
|
|
|
+array_push(struct array *a, int v) {
|
|
|
+ if (a->n >= a->cap) {
|
|
|
+ int *old = a->buffer;
|
|
|
+ a->buffer = (int *)malloc(a->cap * 2 * sizeof(int));
|
|
|
+ int i;
|
|
|
+ for (i=0;i<a->n;i++) {
|
|
|
+ a->buffer[i] = old[i];
|
|
|
+ }
|
|
|
+ if (old != a->tmp)
|
|
|
+ free(old);
|
|
|
+ }
|
|
|
+ a->buffer[a->n++] = v;
|
|
|
+}
|
|
|
+
|
|
|
+static inline void
|
|
|
+array_remove_index(struct array *a, int idx) {
|
|
|
+ a->buffer[idx] = a->buffer[--a->n];
|
|
|
+}
|
|
|
+
|
|
|
+static void
|
|
|
+array_remove(struct array *a, int v) {
|
|
|
+ int i;
|
|
|
+ for (i=0; i<a->n; i++) {
|
|
|
+ if (a->buffer[i] == v) {
|
|
|
+ array_remove_index(a, i);
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+static inline struct vertex *
|
|
|
+Vertex(struct mesh *M, int id) {
|
|
|
+ return &M->v[id];
|
|
|
+}
|
|
|
+
|
|
|
+static inline struct triangle *
|
|
|
+Triangle(struct mesh *M, int id) {
|
|
|
+ return &M->t[id];
|
|
|
+}
|
|
|
+
|
|
|
+static inline struct triangle *
|
|
|
+Face(struct mesh *M, struct vertex *v, int idx) {
|
|
|
+ return Triangle(M, array_index(&v->face, idx));
|
|
|
+}
|
|
|
+
|
|
|
+static void
|
|
|
+AddVertex(struct mesh *M, const float v[3]) {
|
|
|
+ int id = M->n_vertex++;
|
|
|
+ struct vertex * tmp = Vertex(M, id);
|
|
|
+ tmp->position[0] = v[0];
|
|
|
+ tmp->position[1] = v[1];
|
|
|
+ tmp->position[2] = v[2];
|
|
|
+ tmp->id = id;
|
|
|
+ array_init(&tmp->neighbor);
|
|
|
+ array_init(&tmp->face);
|
|
|
+ tmp->objdist = 0;
|
|
|
+ tmp->collapse = -1;
|
|
|
+}
|
|
|
+
|
|
|
+static void
|
|
|
+RemoveVertex(struct mesh *M, int id) {
|
|
|
+ struct vertex * v = Vertex(M, id);
|
|
|
+ assert(v->id == id);
|
|
|
+ assert(v->face.n == 0);
|
|
|
+ int i;
|
|
|
+ for (i=0;i<v->face.n;i++) {
|
|
|
+ struct vertex * nv = Vertex(M, array_index(&v->face, i));
|
|
|
+ array_remove(&nv->neighbor, id);
|
|
|
+ }
|
|
|
+ v->id = -1; // invalid vertex id
|
|
|
+ array_deinit(&v->neighbor);
|
|
|
+ array_deinit(&v->face);
|
|
|
+}
|
|
|
+
|
|
|
+static void
|
|
|
+ComputeNormal(struct mesh *M, struct triangle *t) {
|
|
|
+ struct vertex * v0 = Vertex(M, t->vertex[0]);
|
|
|
+ struct vertex * v1 = Vertex(M, t->vertex[1]);
|
|
|
+ struct vertex * v2 = Vertex(M, t->vertex[2]);
|
|
|
+ float a[3], b[3];
|
|
|
+ vec3_sub(v1->position, v0->position, a);
|
|
|
+ vec3_sub(v2->position, v1->position, b);
|
|
|
+ vec3_cross(a,b, t->normal);
|
|
|
+ vec3_normalize(t->normal);
|
|
|
+}
|
|
|
+
|
|
|
+static void
|
|
|
+AddNeighbor(struct mesh *M, int vid, int id) {
|
|
|
+ struct vertex *v = Vertex(M, vid);
|
|
|
+ int i;
|
|
|
+ for (i=0;i<v->neighbor.n;i++) {
|
|
|
+ if (array_index(&v->neighbor,i) == id)
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ array_push(&v->neighbor, id);
|
|
|
+}
|
|
|
+
|
|
|
+#include <stdio.h>
|
|
|
+
|
|
|
+static void
|
|
|
+AddTriangle(struct mesh *M, const int v[3]) {
|
|
|
+ int v0 = v[0];
|
|
|
+ int v1 = v[1];
|
|
|
+ int v2 = v[2];
|
|
|
+ if (v0 == v1 || v0 == v2 || v1 == v2)
|
|
|
+ return;
|
|
|
+ assert(v0 < M->n_vertex);
|
|
|
+ assert(v1 < M->n_vertex);
|
|
|
+ assert(v2 < M->n_vertex);
|
|
|
+ int id = M->n_face++;
|
|
|
+ struct triangle * tmp = Triangle(M, id);
|
|
|
+ tmp->vertex[0] = v0;
|
|
|
+ tmp->vertex[1] = v1;
|
|
|
+ tmp->vertex[2] = v2;
|
|
|
+ ComputeNormal(M, tmp);
|
|
|
+
|
|
|
+ int i;
|
|
|
+ for(i=0;i<3;i++) {
|
|
|
+ struct vertex *obj = Vertex(M, v[i]);
|
|
|
+ array_push(&obj->face, id);
|
|
|
+ }
|
|
|
+
|
|
|
+ AddNeighbor(M, v0, v1);
|
|
|
+ AddNeighbor(M, v0, v2);
|
|
|
+ AddNeighbor(M, v1, v0);
|
|
|
+ AddNeighbor(M, v1, v2);
|
|
|
+ AddNeighbor(M, v2, v0);
|
|
|
+ AddNeighbor(M, v2, v1);
|
|
|
+}
|
|
|
+
|
|
|
+static int
|
|
|
+HasVertex(struct triangle * t, int vid) {
|
|
|
+ return (t->vertex[0] == vid || t->vertex[1] == vid || t->vertex[2] == vid);
|
|
|
+}
|
|
|
+
|
|
|
+static void
|
|
|
+RemoveIfNonNeighbor_(struct mesh *M, struct vertex *v, int id) {
|
|
|
+ int i,j;
|
|
|
+ for (i=0;i<v->neighbor.n;i++) {
|
|
|
+ if (array_index(&v->neighbor, i) == id) {
|
|
|
+ for (j=0;j<v->face.n;j++) {
|
|
|
+ if (HasVertex(Face(M, v, j), id))
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ // remove from neighbors
|
|
|
+ array_remove_index(&v->neighbor, i);
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+static void
|
|
|
+RemoveIfNonNeighbor(struct mesh *M, struct vertex *v0, struct vertex *v1) {
|
|
|
+ if (v0 == NULL || v1 == NULL)
|
|
|
+ return;
|
|
|
+ RemoveIfNonNeighbor_(M, v0, v1->id);
|
|
|
+ RemoveIfNonNeighbor_(M, v1, v0->id);
|
|
|
+}
|
|
|
+
|
|
|
+static void
|
|
|
+RemoveTriangle(struct mesh *M, int id) {
|
|
|
+ struct triangle * face = Triangle(M, id);
|
|
|
+ struct vertex * v[3];
|
|
|
+ int i;
|
|
|
+ for (i=0;i<3;i++) {
|
|
|
+ v[i] = Vertex(M, face->vertex[i]);
|
|
|
+ if (v[i]->id < 0)
|
|
|
+ v[i] = NULL;
|
|
|
+ else {
|
|
|
+ array_remove(&v[i]->face, id);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ RemoveIfNonNeighbor(M, v[0], v[1]);
|
|
|
+ RemoveIfNonNeighbor(M, v[1], v[2]);
|
|
|
+ RemoveIfNonNeighbor(M, v[2], v[0]);
|
|
|
+}
|
|
|
+
|
|
|
+static void
|
|
|
+ReplaceVertex(struct mesh *M, int faceid, int oldid, int newid) {
|
|
|
+ struct triangle * face = Triangle(M, faceid);
|
|
|
+ assert(oldid >=0 && newid >= 0);
|
|
|
+ assert(HasVertex(face, oldid));
|
|
|
+ assert(!HasVertex(face, newid));
|
|
|
+ if(oldid==face->vertex[0]){
|
|
|
+ face->vertex[0]=newid;
|
|
|
+ } else if(oldid==face->vertex[1]){
|
|
|
+ face->vertex[1]=newid;
|
|
|
+ } else {
|
|
|
+ face->vertex[2]=newid;
|
|
|
+ }
|
|
|
+ struct vertex *vold = Vertex(M, oldid);
|
|
|
+ struct vertex *vnew = Vertex(M, newid);
|
|
|
+
|
|
|
+ array_remove(&vold->face, faceid);
|
|
|
+ array_push(&vnew->face, faceid);
|
|
|
+
|
|
|
+ int i;
|
|
|
+ for (i = 0; i<3; i++) {
|
|
|
+ struct vertex *v = Vertex(M, face->vertex[i]);
|
|
|
+ RemoveIfNonNeighbor(M, vold, v);
|
|
|
+ }
|
|
|
+
|
|
|
+ AddNeighbor(M, face->vertex[0], face->vertex[1]);
|
|
|
+ AddNeighbor(M, face->vertex[0], face->vertex[2]);
|
|
|
+ AddNeighbor(M, face->vertex[1], face->vertex[0]);
|
|
|
+ AddNeighbor(M, face->vertex[1], face->vertex[2]);
|
|
|
+ AddNeighbor(M, face->vertex[2], face->vertex[0]);
|
|
|
+ AddNeighbor(M, face->vertex[2], face->vertex[1]);
|
|
|
+
|
|
|
+ ComputeNormal(M, face);
|
|
|
+}
|
|
|
+
|
|
|
+static void
|
|
|
+mesh_init(struct mesh *M, int vert_n, int tri_n) {
|
|
|
+ M->n_face = 0;
|
|
|
+ M->n_vertex = 0;
|
|
|
+ M->v = (struct vertex *)malloc(vert_n * sizeof(struct vertex));
|
|
|
+ M->t = (struct triangle *)malloc(tri_n * sizeof(struct triangle));
|
|
|
+}
|
|
|
+
|
|
|
+static void
|
|
|
+mesh_deinit(struct mesh *M) {
|
|
|
+ free(M->v);
|
|
|
+ free(M->t);
|
|
|
+}
|
|
|
+
|
|
|
+static float
|
|
|
+ComputeEdgeCollapseCost(struct mesh *M, struct vertex *u, int vid) {
|
|
|
+ // if we collapse edge uv by moving u to v then how
|
|
|
+ // much different will the model change, i.e. how much "error".
|
|
|
+ // Texture, vertex normal, and border vertex code was removed
|
|
|
+ // to keep this demo as simple as possible.
|
|
|
+ // The method of determining cost was designed in order
|
|
|
+ // to exploit small and coplanar regions for
|
|
|
+ // effective polygon reduction.
|
|
|
+ // Is is possible to add some checks here to see if "folds"
|
|
|
+ // would be generated. i.e. normal of a remaining face gets
|
|
|
+ // flipped. I never seemed to run into this problem and
|
|
|
+ // therefore never added code to detect this case.
|
|
|
+ struct vertex *v = Vertex(M, vid);
|
|
|
+ float tmp[3];
|
|
|
+ vec3_sub(v->position, u->position, tmp);
|
|
|
+ float edgelength = vec3_length(tmp);
|
|
|
+ float curvature=0;
|
|
|
+
|
|
|
+ // find the "sides" triangles that are on the edge uv
|
|
|
+ struct array sides;
|
|
|
+ array_init(&sides);
|
|
|
+ int i,j;
|
|
|
+ for (i = 0; i<u->face.n; i++) {
|
|
|
+ if (HasVertex(Face(M, u, i), vid)) {
|
|
|
+ array_push(&sides, array_index(&u->face, i));
|
|
|
+ }
|
|
|
+ }
|
|
|
+ // use the triangle facing most away from the sides
|
|
|
+ // to determine our curvature term
|
|
|
+ for (i = 0; i<u->face.n; i++) {
|
|
|
+ float mincurv=1; // curve for face i and closer side to it
|
|
|
+ for (j = 0; j<sides.n; j++) {
|
|
|
+ float dotprod = vec3_dot(Triangle(M, array_index(&u->face, i))->normal,
|
|
|
+ Triangle(M, array_index(&sides,j))->normal); // use dot product of face normals.
|
|
|
+ float t = (1-dotprod)/2.0f;
|
|
|
+ if (t < mincurv) {
|
|
|
+ mincurv = t;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if (mincurv > curvature)
|
|
|
+ curvature = mincurv;
|
|
|
+ }
|
|
|
+ array_deinit(&sides);
|
|
|
+ // the more coplanar the lower the curvature term
|
|
|
+ return edgelength * curvature;
|
|
|
+}
|
|
|
+
|
|
|
+static void
|
|
|
+ComputeEdgeCostAtVertex(struct mesh *M, struct vertex *v) {
|
|
|
+ // compute the edge collapse cost for all edges that start
|
|
|
+ // from vertex v. Since we are only interested in reducing
|
|
|
+ // the object by selecting the min cost edge at each step, we
|
|
|
+ // only cache the cost of the least cost edge at this vertex
|
|
|
+ // (in member variable collapse) as well as the value of the
|
|
|
+ // cost (in member variable objdist).
|
|
|
+ if (v->neighbor.n == 0) {
|
|
|
+ // v doesn't have neighbors so it costs nothing to collapse
|
|
|
+ v->collapse=-1;
|
|
|
+ v->objdist=-0.01f;
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ v->objdist = 1000000;
|
|
|
+ v->collapse=-1;
|
|
|
+ // search all neighboring edges for "least cost" edge
|
|
|
+ int i;
|
|
|
+ for (i = 0; i<v->neighbor.n; i++) {
|
|
|
+ float dist;
|
|
|
+ dist = ComputeEdgeCollapseCost(M, v, array_index(&v->neighbor, i));
|
|
|
+ if(dist<v->objdist) {
|
|
|
+ v->collapse=array_index(&v->neighbor, i); // candidate for edge collapse
|
|
|
+ v->objdist=dist; // cost of the collapse
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+static void
|
|
|
+ComputeAllEdgeCollapseCosts(struct mesh *M) {
|
|
|
+ // For all the edges, compute the difference it would make
|
|
|
+ // to the model if it was collapsed. The least of these
|
|
|
+ // per vertex is cached in each vertex object.
|
|
|
+ int i;
|
|
|
+ for (i = 0; i<M->n_vertex; i++) {
|
|
|
+ ComputeEdgeCostAtVertex(M, Vertex(M, i));
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+static void
|
|
|
+Collapse(struct mesh *M, int uid, int vid) {
|
|
|
+ // Collapse the edge uv by moving vertex u onto v
|
|
|
+ // Actually remove tris on uv, then update tris that
|
|
|
+ // have u to have v, and then remove u.
|
|
|
+ struct vertex *u = Vertex(M, uid);
|
|
|
+ if(vid < 0) {
|
|
|
+ // u is a vertex all by itself so just delete it
|
|
|
+ RemoveVertex(M, uid);
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
+ struct array tmp;
|
|
|
+ array_init(&tmp);
|
|
|
+ int i;
|
|
|
+ // make tmp a Array of all the neighbors of u
|
|
|
+ for (i = 0; i<u->neighbor.n; i++) {
|
|
|
+ array_push(&tmp, array_index(&u->neighbor, i));
|
|
|
+ }
|
|
|
+
|
|
|
+ // delete triangles on edge uv:
|
|
|
+ {
|
|
|
+ i = u->face.n;
|
|
|
+ while (i--) {
|
|
|
+ if (HasVertex(Face(M, u, i), vid)) {
|
|
|
+ RemoveTriangle(M, array_index(&u->face, i));
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ // update remaining triangles to have v instead of u
|
|
|
+ {
|
|
|
+ i = u->face.n;
|
|
|
+ while (i--) {
|
|
|
+ ReplaceVertex(M, array_index(&u->face, i), uid, vid);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ RemoveVertex(M, uid);
|
|
|
+ // recompute the edge collapse costs for neighboring vertices
|
|
|
+ for (i = 0; i<tmp.n; i++) {
|
|
|
+ ComputeEdgeCostAtVertex(M, Vertex(M, array_index(&tmp, i)));
|
|
|
+ }
|
|
|
+ array_deinit(&tmp);
|
|
|
+}
|
|
|
+
|
|
|
+static struct vertex *
|
|
|
+MinimumCostEdge(struct mesh *M) {
|
|
|
+ // Find the edge that when collapsed will affect model the least.
|
|
|
+ // This funtion actually returns a Vertex, the second vertex
|
|
|
+ // of the edge (collapse candidate) is stored in the vertex data.
|
|
|
+ // Serious optimization opportunity here: this function currently
|
|
|
+ // does a sequential search through an unsorted Array :-(
|
|
|
+ // Our algorithm could be O(n*lg(n)) instead of O(n*n)
|
|
|
+ int i;
|
|
|
+ struct vertex *mn = NULL;
|
|
|
+ for (i = 0; i<M->n_vertex; i++) {
|
|
|
+ struct vertex *v = Vertex(M, i);
|
|
|
+ if (v->id >=0) {
|
|
|
+ if (mn == NULL || v->objdist < mn->objdist) {
|
|
|
+ mn = v;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return mn;
|
|
|
+}
|
|
|
+
|
|
|
+void
|
|
|
+ProgressiveMesh(int vert_n, int vert_stride, const float *v, int tri_n, const int *tri, int *map, int *permutation) {
|
|
|
+ struct mesh M;
|
|
|
+ mesh_init(&M, vert_n, tri_n);
|
|
|
+
|
|
|
+ // put input data into our data structures M
|
|
|
+ int i;
|
|
|
+ const char * tmp = (const char *)v;
|
|
|
+ for (i=0;i<vert_n;i++) {
|
|
|
+ AddVertex(&M, (const float *) tmp);
|
|
|
+ tmp += vert_stride;
|
|
|
+ }
|
|
|
+
|
|
|
+ for (i=0;i<tri_n;i++) {
|
|
|
+ AddTriangle(&M, &tri[i*3]);
|
|
|
+ }
|
|
|
+
|
|
|
+ ComputeAllEdgeCollapseCosts(&M); // cache all edge collapse costs
|
|
|
+
|
|
|
+ for (i = vert_n-1; i>=0; i--) {
|
|
|
+ // get the next vertex to collapse
|
|
|
+ struct vertex *mn = MinimumCostEdge(&M);
|
|
|
+ // keep track of this vertex, i.e. the collapse ordering
|
|
|
+ permutation[mn->id] = i;
|
|
|
+ // keep track of vertex to which we collapse to
|
|
|
+ map[i] = mn->collapse;
|
|
|
+ // Collapse this edge
|
|
|
+ Collapse(&M, mn->id, mn->collapse);
|
|
|
+ }
|
|
|
+
|
|
|
+ // reorder the map Array based on the collapse ordering
|
|
|
+ for (i = 0; i<vert_n; i++) {
|
|
|
+ map[i] = (map[i]==-1)?0:permutation[map[i]];
|
|
|
+ }
|
|
|
+ // The caller of this function should reorder their vertices
|
|
|
+ // according to the returned "permutation".
|
|
|
+
|
|
|
+ mesh_deinit(&M);
|
|
|
+}
|