// gltfpack is part of meshoptimizer library; see meshoptimizer.h for version/license details // // gltfpack is a command-line tool that takes a glTF file as an input and can produce two types of files: // - regular glb/gltf files that use data that has been optimized for GPU consumption using various cache optimizers // and quantization // - packed glb/gltf files that additionally use meshoptimizer codecs to reduce the size of vertex/index data; these // files can be further compressed with deflate/etc. // // To load regular glb files, it should be sufficient to use a standard glTF loader (although note that these files // use quantized position/texture coordinates that are technically invalid per spec; THREE.js and BabylonJS support // these files out of the box). // To load packed glb files, meshoptimizer vertex decoder needs to be integrated into the loader; demo/GLTFLoader.js // contains a work-in-progress loader - please note that the extension specification isn't ready yet so the format // will change! #ifndef _CRT_SECURE_NO_WARNINGS #define _CRT_SECURE_NO_WARNINGS #endif #ifndef _CRT_NONSTDC_NO_WARNINGS #define _CRT_NONSTDC_NO_WARNINGS #endif #include "../src/meshoptimizer.h" #include #include #include #include #include #include #include #include #include #include "cgltf.h" #include "fast_obj.h" struct Attr { float f[4]; }; struct Stream { cgltf_attribute_type type; int index; int target; // 0 = base mesh, 1+ = morph target std::vector data; }; struct Mesh { cgltf_node* node; cgltf_material* material; cgltf_skin* skin; cgltf_primitive_type type; std::vector streams; std::vector indices; size_t targets; std::vector target_weights; std::vector target_names; }; struct Settings { int pos_bits; int tex_bits; int nrm_bits; bool nrm_unnormalized; int anim_freq; bool anim_const; bool keep_named; float simplify_threshold; bool simplify_aggressive; bool compress; bool fallback; int verbose; }; struct QuantizationParams { float pos_offset[3]; float pos_scale; int pos_bits; float uv_offset[2]; float uv_scale[2]; int uv_bits; }; struct StreamFormat { cgltf_type type; cgltf_component_type component_type; bool normalized; size_t stride; }; struct NodeInfo { bool keep; bool animated; unsigned int animated_paths; int remap; std::vector meshes; }; struct MaterialInfo { bool keep; int remap; }; struct BufferView { enum Kind { Kind_Vertex, Kind_Index, Kind_Skin, Kind_Time, Kind_Keyframe, Kind_Image, Kind_Count }; Kind kind; int variant; size_t stride; bool compressed; std::string data; size_t bytes; }; const char* getError(cgltf_result result) { switch (result) { case cgltf_result_file_not_found: return "file not found"; case cgltf_result_io_error: return "I/O error"; case cgltf_result_invalid_json: return "invalid JSON"; case cgltf_result_invalid_gltf: return "invalid GLTF"; case cgltf_result_out_of_memory: return "out of memory"; default: return "unknown error"; } } cgltf_accessor* getAccessor(const cgltf_attribute* attributes, size_t attribute_count, cgltf_attribute_type type, int index = 0) { for (size_t i = 0; i < attribute_count; ++i) if (attributes[i].type == type && attributes[i].index == index) return attributes[i].data; return 0; } void readAccessor(std::vector& data, const cgltf_accessor* accessor) { assert(accessor->type == cgltf_type_scalar); data.resize(accessor->count); cgltf_accessor_unpack_floats(accessor, &data[0], data.size()); } void readAccessor(std::vector& data, const cgltf_accessor* accessor) { size_t components = cgltf_num_components(accessor->type); std::vector temp(accessor->count * components); cgltf_accessor_unpack_floats(accessor, &temp[0], temp.size()); data.resize(accessor->count); for (size_t i = 0; i < accessor->count; ++i) { for (size_t k = 0; k < components && k < 4; ++k) data[i].f[k] = temp[i * components + k]; } } void transformPosition(float* ptr, const float* transform) { float x = ptr[0] * transform[0] + ptr[1] * transform[4] + ptr[2] * transform[8] + transform[12]; float y = ptr[0] * transform[1] + ptr[1] * transform[5] + ptr[2] * transform[9] + transform[13]; float z = ptr[0] * transform[2] + ptr[1] * transform[6] + ptr[2] * transform[10] + transform[14]; ptr[0] = x; ptr[1] = y; ptr[2] = z; } void transformNormal(float* ptr, const float* transform) { float x = ptr[0] * transform[0] + ptr[1] * transform[4] + ptr[2] * transform[8]; float y = ptr[0] * transform[1] + ptr[1] * transform[5] + ptr[2] * transform[9]; float z = ptr[0] * transform[2] + ptr[1] * transform[6] + ptr[2] * transform[10]; float l = sqrtf(x * x + y * y + z * z); float s = (l == 0.f) ? 0.f : 1 / l; ptr[0] = x * s; ptr[1] = y * s; ptr[2] = z * s; } void transformMesh(Mesh& mesh, const cgltf_node* node) { float transform[16]; cgltf_node_transform_world(node, transform); for (size_t si = 0; si < mesh.streams.size(); ++si) { Stream& stream = mesh.streams[si]; if (stream.type == cgltf_attribute_type_position) { for (size_t i = 0; i < stream.data.size(); ++i) transformPosition(stream.data[i].f, transform); } else if (stream.type == cgltf_attribute_type_normal || stream.type == cgltf_attribute_type_tangent) { for (size_t i = 0; i < stream.data.size(); ++i) transformNormal(stream.data[i].f, transform); } } } void parseMeshesGltf(cgltf_data* data, std::vector& meshes) { for (size_t ni = 0; ni < data->nodes_count; ++ni) { cgltf_node& node = data->nodes[ni]; if (!node.mesh) continue; const cgltf_mesh& mesh = *node.mesh; int mesh_id = int(&mesh - data->meshes); for (size_t pi = 0; pi < mesh.primitives_count; ++pi) { const cgltf_primitive& primitive = mesh.primitives[pi]; if (primitive.type != cgltf_primitive_type_triangles && primitive.type != cgltf_primitive_type_points) { fprintf(stderr, "Warning: ignoring primitive %d of mesh %d because type %d is not supported\n", int(pi), mesh_id, primitive.type); continue; } if (primitive.type == cgltf_primitive_type_points && primitive.indices) { fprintf(stderr, "Warning: ignoring primitive %d of mesh %d because indexed points are not supported\n", int(pi), mesh_id); continue; } Mesh result; result.node = &node; result.material = primitive.material; result.skin = node.skin; result.type = primitive.type; if (primitive.indices) { result.indices.resize(primitive.indices->count); for (size_t i = 0; i < primitive.indices->count; ++i) result.indices[i] = unsigned(cgltf_accessor_read_index(primitive.indices, i)); } else if (primitive.type != cgltf_primitive_type_points) { size_t count = primitive.attributes ? primitive.attributes[0].data->count : 0; // note, while we could generate a good index buffer, reindexMesh will take care of this result.indices.resize(count); for (size_t i = 0; i < count; ++i) result.indices[i] = unsigned(i); } for (size_t ai = 0; ai < primitive.attributes_count; ++ai) { const cgltf_attribute& attr = primitive.attributes[ai]; if (attr.type == cgltf_attribute_type_invalid) { fprintf(stderr, "Warning: ignoring unknown attribute %s in primitive %d of mesh %d\n", attr.name, int(pi), mesh_id); continue; } Stream s = {attr.type, attr.index}; readAccessor(s.data, attr.data); result.streams.push_back(s); } for (size_t ti = 0; ti < primitive.targets_count; ++ti) { const cgltf_morph_target& target = primitive.targets[ti]; for (size_t ai = 0; ai < target.attributes_count; ++ai) { const cgltf_attribute& attr = target.attributes[ai]; if (attr.type == cgltf_attribute_type_invalid) { fprintf(stderr, "Warning: ignoring unknown attribute %s in morph target %d of primitive %d of mesh %d\n", attr.name, int(ti), int(pi), mesh_id); continue; } Stream s = {attr.type, attr.index, int(ti + 1)}; readAccessor(s.data, attr.data); result.streams.push_back(s); } } result.targets = primitive.targets_count; result.target_weights.assign(mesh.weights, mesh.weights + mesh.weights_count); result.target_names.assign(mesh.target_names, mesh.target_names + mesh.target_names_count); meshes.push_back(result); } } } void defaultFree(void*, void* p) { free(p); } int textureIndex(const std::vector& textures, const char* name) { for (size_t i = 0; i < textures.size(); ++i) if (textures[i] == name) return int(i); return -1; } cgltf_data* parseSceneObj(fastObjMesh* obj) { cgltf_data* data = (cgltf_data*)calloc(1, sizeof(cgltf_data)); data->memory_free = defaultFree; std::vector textures; for (unsigned int mi = 0; mi < obj->material_count; ++mi) { fastObjMaterial& om = obj->materials[mi]; if (om.map_Kd.name && textureIndex(textures, om.map_Kd.name) < 0) textures.push_back(om.map_Kd.name); } data->images = (cgltf_image*)calloc(textures.size(), sizeof(cgltf_image)); data->images_count = textures.size(); for (size_t i = 0; i < textures.size(); ++i) { data->images[i].uri = strdup(textures[i].c_str()); } data->textures = (cgltf_texture*)calloc(textures.size(), sizeof(cgltf_texture)); data->textures_count = textures.size(); for (size_t i = 0; i < textures.size(); ++i) { data->textures[i].image = &data->images[i]; } data->materials = (cgltf_material*)calloc(obj->material_count, sizeof(cgltf_material)); data->materials_count = obj->material_count; for (unsigned int mi = 0; mi < obj->material_count; ++mi) { cgltf_material& gm = data->materials[mi]; fastObjMaterial& om = obj->materials[mi]; gm.has_pbr_metallic_roughness = true; gm.pbr_metallic_roughness.base_color_factor[0] = 1.0f; gm.pbr_metallic_roughness.base_color_factor[1] = 1.0f; gm.pbr_metallic_roughness.base_color_factor[2] = 1.0f; gm.pbr_metallic_roughness.base_color_factor[3] = 1.0f; gm.pbr_metallic_roughness.metallic_factor = 0.0f; gm.pbr_metallic_roughness.roughness_factor = 1.0f; gm.alpha_cutoff = 0.5f; if (om.map_Kd.name) { gm.pbr_metallic_roughness.base_color_texture.texture = &data->textures[textureIndex(textures, om.map_Kd.name)]; gm.pbr_metallic_roughness.base_color_texture.scale = 1.0f; gm.alpha_mode = (om.illum == 4 || om.illum == 6 || om.illum == 7 || om.illum == 9) ? cgltf_alpha_mode_mask : cgltf_alpha_mode_opaque; } if (om.map_d.name) { gm.alpha_mode = cgltf_alpha_mode_blend; } } return data; } void parseMeshesObj(fastObjMesh* obj, cgltf_data* data, std::vector& meshes) { unsigned int material_count = std::max(obj->material_count, 1u); std::vector vertex_count(material_count); std::vector index_count(material_count); for (unsigned int fi = 0; fi < obj->face_count; ++fi) { unsigned int mi = obj->face_materials[fi]; vertex_count[mi] += obj->face_vertices[fi]; index_count[mi] += (obj->face_vertices[fi] - 2) * 3; } std::vector mesh_index(material_count); for (unsigned int mi = 0; mi < material_count; ++mi) { if (index_count[mi] == 0) continue; mesh_index[mi] = meshes.size(); meshes.push_back(Mesh()); Mesh& mesh = meshes.back(); if (data->materials_count) { assert(mi < data->materials_count); mesh.material = &data->materials[mi]; } mesh.type = cgltf_primitive_type_triangles; mesh.streams.resize(3); mesh.streams[0].type = cgltf_attribute_type_position; mesh.streams[0].data.resize(vertex_count[mi]); mesh.streams[1].type = cgltf_attribute_type_normal; mesh.streams[1].data.resize(vertex_count[mi]); mesh.streams[2].type = cgltf_attribute_type_texcoord; mesh.streams[2].data.resize(vertex_count[mi]); mesh.indices.resize(index_count[mi]); mesh.targets = 0; } std::vector vertex_offset(material_count); std::vector index_offset(material_count); size_t group_offset = 0; for (unsigned int fi = 0; fi < obj->face_count; ++fi) { unsigned int mi = obj->face_materials[fi]; Mesh& mesh = meshes[mesh_index[mi]]; size_t vo = vertex_offset[mi]; size_t io = index_offset[mi]; for (unsigned int vi = 0; vi < obj->face_vertices[fi]; ++vi) { fastObjIndex ii = obj->indices[group_offset + vi]; Attr p = {{obj->positions[ii.p * 3 + 0], obj->positions[ii.p * 3 + 1], obj->positions[ii.p * 3 + 2]}}; Attr n = {{obj->normals[ii.n * 3 + 0], obj->normals[ii.n * 3 + 1], obj->normals[ii.n * 3 + 2]}}; Attr t = {{obj->texcoords[ii.t * 2 + 0], 1.f - obj->texcoords[ii.t * 2 + 1]}}; mesh.streams[0].data[vo + vi] = p; mesh.streams[1].data[vo + vi] = n; mesh.streams[2].data[vo + vi] = t; } for (unsigned int vi = 2; vi < obj->face_vertices[fi]; ++vi) { size_t to = io + (vi - 2) * 3; mesh.indices[to + 0] = unsigned(vo); mesh.indices[to + 1] = unsigned(vo + vi - 1); mesh.indices[to + 2] = unsigned(vo + vi); } vertex_offset[mi] += obj->face_vertices[fi]; index_offset[mi] += (obj->face_vertices[fi] - 2) * 3; group_offset += obj->face_vertices[fi]; } } bool areTextureViewsEqual(const cgltf_texture_view& lhs, const cgltf_texture_view& rhs) { if (lhs.has_transform != rhs.has_transform) return false; if (lhs.has_transform) { const cgltf_texture_transform& lt = lhs.transform; const cgltf_texture_transform& rt = rhs.transform; if (memcmp(lt.offset, rt.offset, sizeof(cgltf_float) * 2) != 0) return false; if (lt.rotation != rt.rotation) return false; if (memcmp(lt.scale, rt.scale, sizeof(cgltf_float) * 2) != 0) return false; if (lt.texcoord != rt.texcoord) return false; } if (lhs.texture != rhs.texture) return false; if (lhs.texcoord != rhs.texcoord) return false; if (lhs.scale != rhs.scale) return false; return true; } bool areMaterialsEqual(const cgltf_material& lhs, const cgltf_material& rhs) { if (lhs.has_pbr_metallic_roughness != rhs.has_pbr_metallic_roughness) return false; if (lhs.has_pbr_metallic_roughness) { const cgltf_pbr_metallic_roughness& lpbr = lhs.pbr_metallic_roughness; const cgltf_pbr_metallic_roughness& rpbr = rhs.pbr_metallic_roughness; if (!areTextureViewsEqual(lpbr.base_color_texture, rpbr.base_color_texture)) return false; if (!areTextureViewsEqual(lpbr.metallic_roughness_texture, rpbr.metallic_roughness_texture)) return false; if (memcmp(lpbr.base_color_factor, rpbr.base_color_factor, sizeof(cgltf_float) * 4) != 0) return false; if (lpbr.metallic_factor != rpbr.metallic_factor) return false; if (lpbr.roughness_factor != rpbr.roughness_factor) return false; } if (lhs.has_pbr_specular_glossiness != rhs.has_pbr_specular_glossiness) return false; if (lhs.has_pbr_specular_glossiness) { const cgltf_pbr_specular_glossiness& lpbr = lhs.pbr_specular_glossiness; const cgltf_pbr_specular_glossiness& rpbr = rhs.pbr_specular_glossiness; if (!areTextureViewsEqual(lpbr.diffuse_texture, rpbr.diffuse_texture)) return false; if (!areTextureViewsEqual(lpbr.specular_glossiness_texture, rpbr.specular_glossiness_texture)) return false; if (memcmp(lpbr.diffuse_factor, rpbr.diffuse_factor, sizeof(cgltf_float) * 4) != 0) return false; if (memcmp(lpbr.specular_factor, rpbr.specular_factor, sizeof(cgltf_float) * 3) != 0) return false; if (lpbr.glossiness_factor != rpbr.glossiness_factor) return false; } if (!areTextureViewsEqual(lhs.normal_texture, rhs.normal_texture)) return false; if (!areTextureViewsEqual(lhs.occlusion_texture, rhs.occlusion_texture)) return false; if (!areTextureViewsEqual(lhs.emissive_texture, rhs.emissive_texture)) return false; if (memcmp(lhs.emissive_factor, rhs.emissive_factor, sizeof(cgltf_float) * 3) != 0) return false; if (lhs.alpha_mode != rhs.alpha_mode) return false; if (lhs.alpha_cutoff != rhs.alpha_cutoff) return false; if (lhs.double_sided != rhs.double_sided) return false; if (lhs.unlit != rhs.unlit) return false; return true; } void mergeMeshMaterials(cgltf_data* data, std::vector& meshes) { for (size_t i = 0; i < meshes.size(); ++i) { Mesh& mesh = meshes[i]; if (!mesh.material) continue; for (int j = 0; j < mesh.material - data->materials; ++j) { if (areMaterialsEqual(*mesh.material, data->materials[j])) { mesh.material = &data->materials[j]; break; } } } } bool compareMeshTargets(const Mesh& lhs, const Mesh& rhs) { if (lhs.targets != rhs.targets) return false; if (lhs.target_weights.size() != rhs.target_weights.size()) return false; for (size_t i = 0; i < lhs.target_weights.size(); ++i) if (lhs.target_weights[i] != rhs.target_weights[i]) return false; if (lhs.target_names.size() != rhs.target_names.size()) return false; for (size_t i = 0; i < lhs.target_names.size(); ++i) if (strcmp(lhs.target_names[i], rhs.target_names[i]) != 0) return false; return true; } bool canMergeMeshes(const Mesh& lhs, const Mesh& rhs, const Settings& settings) { if (lhs.node != rhs.node) { if (!lhs.node || !rhs.node) return false; if (lhs.node->parent != rhs.node->parent) return false; bool lhs_transform = lhs.node->has_translation | lhs.node->has_rotation | lhs.node->has_scale | lhs.node->has_matrix | (!!lhs.node->weights); bool rhs_transform = rhs.node->has_translation | rhs.node->has_rotation | rhs.node->has_scale | rhs.node->has_matrix | (!!rhs.node->weights); if (lhs_transform || rhs_transform) return false; if (settings.keep_named) { if (lhs.node->name && *lhs.node->name) return false; if (rhs.node->name && *rhs.node->name) return false; } // we can merge nodes that don't have transforms of their own and have the same parent // this is helpful when instead of splitting mesh into primitives, DCCs split mesh into mesh nodes } if (lhs.material != rhs.material) return false; if (lhs.skin != rhs.skin) return false; if (lhs.type != rhs.type) return false; if (!compareMeshTargets(lhs, rhs)) return false; if (lhs.indices.empty() != rhs.indices.empty()) return false; if (lhs.streams.size() != rhs.streams.size()) return false; for (size_t i = 0; i < lhs.streams.size(); ++i) if (lhs.streams[i].type != rhs.streams[i].type || lhs.streams[i].index != rhs.streams[i].index || lhs.streams[i].target != rhs.streams[i].target) return false; return true; } void mergeMeshes(Mesh& target, const Mesh& mesh) { assert(target.streams.size() == mesh.streams.size()); size_t vertex_offset = target.streams[0].data.size(); size_t index_offset = target.indices.size(); for (size_t i = 0; i < target.streams.size(); ++i) target.streams[i].data.insert(target.streams[i].data.end(), mesh.streams[i].data.begin(), mesh.streams[i].data.end()); target.indices.resize(target.indices.size() + mesh.indices.size()); size_t index_count = mesh.indices.size(); for (size_t i = 0; i < index_count; ++i) target.indices[index_offset + i] = unsigned(vertex_offset + mesh.indices[i]); } void mergeMeshes(std::vector& meshes, const Settings& settings) { size_t write = 0; for (size_t i = 0; i < meshes.size(); ++i) { if (meshes[i].streams.empty()) continue; Mesh& target = meshes[write]; if (i != write) { Mesh& mesh = meshes[i]; // note: this copy is expensive; we could use move in C++11 or swap manually which is a bit painful... target = mesh; mesh.streams.clear(); mesh.indices.clear(); } size_t target_vertices = target.streams[0].data.size(); size_t target_indices = target.indices.size(); for (size_t j = i + 1; j < meshes.size(); ++j) { Mesh& mesh = meshes[j]; if (!mesh.streams.empty() && canMergeMeshes(target, mesh, settings)) { target_vertices += mesh.streams[0].data.size(); target_indices += mesh.indices.size(); } } for (size_t j = 0; j < target.streams.size(); ++j) target.streams[j].data.reserve(target_vertices); target.indices.reserve(target_indices); for (size_t j = i + 1; j < meshes.size(); ++j) { Mesh& mesh = meshes[j]; if (!mesh.streams.empty() && canMergeMeshes(target, mesh, settings)) { mergeMeshes(target, mesh); mesh.streams.clear(); mesh.indices.clear(); } } assert(target.streams[0].data.size() == target_vertices); assert(target.indices.size() == target_indices); write++; } meshes.resize(write); } void reindexMesh(Mesh& mesh) { size_t total_vertices = mesh.streams[0].data.size(); size_t total_indices = mesh.indices.size(); std::vector streams; for (size_t i = 0; i < mesh.streams.size(); ++i) { if (mesh.streams[i].target) continue; assert(mesh.streams[i].data.size() == total_vertices); meshopt_Stream stream = {&mesh.streams[i].data[0], sizeof(Attr), sizeof(Attr)}; streams.push_back(stream); } std::vector remap(total_vertices); size_t unique_vertices = meshopt_generateVertexRemapMulti(&remap[0], &mesh.indices[0], total_indices, total_vertices, &streams[0], streams.size()); assert(unique_vertices <= total_vertices); meshopt_remapIndexBuffer(&mesh.indices[0], &mesh.indices[0], total_indices, &remap[0]); for (size_t i = 0; i < mesh.streams.size(); ++i) { assert(mesh.streams[i].data.size() == total_vertices); meshopt_remapVertexBuffer(&mesh.streams[i].data[0], &mesh.streams[i].data[0], total_vertices, sizeof(Attr), &remap[0]); mesh.streams[i].data.resize(unique_vertices); } } void filterMesh(Mesh& mesh) { unsigned int* indices = &mesh.indices[0]; size_t total_indices = mesh.indices.size(); size_t write = 0; for (size_t i = 0; i < total_indices; i += 3) { unsigned int a = indices[i + 0], b = indices[i + 1], c = indices[i + 2]; if (a != b && a != c && b != c) { indices[write + 0] = a; indices[write + 1] = b; indices[write + 2] = c; write += 3; } } mesh.indices.resize(write); } Stream* getStream(Mesh& mesh, cgltf_attribute_type type) { for (size_t i = 0; i < mesh.streams.size(); ++i) if (mesh.streams[i].type == type) return &mesh.streams[i]; return 0; } void simplifyMesh(Mesh& mesh, float threshold, bool aggressive) { if (threshold >= 1) return; const Stream* positions = getStream(mesh, cgltf_attribute_type_position); if (!positions) return; size_t vertex_count = mesh.streams[0].data.size(); size_t target_index_count = size_t(double(mesh.indices.size() / 3) * threshold) * 3; float target_error = 1e-2f; if (target_index_count < 1) return; std::vector indices(mesh.indices.size()); indices.resize(meshopt_simplify(&indices[0], &mesh.indices[0], mesh.indices.size(), positions->data[0].f, vertex_count, sizeof(Attr), target_index_count, target_error)); mesh.indices.swap(indices); // Note: if the simplifier got stuck, we can try to reindex without normals/tangents and retry // For now we simply fall back to aggressive simplifier instead // if the mesh is complex enough and the precise simplifier got "stuck", we'll try to simplify using the sloppy simplifier which is guaranteed to reach the target count if (aggressive && target_index_count > 50 * 3 && mesh.indices.size() > target_index_count) { indices.resize(meshopt_simplifySloppy(&indices[0], &mesh.indices[0], mesh.indices.size(), positions->data[0].f, vertex_count, sizeof(Attr), target_index_count)); mesh.indices.swap(indices); } } void optimizeMesh(Mesh& mesh) { size_t vertex_count = mesh.streams[0].data.size(); meshopt_optimizeVertexCache(&mesh.indices[0], &mesh.indices[0], mesh.indices.size(), vertex_count); std::vector remap(vertex_count); size_t unique_vertices = meshopt_optimizeVertexFetchRemap(&remap[0], &mesh.indices[0], mesh.indices.size(), vertex_count); assert(unique_vertices <= vertex_count); meshopt_remapIndexBuffer(&mesh.indices[0], &mesh.indices[0], mesh.indices.size(), &remap[0]); for (size_t i = 0; i < mesh.streams.size(); ++i) { assert(mesh.streams[i].data.size() == vertex_count); meshopt_remapVertexBuffer(&mesh.streams[i].data[0], &mesh.streams[i].data[0], vertex_count, sizeof(Attr), &remap[0]); mesh.streams[i].data.resize(unique_vertices); } } struct BoneInfluence { float i; float w; bool operator<(const BoneInfluence& other) const { return i < other.i; } }; void sortBoneInfluences(Mesh& mesh) { Stream* joints = getStream(mesh, cgltf_attribute_type_joints); Stream* weights = getStream(mesh, cgltf_attribute_type_weights); if (!joints || !weights) return; // weights below cutoff can't be represented in quantized 8-bit storage const float weight_cutoff = 0.5f / 255.f; size_t vertex_count = mesh.streams[0].data.size(); for (size_t i = 0; i < vertex_count; ++i) { Attr& ja = joints->data[i]; Attr& wa = weights->data[i]; BoneInfluence inf[4] = {}; int count = 0; for (int k = 0; k < 4; ++k) if (wa.f[k] > weight_cutoff) { inf[count].i = ja.f[k]; inf[count].w = wa.f[k]; count++; } std::sort(inf, inf + count); for (int k = 0; k < 4; ++k) { ja.f[k] = inf[k].i; wa.f[k] = inf[k].w; } } } void simplifyPointMesh(Mesh& mesh, float threshold) { if (threshold >= 1) return; const Stream* positions = getStream(mesh, cgltf_attribute_type_position); if (!positions) return; size_t vertex_count = mesh.streams[0].data.size(); size_t target_vertex_count = size_t(double(vertex_count) * threshold); if (target_vertex_count < 1) return; std::vector indices(target_vertex_count); indices.resize(meshopt_simplifyPoints(&indices[0], positions->data[0].f, vertex_count, sizeof(Attr), target_vertex_count)); std::vector scratch(indices.size()); for (size_t i = 0; i < mesh.streams.size(); ++i) { std::vector& data = mesh.streams[i].data; assert(data.size() == vertex_count); for (size_t j = 0; j < indices.size(); ++j) scratch[j] = data[indices[j]]; data = scratch; } } void sortPointMesh(Mesh& mesh) { const Stream* positions = getStream(mesh, cgltf_attribute_type_position); if (!positions) return; size_t vertex_count = mesh.streams[0].data.size(); std::vector remap(vertex_count); meshopt_spatialSortRemap(&remap[0], positions->data[0].f, vertex_count, sizeof(Attr)); for (size_t i = 0; i < mesh.streams.size(); ++i) { assert(mesh.streams[i].data.size() == vertex_count); meshopt_remapVertexBuffer(&mesh.streams[i].data[0], &mesh.streams[i].data[0], vertex_count, sizeof(Attr), &remap[0]); } } bool getAttributeBounds(const std::vector& meshes, cgltf_attribute_type type, Attr& min, Attr& max) { min.f[0] = min.f[1] = min.f[2] = min.f[3] = +FLT_MAX; max.f[0] = max.f[1] = max.f[2] = max.f[3] = -FLT_MAX; Attr pad = {}; bool valid = false; for (size_t i = 0; i < meshes.size(); ++i) { const Mesh& mesh = meshes[i]; for (size_t j = 0; j < mesh.streams.size(); ++j) { const Stream& s = mesh.streams[j]; if (s.type == type) { if (s.target == 0) { for (size_t k = 0; k < s.data.size(); ++k) { const Attr& a = s.data[k]; min.f[0] = std::min(min.f[0], a.f[0]); min.f[1] = std::min(min.f[1], a.f[1]); min.f[2] = std::min(min.f[2], a.f[2]); min.f[3] = std::min(min.f[3], a.f[3]); max.f[0] = std::max(max.f[0], a.f[0]); max.f[1] = std::max(max.f[1], a.f[1]); max.f[2] = std::max(max.f[2], a.f[2]); max.f[3] = std::max(max.f[3], a.f[3]); valid = true; } } else { for (size_t k = 0; k < s.data.size(); ++k) { const Attr& a = s.data[k]; pad.f[0] = std::max(pad.f[0], fabsf(a.f[0])); pad.f[1] = std::max(pad.f[1], fabsf(a.f[1])); pad.f[2] = std::max(pad.f[2], fabsf(a.f[2])); pad.f[3] = std::max(pad.f[3], fabsf(a.f[3])); } } } } } if (valid) { for (int k = 0; k < 4; ++k) { min.f[k] -= pad.f[k]; max.f[k] += pad.f[k]; } } return valid; } QuantizationParams prepareQuantization(const std::vector& meshes, const Settings& settings) { QuantizationParams result = {}; result.pos_bits = settings.pos_bits; Attr pos_min, pos_max; if (getAttributeBounds(meshes, cgltf_attribute_type_position, pos_min, pos_max)) { result.pos_offset[0] = pos_min.f[0]; result.pos_offset[1] = pos_min.f[1]; result.pos_offset[2] = pos_min.f[2]; result.pos_scale = std::max(pos_max.f[0] - pos_min.f[0], std::max(pos_max.f[1] - pos_min.f[1], pos_max.f[2] - pos_min.f[2])); } result.uv_bits = settings.tex_bits; Attr uv_min, uv_max; if (getAttributeBounds(meshes, cgltf_attribute_type_texcoord, uv_min, uv_max)) { result.uv_offset[0] = uv_min.f[0]; result.uv_offset[1] = uv_min.f[1]; result.uv_scale[0] = uv_max.f[0] - uv_min.f[0]; result.uv_scale[1] = uv_max.f[1] - uv_min.f[1]; } return result; } void rescaleNormal(float& nx, float& ny, float& nz) { // scale the normal to make sure the largest component is +-1.0 // this reduces the entropy of the normal by ~1.5 bits without losing precision // it's better to use octahedral encoding but that requires special shader support float nm = std::max(fabsf(nx), std::max(fabsf(ny), fabsf(nz))); float ns = nm == 0.f ? 0.f : 1 / nm; nx *= ns; ny *= ns; nz *= ns; } void renormalizeWeights(uint8_t (&w)[4]) { int sum = w[0] + w[1] + w[2] + w[3]; if (sum == 255) return; // we assume that the total error is limited to 0.5/component = 2 // this means that it's acceptable to adjust the max. component to compensate for the error int max = 0; for (int k = 1; k < 4; ++k) if (w[k] > w[max]) max = k; w[max] += uint8_t(255 - sum); } StreamFormat writeVertexStream(std::string& bin, const Stream& stream, const QuantizationParams& params, const Settings& settings, bool has_targets) { if (stream.type == cgltf_attribute_type_position) { if (stream.target == 0) { float pos_rscale = params.pos_scale == 0.f ? 0.f : 1.f / params.pos_scale; for (size_t i = 0; i < stream.data.size(); ++i) { const Attr& a = stream.data[i]; uint16_t v[4] = { uint16_t(meshopt_quantizeUnorm((a.f[0] - params.pos_offset[0]) * pos_rscale, params.pos_bits)), uint16_t(meshopt_quantizeUnorm((a.f[1] - params.pos_offset[1]) * pos_rscale, params.pos_bits)), uint16_t(meshopt_quantizeUnorm((a.f[2] - params.pos_offset[2]) * pos_rscale, params.pos_bits)), 0}; bin.append(reinterpret_cast(v), sizeof(v)); } StreamFormat format = {cgltf_type_vec3, cgltf_component_type_r_16u, false, 8}; return format; } else { float pos_rscale = params.pos_scale == 0.f ? 0.f : 1.f / params.pos_scale; int maxv = 0; for (size_t i = 0; i < stream.data.size(); ++i) { const Attr& a = stream.data[i]; maxv = std::max(maxv, meshopt_quantizeUnorm(fabsf(a.f[0]) * pos_rscale, params.pos_bits)); maxv = std::max(maxv, meshopt_quantizeUnorm(fabsf(a.f[1]) * pos_rscale, params.pos_bits)); maxv = std::max(maxv, meshopt_quantizeUnorm(fabsf(a.f[2]) * pos_rscale, params.pos_bits)); } if (maxv <= 127) { for (size_t i = 0; i < stream.data.size(); ++i) { const Attr& a = stream.data[i]; int8_t v[4] = { int8_t((a.f[0] >= 0.f ? 1 : -1) * meshopt_quantizeUnorm(fabsf(a.f[0]) * pos_rscale, params.pos_bits)), int8_t((a.f[1] >= 0.f ? 1 : -1) * meshopt_quantizeUnorm(fabsf(a.f[1]) * pos_rscale, params.pos_bits)), int8_t((a.f[2] >= 0.f ? 1 : -1) * meshopt_quantizeUnorm(fabsf(a.f[2]) * pos_rscale, params.pos_bits)), 0}; bin.append(reinterpret_cast(v), sizeof(v)); } StreamFormat format = {cgltf_type_vec3, cgltf_component_type_r_8, false, 4}; return format; } else { for (size_t i = 0; i < stream.data.size(); ++i) { const Attr& a = stream.data[i]; int16_t v[4] = { int16_t((a.f[0] >= 0.f ? 1 : -1) * meshopt_quantizeUnorm(fabsf(a.f[0]) * pos_rscale, params.pos_bits)), int16_t((a.f[1] >= 0.f ? 1 : -1) * meshopt_quantizeUnorm(fabsf(a.f[1]) * pos_rscale, params.pos_bits)), int16_t((a.f[2] >= 0.f ? 1 : -1) * meshopt_quantizeUnorm(fabsf(a.f[2]) * pos_rscale, params.pos_bits)), 0}; bin.append(reinterpret_cast(v), sizeof(v)); } StreamFormat format = {cgltf_type_vec3, cgltf_component_type_r_16, false, 8}; return format; } } } else if (stream.type == cgltf_attribute_type_texcoord) { float uv_rscale[2] = { params.uv_scale[0] == 0.f ? 0.f : 1.f / params.uv_scale[0], params.uv_scale[1] == 0.f ? 0.f : 1.f / params.uv_scale[1], }; for (size_t i = 0; i < stream.data.size(); ++i) { const Attr& a = stream.data[i]; uint16_t v[2] = { uint16_t(meshopt_quantizeUnorm((a.f[0] - params.uv_offset[0]) * uv_rscale[0], params.uv_bits)), uint16_t(meshopt_quantizeUnorm((a.f[1] - params.uv_offset[1]) * uv_rscale[1], params.uv_bits)), }; bin.append(reinterpret_cast(v), sizeof(v)); } StreamFormat format = {cgltf_type_vec2, cgltf_component_type_r_16u, false, 4}; return format; } else if (stream.type == cgltf_attribute_type_normal) { bool unnormalized = settings.nrm_unnormalized && !has_targets; int bits = unnormalized ? settings.nrm_bits : (settings.nrm_bits > 8 ? 16 : 8); for (size_t i = 0; i < stream.data.size(); ++i) { const Attr& a = stream.data[i]; float nx = a.f[0], ny = a.f[1], nz = a.f[2]; if (unnormalized) rescaleNormal(nx, ny, nz); if (bits > 8) { int16_t v[4] = { int16_t(meshopt_quantizeSnorm(nx, bits)), int16_t(meshopt_quantizeSnorm(ny, bits)), int16_t(meshopt_quantizeSnorm(nz, bits)), 0}; bin.append(reinterpret_cast(v), sizeof(v)); } else { int8_t v[4] = { int8_t(meshopt_quantizeSnorm(nx, bits)), int8_t(meshopt_quantizeSnorm(ny, bits)), int8_t(meshopt_quantizeSnorm(nz, bits)), 0}; bin.append(reinterpret_cast(v), sizeof(v)); } } if (bits > 8) { StreamFormat format = {cgltf_type_vec3, cgltf_component_type_r_16, true, 8}; return format; } else { StreamFormat format = {cgltf_type_vec3, cgltf_component_type_r_8, true, 4}; return format; } } else if (stream.type == cgltf_attribute_type_tangent) { bool unnormalized = settings.nrm_unnormalized && !has_targets; int bits = unnormalized ? settings.nrm_bits : (settings.nrm_bits > 8 ? 16 : 8); for (size_t i = 0; i < stream.data.size(); ++i) { const Attr& a = stream.data[i]; float nx = a.f[0], ny = a.f[1], nz = a.f[2], nw = a.f[3]; if (unnormalized) rescaleNormal(nx, ny, nz); if (bits > 8) { int16_t v[4] = { int16_t(meshopt_quantizeSnorm(nx, bits)), int16_t(meshopt_quantizeSnorm(ny, bits)), int16_t(meshopt_quantizeSnorm(nz, bits)), int16_t(meshopt_quantizeSnorm(nw, 8))}; bin.append(reinterpret_cast(v), sizeof(v)); } else { int8_t v[4] = { int8_t(meshopt_quantizeSnorm(nx, bits)), int8_t(meshopt_quantizeSnorm(ny, bits)), int8_t(meshopt_quantizeSnorm(nz, bits)), int8_t(meshopt_quantizeSnorm(nw, 8))}; bin.append(reinterpret_cast(v), sizeof(v)); } } cgltf_type type = (stream.target == 0) ? cgltf_type_vec4 : cgltf_type_vec3; if (bits > 8) { StreamFormat format = {type, cgltf_component_type_r_16, true, 8}; return format; } else { StreamFormat format = {type, cgltf_component_type_r_8, true, 4}; return format; } } else if (stream.type == cgltf_attribute_type_color) { for (size_t i = 0; i < stream.data.size(); ++i) { const Attr& a = stream.data[i]; uint8_t v[4] = { uint8_t(meshopt_quantizeUnorm(a.f[0], 8)), uint8_t(meshopt_quantizeUnorm(a.f[1], 8)), uint8_t(meshopt_quantizeUnorm(a.f[2], 8)), uint8_t(meshopt_quantizeUnorm(a.f[3], 8))}; bin.append(reinterpret_cast(v), sizeof(v)); } StreamFormat format = {cgltf_type_vec4, cgltf_component_type_r_8u, true, 4}; return format; } else if (stream.type == cgltf_attribute_type_weights) { for (size_t i = 0; i < stream.data.size(); ++i) { const Attr& a = stream.data[i]; uint8_t v[4] = { uint8_t(meshopt_quantizeUnorm(a.f[0], 8)), uint8_t(meshopt_quantizeUnorm(a.f[1], 8)), uint8_t(meshopt_quantizeUnorm(a.f[2], 8)), uint8_t(meshopt_quantizeUnorm(a.f[3], 8))}; renormalizeWeights(v); bin.append(reinterpret_cast(v), sizeof(v)); } StreamFormat format = {cgltf_type_vec4, cgltf_component_type_r_8u, true, 4}; return format; } else if (stream.type == cgltf_attribute_type_joints) { unsigned int maxj = 0; for (size_t i = 0; i < stream.data.size(); ++i) maxj = std::max(maxj, unsigned(stream.data[i].f[0])); assert(maxj <= 65535); if (maxj <= 255) { for (size_t i = 0; i < stream.data.size(); ++i) { const Attr& a = stream.data[i]; uint8_t v[4] = { uint8_t(a.f[0]), uint8_t(a.f[1]), uint8_t(a.f[2]), uint8_t(a.f[3])}; bin.append(reinterpret_cast(v), sizeof(v)); } StreamFormat format = {cgltf_type_vec4, cgltf_component_type_r_8u, false, 4}; return format; } else { for (size_t i = 0; i < stream.data.size(); ++i) { const Attr& a = stream.data[i]; uint16_t v[4] = { uint16_t(a.f[0]), uint16_t(a.f[1]), uint16_t(a.f[2]), uint16_t(a.f[3])}; bin.append(reinterpret_cast(v), sizeof(v)); } StreamFormat format = {cgltf_type_vec4, cgltf_component_type_r_16u, false, 8}; return format; } } else { for (size_t i = 0; i < stream.data.size(); ++i) { const Attr& a = stream.data[i]; float v[4] = { a.f[0], a.f[1], a.f[2], a.f[3]}; bin.append(reinterpret_cast(v), sizeof(v)); } StreamFormat format = {cgltf_type_vec4, cgltf_component_type_r_32f, false, 16}; return format; } } void getPositionBounds(int min[3], int max[3], const Stream& stream, const QuantizationParams& params) { assert(stream.type == cgltf_attribute_type_position); assert(stream.data.size() > 0); min[0] = min[1] = min[2] = INT_MAX; max[0] = max[1] = max[2] = INT_MIN; float pos_rscale = params.pos_scale == 0.f ? 0.f : 1.f / params.pos_scale; if (stream.target == 0) { for (size_t i = 0; i < stream.data.size(); ++i) { const Attr& a = stream.data[i]; for (int k = 0; k < 3; ++k) { int v = meshopt_quantizeUnorm((a.f[k] - params.pos_offset[k]) * pos_rscale, params.pos_bits); min[k] = std::min(min[k], v); max[k] = std::max(max[k], v); } } } else { for (size_t i = 0; i < stream.data.size(); ++i) { const Attr& a = stream.data[i]; for (int k = 0; k < 3; ++k) { int v = (a.f[k] >= 0.f ? 1 : -1) * meshopt_quantizeUnorm(fabsf(a.f[k]) * pos_rscale, params.pos_bits); min[k] = std::min(min[k], v); max[k] = std::max(max[k], v); } } } } StreamFormat writeIndexStream(std::string& bin, const std::vector& stream) { unsigned int maxi = 0; for (size_t i = 0; i < stream.size(); ++i) maxi = std::max(maxi, stream[i]); // save 16-bit indices if we can; note that we can't use restart index (65535) if (maxi < 65535) { for (size_t i = 0; i < stream.size(); ++i) { uint16_t v[1] = {uint16_t(stream[i])}; bin.append(reinterpret_cast(v), sizeof(v)); } StreamFormat format = {cgltf_type_scalar, cgltf_component_type_r_16u, false, 2}; return format; } else { for (size_t i = 0; i < stream.size(); ++i) { uint32_t v[1] = {stream[i]}; bin.append(reinterpret_cast(v), sizeof(v)); } StreamFormat format = {cgltf_type_scalar, cgltf_component_type_r_32u, false, 4}; return format; } } StreamFormat writeTimeStream(std::string& bin, const std::vector& data) { for (size_t i = 0; i < data.size(); ++i) { float v[1] = {data[i]}; bin.append(reinterpret_cast(v), sizeof(v)); } StreamFormat format = {cgltf_type_scalar, cgltf_component_type_r_32f, false, 4}; return format; } StreamFormat writeKeyframeStream(std::string& bin, cgltf_animation_path_type type, const std::vector& data) { if (type == cgltf_animation_path_type_rotation) { for (size_t i = 0; i < data.size(); ++i) { const Attr& a = data[i]; int16_t v[4] = { int16_t(meshopt_quantizeSnorm(a.f[0], 16)), int16_t(meshopt_quantizeSnorm(a.f[1], 16)), int16_t(meshopt_quantizeSnorm(a.f[2], 16)), int16_t(meshopt_quantizeSnorm(a.f[3], 16)), }; bin.append(reinterpret_cast(v), sizeof(v)); } StreamFormat format = {cgltf_type_vec4, cgltf_component_type_r_16, true, 8}; return format; } else if (type == cgltf_animation_path_type_weights) { for (size_t i = 0; i < data.size(); ++i) { const Attr& a = data[i]; uint8_t v[1] = {uint8_t(meshopt_quantizeUnorm(a.f[0], 8))}; bin.append(reinterpret_cast(v), sizeof(v)); } StreamFormat format = {cgltf_type_scalar, cgltf_component_type_r_8u, true, 1}; return format; } else { for (size_t i = 0; i < data.size(); ++i) { const Attr& a = data[i]; float v[3] = {a.f[0], a.f[1], a.f[2]}; bin.append(reinterpret_cast(v), sizeof(v)); } StreamFormat format = {cgltf_type_vec3, cgltf_component_type_r_32f, false, 12}; return format; } } void compressVertexStream(std::string& bin, const std::string& data, size_t count, size_t stride) { assert(data.size() == count * stride); std::vector compressed(meshopt_encodeVertexBufferBound(count, stride)); size_t size = meshopt_encodeVertexBuffer(&compressed[0], compressed.size(), data.c_str(), count, stride); bin.append(reinterpret_cast(&compressed[0]), size); } void compressIndexStream(std::string& bin, const std::string& data, size_t count, size_t stride) { assert(stride == 2 || stride == 4); assert(data.size() == count * stride); std::vector compressed(meshopt_encodeIndexBufferBound(count, count * 3)); size_t size = 0; if (stride == 2) size = meshopt_encodeIndexBuffer(&compressed[0], compressed.size(), reinterpret_cast(data.c_str()), count); else size = meshopt_encodeIndexBuffer(&compressed[0], compressed.size(), reinterpret_cast(data.c_str()), count); bin.append(reinterpret_cast(&compressed[0]), size); } void comma(std::string& s) { char ch = s.empty() ? 0 : s[s.size() - 1]; if (ch != 0 && ch != '[' && ch != '{') s += ","; } void append(std::string& s, size_t v) { char buf[32]; sprintf(buf, "%zu", v); s += buf; } void append(std::string& s, float v) { char buf[512]; sprintf(buf, "%.9g", v); s += buf; } void append(std::string& s, const char* v) { s += v; } void append(std::string& s, const std::string& v) { s += v; } const char* componentType(cgltf_component_type type) { switch (type) { case cgltf_component_type_r_8: return "5120"; case cgltf_component_type_r_8u: return "5121"; case cgltf_component_type_r_16: return "5122"; case cgltf_component_type_r_16u: return "5123"; case cgltf_component_type_r_32u: return "5125"; case cgltf_component_type_r_32f: return "5126"; default: return "0"; } } const char* shapeType(cgltf_type type) { switch (type) { case cgltf_type_scalar: return "SCALAR"; case cgltf_type_vec2: return "VEC2"; case cgltf_type_vec3: return "VEC3"; case cgltf_type_vec4: return "VEC4"; case cgltf_type_mat2: return "MAT2"; case cgltf_type_mat3: return "MAT3"; case cgltf_type_mat4: return "MAT4"; default: return ""; } } const char* attributeType(cgltf_attribute_type type) { switch (type) { case cgltf_attribute_type_position: return "POSITION"; case cgltf_attribute_type_normal: return "NORMAL"; case cgltf_attribute_type_tangent: return "TANGENT"; case cgltf_attribute_type_texcoord: return "TEXCOORD"; case cgltf_attribute_type_color: return "COLOR"; case cgltf_attribute_type_joints: return "JOINTS"; case cgltf_attribute_type_weights: return "WEIGHTS"; default: return "ATTRIBUTE"; } } const char* animationPath(cgltf_animation_path_type type) { switch (type) { case cgltf_animation_path_type_translation: return "translation"; case cgltf_animation_path_type_rotation: return "rotation"; case cgltf_animation_path_type_scale: return "scale"; case cgltf_animation_path_type_weights: return "weights"; default: return ""; } } const char* lightType(cgltf_light_type type) { switch (type) { case cgltf_light_type_directional: return "directional"; case cgltf_light_type_point: return "point"; case cgltf_light_type_spot: return "spot"; default: return ""; } } void writeTextureInfo(std::string& json, const cgltf_data* data, const cgltf_texture_view& view, const QuantizationParams& qp) { assert(view.texture); cgltf_texture_transform transform = {}; if (view.has_transform) { transform = view.transform; } else { transform.scale[0] = transform.scale[1] = 1.f; } transform.offset[0] += qp.uv_offset[0]; transform.offset[1] += qp.uv_offset[1]; transform.scale[0] *= qp.uv_scale[0] / float((1 << qp.uv_bits) - 1); transform.scale[1] *= qp.uv_scale[1] / float((1 << qp.uv_bits) - 1); append(json, "{\"index\":"); append(json, size_t(view.texture - data->textures)); append(json, ",\"texCoord\":"); append(json, size_t(view.texcoord)); append(json, ",\"extensions\":{\"KHR_texture_transform\":{"); append(json, "\"offset\":["); append(json, transform.offset[0]); append(json, ","); append(json, transform.offset[1]); append(json, "],\"scale\":["); append(json, transform.scale[0]); append(json, ","); append(json, transform.scale[1]); append(json, "]"); if (transform.rotation != 0.f) { append(json, ",\"rotation\":"); append(json, transform.rotation); } append(json, "}}}"); } void writeMaterialInfo(std::string& json, const cgltf_data* data, const cgltf_material& material, const QuantizationParams& qp) { static const float white[4] = {1, 1, 1, 1}; static const float black[4] = {0, 0, 0, 0}; if (material.has_pbr_metallic_roughness) { const cgltf_pbr_metallic_roughness& pbr = material.pbr_metallic_roughness; comma(json); append(json, "\"pbrMetallicRoughness\":{"); if (memcmp(pbr.base_color_factor, white, 16) != 0) { comma(json); append(json, "\"baseColorFactor\":["); append(json, pbr.base_color_factor[0]); append(json, ","); append(json, pbr.base_color_factor[1]); append(json, ","); append(json, pbr.base_color_factor[2]); append(json, ","); append(json, pbr.base_color_factor[3]); append(json, "]"); } if (pbr.base_color_texture.texture) { comma(json); append(json, "\"baseColorTexture\":"); writeTextureInfo(json, data, pbr.base_color_texture, qp); } if (pbr.metallic_factor != 1) { comma(json); append(json, "\"metallicFactor\":"); append(json, pbr.metallic_factor); } if (pbr.roughness_factor != 1) { comma(json); append(json, "\"roughnessFactor\":"); append(json, pbr.roughness_factor); } if (pbr.metallic_roughness_texture.texture) { comma(json); append(json, "\"metallicRoughnessTexture\":"); writeTextureInfo(json, data, pbr.metallic_roughness_texture, qp); } append(json, "}"); } if (material.normal_texture.texture) { comma(json); append(json, "\"normalTexture\":"); writeTextureInfo(json, data, material.normal_texture, qp); } if (material.occlusion_texture.texture) { comma(json); append(json, "\"occlusionTexture\":"); writeTextureInfo(json, data, material.occlusion_texture, qp); } if (material.emissive_texture.texture) { comma(json); append(json, "\"emissiveTexture\":"); writeTextureInfo(json, data, material.emissive_texture, qp); } if (memcmp(material.emissive_factor, black, 12) != 0) { comma(json); append(json, "\"emissiveFactor\":["); append(json, material.emissive_factor[0]); append(json, ","); append(json, material.emissive_factor[1]); append(json, ","); append(json, material.emissive_factor[2]); append(json, "]"); } if (material.alpha_mode != cgltf_alpha_mode_opaque) { comma(json); append(json, "\"alphaMode\":"); append(json, (material.alpha_mode == cgltf_alpha_mode_blend) ? "\"BLEND\"" : "\"MASK\""); } if (material.alpha_cutoff != 0.5f) { comma(json); append(json, "\"alphaCutoff\":"); append(json, material.alpha_cutoff); } if (material.double_sided) { comma(json); append(json, "\"doubleSided\":true"); } if (material.has_pbr_specular_glossiness || material.unlit) { comma(json); append(json, "\"extensions\":{"); if (material.has_pbr_specular_glossiness) { const cgltf_pbr_specular_glossiness& pbr = material.pbr_specular_glossiness; comma(json); append(json, "\"KHR_materials_pbrSpecularGlossiness\":{"); if (pbr.diffuse_texture.texture) { comma(json); append(json, "\"diffuseTexture\":"); writeTextureInfo(json, data, pbr.diffuse_texture, qp); } if (pbr.specular_glossiness_texture.texture) { comma(json); append(json, "\"specularGlossinessTexture\":"); writeTextureInfo(json, data, pbr.specular_glossiness_texture, qp); } if (memcmp(pbr.diffuse_factor, white, 16) != 0) { comma(json); append(json, "\"diffuseFactor\":["); append(json, pbr.diffuse_factor[0]); append(json, ","); append(json, pbr.diffuse_factor[1]); append(json, ","); append(json, pbr.diffuse_factor[2]); append(json, ","); append(json, pbr.diffuse_factor[3]); append(json, "]"); } if (memcmp(pbr.specular_factor, white, 12) != 0) { comma(json); append(json, "\"specularFactor\":["); append(json, pbr.specular_factor[0]); append(json, ","); append(json, pbr.specular_factor[1]); append(json, ","); append(json, pbr.specular_factor[2]); append(json, "]"); } if (pbr.glossiness_factor != 1) { comma(json); append(json, "\"glossinessFactor\":"); append(json, pbr.glossiness_factor); } append(json, "}"); } if (material.unlit) { comma(json); append(json, "\"KHR_materials_unlit\":{}"); } append(json, "}"); } } bool usesTextureSet(const cgltf_material& material, int set) { if (material.has_pbr_metallic_roughness) { const cgltf_pbr_metallic_roughness& pbr = material.pbr_metallic_roughness; if (pbr.base_color_texture.texture && pbr.base_color_texture.texcoord == set) return true; if (pbr.metallic_roughness_texture.texture && pbr.metallic_roughness_texture.texcoord == set) return true; } if (material.has_pbr_specular_glossiness) { const cgltf_pbr_specular_glossiness& pbr = material.pbr_specular_glossiness; if (pbr.diffuse_texture.texture && pbr.diffuse_texture.texcoord == set) return true; if (pbr.specular_glossiness_texture.texture && pbr.specular_glossiness_texture.texcoord == set) return true; } if (material.normal_texture.texture && material.normal_texture.texcoord == set) return true; if (material.occlusion_texture.texture && material.occlusion_texture.texcoord == set) return true; if (material.emissive_texture.texture && material.emissive_texture.texcoord == set) return true; return false; } size_t getBufferView(std::vector& views, BufferView::Kind kind, int variant, size_t stride, bool compressed) { if (variant >= 0) { for (size_t i = 0; i < views.size(); ++i) if (views[i].kind == kind && views[i].variant == variant && views[i].stride == stride && views[i].compressed == compressed) return i; } BufferView view = {kind, variant, stride, compressed}; views.push_back(view); return views.size() - 1; } void writeBufferView(std::string& json, BufferView::Kind kind, size_t count, size_t stride, size_t bin_offset, size_t bin_size, int compression, size_t compressed_offset, size_t compressed_size) { assert(bin_size == count * stride); // when compression is enabled, we store uncompressed data in buffer 1 and compressed data in buffer 0 // when compression is disabled, we store uncompressed data in buffer 0 size_t buffer = compression >= 0 ? 1 : 0; append(json, "{\"buffer\":"); append(json, buffer); append(json, ",\"byteOffset\":"); append(json, bin_offset); append(json, ",\"byteLength\":"); append(json, bin_size); if (kind == BufferView::Kind_Vertex) { append(json, ",\"byteStride\":"); append(json, stride); } if (kind == BufferView::Kind_Vertex || kind == BufferView::Kind_Index) { append(json, ",\"target\":"); append(json, (kind == BufferView::Kind_Vertex) ? "34962" : "34963"); } if (compression >= 0) { append(json, ",\"extensions\":{"); append(json, "\"MESHOPT_compression\":{"); append(json, "\"buffer\":0"); append(json, ",\"byteOffset\":"); append(json, size_t(compressed_offset)); append(json, ",\"byteLength\":"); append(json, size_t(compressed_size)); append(json, ",\"byteStride\":"); append(json, stride); append(json, ",\"mode\":"); append(json, size_t(compression)); append(json, ",\"count\":"); append(json, count); append(json, "}}"); } append(json, "}"); } void writeAccessor(std::string& json, size_t view, size_t offset, cgltf_type type, cgltf_component_type component_type, bool normalized, size_t count, const float* min = 0, const float* max = 0, size_t numminmax = 0) { append(json, "{\"bufferView\":"); append(json, view); append(json, ",\"byteOffset\":"); append(json, offset); append(json, ",\"componentType\":"); append(json, componentType(component_type)); append(json, ",\"count\":"); append(json, count); append(json, ",\"type\":\""); append(json, shapeType(type)); append(json, "\""); if (normalized) { append(json, ",\"normalized\":true"); } if (min && max) { assert(numminmax); append(json, ",\"min\":["); for (size_t k = 0; k < numminmax; ++k) { comma(json); append(json, min[k]); } append(json, "],\"max\":["); for (size_t k = 0; k < numminmax; ++k) { comma(json); append(json, max[k]); } append(json, "]"); } append(json, "}"); } float getDelta(const Attr& l, const Attr& r, cgltf_animation_path_type type) { if (type == cgltf_animation_path_type_rotation) { float error = 1.f - fabsf(l.f[0] * r.f[0] + l.f[1] * r.f[1] + l.f[2] * r.f[2] + l.f[3] * r.f[3]); return error; } else { float error = 0; for (int k = 0; k < 4; ++k) error += fabsf(r.f[k] - l.f[k]); return error; } } bool isTrackConstant(const cgltf_animation_sampler& sampler, cgltf_animation_path_type type, cgltf_node* target_node, Attr* out_first = 0) { const float tolerance = 1e-3f; size_t value_stride = (sampler.interpolation == cgltf_interpolation_type_cubic_spline) ? 3 : 1; size_t value_offset = (sampler.interpolation == cgltf_interpolation_type_cubic_spline) ? 1 : 0; size_t components = (type == cgltf_animation_path_type_weights) ? target_node->mesh->primitives[0].targets_count : 1; assert(sampler.input->count * value_stride * components == sampler.output->count); std::vector output; readAccessor(output, sampler.output); for (size_t j = 0; j < components; ++j) { Attr first = output[j * value_stride + value_offset]; for (size_t i = 1; i < sampler.input->count; ++i) { const Attr& attr = output[(i * components + j) * value_stride + value_offset]; if (getDelta(first, attr, type) > tolerance) return false; } if (sampler.interpolation == cgltf_interpolation_type_cubic_spline) { for (size_t i = 0; i < sampler.input->count; ++i) { for (int k = 0; k < 2; ++k) { const Attr& t = output[(i * components + j) * 3 + k * 2]; float error = fabsf(t.f[0]) + fabsf(t.f[1]) + fabsf(t.f[2]) + fabsf(t.f[3]); if (error > tolerance) return false; } } } } if (out_first) *out_first = output[value_offset]; return true; } Attr interpolateLinear(const Attr& l, const Attr& r, float t, cgltf_animation_path_type type) { if (type == cgltf_animation_path_type_rotation) { // Approximating slerp, https://zeux.io/2015/07/23/approximating-slerp/ // We also handle quaternion double-cover float ca = l.f[0] * r.f[0] + l.f[1] * r.f[1] + l.f[2] * r.f[2] + l.f[3] * r.f[3]; float d = fabsf(ca); float A = 1.0904f + d * (-3.2452f + d * (3.55645f - d * 1.43519f)); float B = 0.848013f + d * (-1.06021f + d * 0.215638f); float k = A * (t - 0.5f) * (t - 0.5f) + B; float ot = t + t * (t - 0.5f) * (t - 1) * k; float t0 = 1 - ot; float t1 = ca > 0 ? ot : -ot; Attr lerp = {{ l.f[0] * t0 + r.f[0] * t1, l.f[1] * t0 + r.f[1] * t1, l.f[2] * t0 + r.f[2] * t1, l.f[3] * t0 + r.f[3] * t1, }}; float len = sqrtf(lerp.f[0] * lerp.f[0] + lerp.f[1] * lerp.f[1] + lerp.f[2] * lerp.f[2] + lerp.f[3] * lerp.f[3]); if (len > 0.f) { lerp.f[0] /= len; lerp.f[1] /= len; lerp.f[2] /= len; lerp.f[3] /= len; } return lerp; } else { Attr lerp = {{ l.f[0] * (1 - t) + r.f[0] * t, l.f[1] * (1 - t) + r.f[1] * t, l.f[2] * (1 - t) + r.f[2] * t, l.f[3] * (1 - t) + r.f[3] * t, }}; return lerp; } } Attr interpolateHermite(const Attr& v0, const Attr& t0, const Attr& v1, const Attr& t1, float t, float dt, cgltf_animation_path_type type) { float s0 = 1 + t * t * (2 * t - 3); float s1 = t + t * t * (t - 2); float s2 = 1 - s0; float s3 = t * t * (t - 1); float ts1 = dt * s1; float ts3 = dt * s3; Attr lerp = {{ s0 * v0.f[0] + ts1 * t0.f[0] + s2 * v1.f[0] + ts3 * t1.f[0], s0 * v0.f[1] + ts1 * t0.f[1] + s2 * v1.f[1] + ts3 * t1.f[1], s0 * v0.f[2] + ts1 * t0.f[2] + s2 * v1.f[2] + ts3 * t1.f[2], s0 * v0.f[3] + ts1 * t0.f[3] + s2 * v1.f[3] + ts3 * t1.f[3], }}; if (type == cgltf_animation_path_type_rotation) { float len = sqrtf(lerp.f[0] * lerp.f[0] + lerp.f[1] * lerp.f[1] + lerp.f[2] * lerp.f[2] + lerp.f[3] * lerp.f[3]); if (len > 0.f) { lerp.f[0] /= len; lerp.f[1] /= len; lerp.f[2] /= len; lerp.f[3] /= len; } } return lerp; } void resampleKeyframes(std::vector& data, const cgltf_animation_sampler& sampler, cgltf_animation_path_type type, cgltf_node* target_node, int frames, float mint, int freq) { size_t components = (type == cgltf_animation_path_type_weights) ? target_node->mesh->primitives[0].targets_count : 1; std::vector input; readAccessor(input, sampler.input); std::vector output; readAccessor(output, sampler.output); size_t cursor = 0; for (int i = 0; i < frames; ++i) { float time = mint + float(i) / freq; while (cursor + 1 < sampler.input->count) { float next_time = input[cursor + 1]; if (next_time > time) break; cursor++; } if (cursor + 1 < sampler.input->count) { float cursor_time = input[cursor + 0]; float next_time = input[cursor + 1]; float range = next_time - cursor_time; float inv_range = (range == 0.f) ? 0.f : 1.f / (next_time - cursor_time); float t = std::max(0.f, std::min(1.f, (time - cursor_time) * inv_range)); for (size_t j = 0; j < components; ++j) { switch (sampler.interpolation) { case cgltf_interpolation_type_linear: { const Attr& v0 = output[(cursor + 0) * components + j]; const Attr& v1 = output[(cursor + 1) * components + j]; data.push_back(interpolateLinear(v0, v1, t, type)); } break; case cgltf_interpolation_type_step: { const Attr& v = output[cursor * components + j]; data.push_back(v); } break; case cgltf_interpolation_type_cubic_spline: { const Attr& v0 = output[(cursor * 3 + 1) * components + j]; const Attr& b0 = output[(cursor * 3 + 2) * components + j]; const Attr& a1 = output[(cursor * 3 + 3) * components + j]; const Attr& v1 = output[(cursor * 3 + 4) * components + j]; data.push_back(interpolateHermite(v0, b0, v1, a1, t, range, type)); } break; default: assert(!"Unknown interpolation type"); } } } else { size_t offset = (sampler.interpolation == cgltf_interpolation_type_cubic_spline) ? cursor * 3 + 1 : cursor; for (size_t j = 0; j < components; ++j) { const Attr& v = output[offset * components + j]; data.push_back(v); } } } } void markAnimated(cgltf_data* data, std::vector& nodes) { for (size_t i = 0; i < data->animations_count; ++i) { const cgltf_animation& animation = data->animations[i]; for (size_t j = 0; j < animation.channels_count; ++j) { const cgltf_animation_channel& channel = animation.channels[j]; const cgltf_animation_sampler& sampler = *channel.sampler; if (!channel.target_node) continue; NodeInfo& ni = nodes[channel.target_node - data->nodes]; // mark nodes that have animation tracks that change their base transform as animated Attr first = {}; if (!isTrackConstant(sampler, channel.target_path, channel.target_node, &first)) { ni.animated_paths |= (1 << channel.target_path); } else if (channel.target_path == cgltf_animation_path_type_weights) { // we currently preserve constant weight tracks because the usecase is very rare and // isTrackConstant doesn't return the full set of weights to compare against ni.animated_paths |= (1 << channel.target_path); } else { Attr base = {}; switch (channel.target_path) { case cgltf_animation_path_type_translation: memcpy(base.f, channel.target_node->translation, 3 * sizeof(float)); break; case cgltf_animation_path_type_rotation: memcpy(base.f, channel.target_node->rotation, 4 * sizeof(float)); break; case cgltf_animation_path_type_scale: memcpy(base.f, channel.target_node->scale, 3 * sizeof(float)); break; default: assert(!"Unknown target path"); } const float tolerance = 1e-3f; if (getDelta(base, first, channel.target_path) > tolerance) { ni.animated_paths |= (1 << channel.target_path); } } } } for (size_t i = 0; i < data->nodes_count; ++i) { NodeInfo& ni = nodes[i]; for (cgltf_node* node = &data->nodes[i]; node; node = node->parent) ni.animated |= nodes[node - data->nodes].animated_paths != 0; } } void markNeededNodes(cgltf_data* data, std::vector& nodes, const std::vector& meshes, const Settings& settings) { // mark all joints as kept for (size_t i = 0; i < data->skins_count; ++i) { const cgltf_skin& skin = data->skins[i]; // for now we keep all joints directly referenced by the skin and the entire ancestry tree; we keep names for joints as well for (size_t j = 0; j < skin.joints_count; ++j) { NodeInfo& ni = nodes[skin.joints[j] - data->nodes]; ni.keep = true; } } // mark all animated nodes as kept for (size_t i = 0; i < data->animations_count; ++i) { const cgltf_animation& animation = data->animations[i]; for (size_t j = 0; j < animation.channels_count; ++j) { const cgltf_animation_channel& channel = animation.channels[j]; if (channel.target_node) { NodeInfo& ni = nodes[channel.target_node - data->nodes]; ni.keep = true; } } } // mark all mesh nodes as kept for (size_t i = 0; i < meshes.size(); ++i) { const Mesh& mesh = meshes[i]; if (mesh.node) { NodeInfo& ni = nodes[mesh.node - data->nodes]; ni.keep = true; } } // mark all light/camera nodes as kept for (size_t i = 0; i < data->nodes_count; ++i) { const cgltf_node& node = data->nodes[i]; if (node.light || node.camera) { nodes[i].keep = true; } } // mark all named nodes as needed (if -kn is specified) if (settings.keep_named) { for (size_t i = 0; i < data->nodes_count; ++i) { const cgltf_node& node = data->nodes[i]; if (node.name && *node.name) { nodes[i].keep = true; } } } } void markNeededMaterials(cgltf_data* data, std::vector& materials, const std::vector& meshes) { // mark all used materials as kept for (size_t i = 0; i < meshes.size(); ++i) { const Mesh& mesh = meshes[i]; if (mesh.material) { MaterialInfo& mi = materials[mesh.material - data->materials]; mi.keep = true; } } } void remapNodes(cgltf_data* data, std::vector& nodes, size_t& node_offset) { // to keep a node, we currently need to keep the entire ancestry chain for (size_t i = 0; i < data->nodes_count; ++i) { if (!nodes[i].keep) continue; for (cgltf_node* node = &data->nodes[i]; node; node = node->parent) nodes[node - data->nodes].keep = true; } // generate sequential indices for all nodes; they aren't sorted topologically for (size_t i = 0; i < data->nodes_count; ++i) { NodeInfo& ni = nodes[i]; if (ni.keep) { ni.remap = int(node_offset); node_offset++; } } } bool parseDataUri(const char* uri, std::string& mime_type, std::string& result) { if (strncmp(uri, "data:", 5) == 0) { const char* comma = strchr(uri, ','); if (comma && comma - uri >= 7 && strncmp(comma - 7, ";base64", 7) == 0) { const char* base64 = comma + 1; size_t base64_size = strlen(base64); size_t size = base64_size - base64_size / 4; if (base64_size >= 2) { size -= base64[base64_size - 2] == '='; size -= base64[base64_size - 1] == '='; } void* data = 0; cgltf_options options = {}; cgltf_result res = cgltf_load_buffer_base64(&options, size, base64, &data); if (res != cgltf_result_success) return false; mime_type = std::string(uri + 5, comma - 7); result = std::string(static_cast(data), size); free(data); return true; } } return false; } void writeEmbeddedImage(std::string& json, std::vector& views, const char* data, size_t size, const char* mime_type) { size_t view = getBufferView(views, BufferView::Kind_Image, -1, 1, false); assert(views[view].data.empty()); views[view].data.assign(data, size); append(json, "\"bufferView\":"); append(json, view); append(json, ",\"mimeType\":\""); append(json, mime_type); append(json, "\""); } void writeMeshAttributes(std::string& json, std::vector& views, std::string& json_accessors, size_t& accr_offset, const Mesh& mesh, int target, const QuantizationParams& qp, const Settings& settings) { std::string scratch; for (size_t j = 0; j < mesh.streams.size(); ++j) { const Stream& stream = mesh.streams[j]; if (stream.target != target) continue; if (stream.type == cgltf_attribute_type_texcoord && (!mesh.material || !usesTextureSet(*mesh.material, stream.index))) continue; if (stream.type == cgltf_attribute_type_tangent && (!mesh.material || !mesh.material->normal_texture.texture)) continue; if ((stream.type == cgltf_attribute_type_joints || stream.type == cgltf_attribute_type_weights) && !mesh.skin) continue; scratch.clear(); StreamFormat format = writeVertexStream(scratch, stream, qp, settings, mesh.targets > 0); size_t view = getBufferView(views, BufferView::Kind_Vertex, stream.type, format.stride, settings.compress); size_t offset = views[view].data.size(); views[view].data += scratch; comma(json_accessors); if (stream.type == cgltf_attribute_type_position) { int min[3] = {}; int max[3] = {}; getPositionBounds(min, max, stream, qp); float minf[3] = {float(min[0]), float(min[1]), float(min[2])}; float maxf[3] = {float(max[0]), float(max[1]), float(max[2])}; writeAccessor(json_accessors, view, offset, format.type, format.component_type, format.normalized, stream.data.size(), minf, maxf, 3); } else { writeAccessor(json_accessors, view, offset, format.type, format.component_type, format.normalized, stream.data.size()); } size_t vertex_accr = accr_offset++; comma(json); append(json, "\""); append(json, attributeType(stream.type)); if (stream.type != cgltf_attribute_type_position && stream.type != cgltf_attribute_type_normal && stream.type != cgltf_attribute_type_tangent) { append(json, "_"); append(json, size_t(stream.index)); } append(json, "\":"); append(json, vertex_accr); } } size_t writeMeshIndices(std::vector& views, std::string& json_accessors, size_t& accr_offset, const Mesh& mesh, const Settings& settings) { std::string scratch; StreamFormat format = writeIndexStream(scratch, mesh.indices); // note: we prefer to merge all index streams together; however, index codec currently doesn't handle concatenated index streams well and loses compression ratio int variant = settings.compress ? -1 : 0; size_t view = getBufferView(views, BufferView::Kind_Index, variant, format.stride, settings.compress); size_t offset = views[view].data.size(); views[view].data += scratch; comma(json_accessors); writeAccessor(json_accessors, view, offset, format.type, format.component_type, format.normalized, mesh.indices.size()); size_t index_accr = accr_offset++; return index_accr; } size_t writeAnimationTime(std::vector& views, std::string& json_accessors, size_t& accr_offset, float mint, int frames, const Settings& settings) { std::vector time(frames); for (int j = 0; j < frames; ++j) time[j] = mint + float(j) / settings.anim_freq; std::string scratch; StreamFormat format = writeTimeStream(scratch, time); size_t view = getBufferView(views, BufferView::Kind_Time, 0, format.stride, settings.compress); size_t offset = views[view].data.size(); views[view].data += scratch; comma(json_accessors); writeAccessor(json_accessors, view, offset, cgltf_type_scalar, format.component_type, format.normalized, frames, &time.front(), &time.back(), 1); size_t time_accr = accr_offset++; return time_accr; } size_t writeJointBindMatrices(std::vector& views, std::string& json_accessors, size_t& accr_offset, const cgltf_skin& skin, const QuantizationParams& qp, const Settings& settings) { std::string scratch; for (size_t j = 0; j < skin.joints_count; ++j) { float transform[16] = {1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1}; if (skin.inverse_bind_matrices) { cgltf_accessor_read_float(skin.inverse_bind_matrices, j, transform, 16); } float node_scale = qp.pos_scale / float((1 << qp.pos_bits) - 1); // pos_offset has to be applied first, thus it results in an offset rotated by the bind matrix transform[12] += qp.pos_offset[0] * transform[0] + qp.pos_offset[1] * transform[4] + qp.pos_offset[2] * transform[8]; transform[13] += qp.pos_offset[0] * transform[1] + qp.pos_offset[1] * transform[5] + qp.pos_offset[2] * transform[9]; transform[14] += qp.pos_offset[0] * transform[2] + qp.pos_offset[1] * transform[6] + qp.pos_offset[2] * transform[10]; // node_scale will be applied before the rotation/scale from transform for (int k = 0; k < 12; ++k) transform[k] *= node_scale; scratch.append(reinterpret_cast(transform), sizeof(transform)); } size_t view = getBufferView(views, BufferView::Kind_Skin, 0, 64, settings.compress); size_t offset = views[view].data.size(); views[view].data += scratch; comma(json_accessors); writeAccessor(json_accessors, view, offset, cgltf_type_mat4, cgltf_component_type_r_32f, false, skin.joints_count); size_t matrix_accr = accr_offset++; return matrix_accr; } void writeMeshNode(std::string& json, size_t mesh_offset, const Mesh& mesh, cgltf_data* data, const QuantizationParams& qp) { float node_scale = qp.pos_scale / float((1 << qp.pos_bits) - 1); comma(json); append(json, "{\"mesh\":"); append(json, mesh_offset); if (mesh.skin) { comma(json); append(json, "\"skin\":"); append(json, size_t(mesh.skin - data->skins)); } append(json, ",\"translation\":["); append(json, qp.pos_offset[0]); append(json, ","); append(json, qp.pos_offset[1]); append(json, ","); append(json, qp.pos_offset[2]); append(json, "],\"scale\":["); append(json, node_scale); append(json, ","); append(json, node_scale); append(json, ","); append(json, node_scale); append(json, "]"); if (mesh.node && mesh.node->weights_count) { append(json, ",\"weights\":["); for (size_t j = 0; j < mesh.node->weights_count; ++j) { comma(json); append(json, mesh.node->weights[j]); } append(json, "]"); } append(json, "}"); } void writeNode(std::string& json, const cgltf_node& node, const std::vector& nodes, cgltf_data* data) { const NodeInfo& ni = nodes[&node - data->nodes]; comma(json); append(json, "{"); if (node.name && *node.name) { comma(json); append(json, "\"name\":\""); append(json, node.name); append(json, "\""); } if (node.has_translation) { comma(json); append(json, "\"translation\":["); append(json, node.translation[0]); append(json, ","); append(json, node.translation[1]); append(json, ","); append(json, node.translation[2]); append(json, "]"); } if (node.has_rotation) { comma(json); append(json, "\"rotation\":["); append(json, node.rotation[0]); append(json, ","); append(json, node.rotation[1]); append(json, ","); append(json, node.rotation[2]); append(json, ","); append(json, node.rotation[3]); append(json, "]"); } if (node.has_scale) { comma(json); append(json, "\"scale\":["); append(json, node.scale[0]); append(json, ","); append(json, node.scale[1]); append(json, ","); append(json, node.scale[2]); append(json, "]"); } if (node.has_matrix) { comma(json); append(json, "\"matrix\":["); for (int k = 0; k < 16; ++k) { comma(json); append(json, node.matrix[k]); } append(json, "]"); } if (node.children_count || !ni.meshes.empty()) { comma(json); append(json, "\"children\":["); for (size_t j = 0; j < node.children_count; ++j) { const NodeInfo& ci = nodes[node.children[j] - data->nodes]; if (ci.keep) { comma(json); append(json, size_t(ci.remap)); } } for (size_t j = 0; j < ni.meshes.size(); ++j) { comma(json); append(json, ni.meshes[j]); } append(json, "]"); } if (node.camera) { comma(json); append(json, "\"camera\":"); append(json, size_t(node.camera - data->cameras)); } if (node.light) { comma(json); append(json, "\"extensions\":{\"KHR_lights_punctual\":{\"light\":"); append(json, size_t(node.light - data->lights)); append(json, "}}"); } append(json, "}"); } void writeAnimation(std::string& json, std::vector& views, std::string& json_accessors, size_t& accr_offset, const cgltf_animation& animation, cgltf_data* data, const std::vector& nodes, const Settings& settings) { std::vector tracks; for (size_t j = 0; j < animation.channels_count; ++j) { const cgltf_animation_channel& channel = animation.channels[j]; if (!channel.target_node) { fprintf(stderr, "Warning: ignoring channel %d of animation %d because it has no target node\n", int(j), int(&animation - data->animations)); continue; } const NodeInfo& ni = nodes[channel.target_node - data->nodes]; if (!ni.keep) continue; if (!settings.anim_const && (ni.animated_paths & (1 << channel.target_path)) == 0) continue; tracks.push_back(&channel); } if (tracks.empty()) { fprintf(stderr, "Warning: ignoring animation %d because it has no valid tracks\n", int(&animation - data->animations)); return; } float mint = 0, maxt = 0; bool needs_time = false; bool needs_pose = false; for (size_t j = 0; j < tracks.size(); ++j) { const cgltf_animation_channel& channel = *tracks[j]; const cgltf_animation_sampler& sampler = *channel.sampler; mint = std::min(mint, sampler.input->min[0]); maxt = std::max(maxt, sampler.input->max[0]); bool tc = isTrackConstant(sampler, channel.target_path, channel.target_node); needs_time = needs_time || !tc; needs_pose = needs_pose || tc; } // round the number of frames to nearest but favor the "up" direction // this means that at 10 Hz resampling, we will try to preserve the last frame <10ms // but if the last frame is <2ms we favor just removing this data int frames = 1 + int((maxt - mint) * settings.anim_freq + 0.8f); size_t time_accr = needs_time ? writeAnimationTime(views, json_accessors, accr_offset, mint, frames, settings) : 0; size_t pose_accr = needs_pose ? writeAnimationTime(views, json_accessors, accr_offset, mint, 1, settings) : 0; std::string json_samplers; std::string json_channels; size_t track_offset = 0; for (size_t j = 0; j < tracks.size(); ++j) { const cgltf_animation_channel& channel = *tracks[j]; const cgltf_animation_sampler& sampler = *channel.sampler; bool tc = isTrackConstant(sampler, channel.target_path, channel.target_node); std::vector track; resampleKeyframes(track, sampler, channel.target_path, channel.target_node, tc ? 1 : frames, mint, settings.anim_freq); std::string scratch; StreamFormat format = writeKeyframeStream(scratch, channel.target_path, track); size_t view = getBufferView(views, BufferView::Kind_Keyframe, channel.target_path, format.stride, settings.compress && channel.target_path != cgltf_animation_path_type_weights); size_t offset = views[view].data.size(); views[view].data += scratch; comma(json_accessors); writeAccessor(json_accessors, view, offset, format.type, format.component_type, format.normalized, track.size()); size_t data_accr = accr_offset++; comma(json_samplers); append(json_samplers, "{\"input\":"); append(json_samplers, tc ? pose_accr : time_accr); append(json_samplers, ",\"output\":"); append(json_samplers, data_accr); append(json_samplers, "}"); const NodeInfo& tni = nodes[channel.target_node - data->nodes]; size_t target_node = size_t(tni.remap); if (channel.target_path == cgltf_animation_path_type_weights) { assert(tni.meshes.size() == 1); target_node = tni.meshes[0]; } comma(json_channels); append(json_channels, "{\"sampler\":"); append(json_channels, track_offset); append(json_channels, ",\"target\":{\"node\":"); append(json_channels, target_node); append(json_channels, ",\"path\":\""); append(json_channels, animationPath(channel.target_path)); append(json_channels, "\"}}"); track_offset++; } comma(json); append(json, "{"); if (animation.name && *animation.name) { append(json, "\"name\":\""); append(json, animation.name); append(json, "\","); } append(json, "\"samplers\":["); append(json, json_samplers); append(json, "],\"channels\":["); append(json, json_channels); append(json, "]}"); } void writeCamera(std::string& json, const cgltf_camera& camera) { comma(json); append(json, "{"); switch (camera.type) { case cgltf_camera_type_perspective: append(json, "\"type\":\"perspective\",\"perspective\":{"); append(json, "\"yfov\":"); append(json, camera.perspective.yfov); append(json, ",\"znear\":"); append(json, camera.perspective.znear); if (camera.perspective.aspect_ratio != 0.f) { append(json, ",\"aspectRatio\":"); append(json, camera.perspective.aspect_ratio); } if (camera.perspective.zfar != 0.f) { append(json, ",\"zfar\":"); append(json, camera.perspective.zfar); } append(json, "}"); break; case cgltf_camera_type_orthographic: append(json, "\"type\":\"orthographic\",\"orthographic\":{"); append(json, "\"xmag\":"); append(json, camera.orthographic.xmag); append(json, ",\"ymag\":"); append(json, camera.orthographic.ymag); append(json, ",\"znear\":"); append(json, camera.orthographic.znear); append(json, ",\"zfar\":"); append(json, camera.orthographic.zfar); append(json, "}"); break; default: fprintf(stderr, "Warning: skipping camera of unknown type\n"); } append(json, "}"); } void writeLight(std::string& json, const cgltf_light& light) { static const float white[3] = {1, 1, 1}; comma(json); append(json, "{\"type\":\""); append(json, lightType(light.type)); append(json, "\""); if (memcmp(light.color, white, sizeof(white)) != 0) { comma(json); append(json, "\"color\":["); append(json, light.color[0]); append(json, ","); append(json, light.color[1]); append(json, ","); append(json, light.color[2]); append(json, "]"); } if (light.intensity != 1.f) { comma(json); append(json, "\"intensity\":"); append(json, light.intensity); } if (light.range != 0.f) { comma(json); append(json, "\"range\":"); append(json, light.range); } if (light.type == cgltf_light_type_spot) { comma(json); append(json, "\"spot\":{"); append(json, "\"innerConeAngle\":"); append(json, light.spot_inner_cone_angle); append(json, ",\"outerConeAngle\":"); append(json, light.spot_outer_cone_angle == 0.f ? 0.78539816339f : light.spot_outer_cone_angle); append(json, "}"); } append(json, "}"); } void finalizeBufferViews(std::string& json, std::vector& views, std::string& bin, std::string& fallback) { for (size_t i = 0; i < views.size(); ++i) { BufferView& view = views[i]; size_t bin_offset = bin.size(); size_t fallback_offset = fallback.size(); size_t count = view.data.size() / view.stride; int compression = -1; if (view.compressed) { if (view.kind == BufferView::Kind_Index) { compressIndexStream(bin, view.data, count, view.stride); compression = 1; } else { compressVertexStream(bin, view.data, count, view.stride); compression = 0; } fallback += view.data; } else { bin += view.data; } size_t raw_offset = (compression >= 0) ? fallback_offset : bin_offset; comma(json); writeBufferView(json, view.kind, count, view.stride, raw_offset, view.data.size(), compression, bin_offset, bin.size() - bin_offset); // record written bytes for statistics view.bytes = bin.size() - bin_offset; // align each bufferView by 4 bytes bin.resize((bin.size() + 3) & ~3); fallback.resize((fallback.size() + 3) & ~3); } } void printMeshStats(const std::vector& meshes, const char* name) { size_t triangles = 0; size_t vertices = 0; for (size_t i = 0; i < meshes.size(); ++i) { const Mesh& mesh = meshes[i]; triangles += mesh.indices.size() / 3; vertices += mesh.streams.empty() ? 0 : mesh.streams[0].data.size(); } printf("%s: %d triangles, %d vertices\n", name, int(triangles), int(vertices)); } void printAttributeStats(const std::vector& views, BufferView::Kind kind, const char* name) { for (size_t i = 0; i < views.size(); ++i) { const BufferView& view = views[i]; if (view.kind != kind) continue; const char* variant = "unknown"; switch (kind) { case BufferView::Kind_Vertex: variant = attributeType(cgltf_attribute_type(view.variant)); break; case BufferView::Kind_Index: variant = "index"; break; case BufferView::Kind_Keyframe: variant = animationPath(cgltf_animation_path_type(view.variant)); break; default:; } size_t count = view.data.size() / view.stride; printf("stats: %s %s: compressed %d bytes (%.1f bits), raw %d bytes (%d bits)\n", name, variant, int(view.bytes), double(view.bytes) / double(count) * 8, int(view.data.size()), int(view.stride * 8)); } } void process(cgltf_data* data, std::vector& meshes, const Settings& settings, std::string& json, std::string& bin, std::string& fallback) { if (settings.verbose) { printf("input: %d nodes, %d meshes (%d primitives), %d materials, %d skins, %d animations\n", int(data->nodes_count), int(data->meshes_count), int(meshes.size()), int(data->materials_count), int(data->skins_count), int(data->animations_count)); } std::vector nodes(data->nodes_count); markAnimated(data, nodes); for (size_t i = 0; i < meshes.size(); ++i) { Mesh& mesh = meshes[i]; // note: when -kn is specified, we keep mesh-node attachment so that named nodes can be transformed if (mesh.node && !settings.keep_named) { NodeInfo& ni = nodes[mesh.node - data->nodes]; // we transform all non-skinned non-animated meshes to world space // this makes sure that quantization doesn't introduce gaps if the original scene was watertight if (!ni.animated && !mesh.skin && mesh.targets == 0) { transformMesh(mesh, mesh.node); mesh.node = 0; } // skinned and animated meshes will be anchored to the same node that they used to be in // for animated meshes, this is important since they need to be transformed by the same animation // for skinned meshes, in theory this isn't important since the transform of the skinned node doesn't matter; in practice this affects generated bounding box in three.js } } mergeMeshMaterials(data, meshes); mergeMeshes(meshes, settings); markNeededNodes(data, nodes, meshes, settings); std::vector materials(data->materials_count); markNeededMaterials(data, materials, meshes); if (settings.verbose) { printMeshStats(meshes, "input"); } for (size_t i = 0; i < meshes.size(); ++i) { Mesh& mesh = meshes[i]; switch (mesh.type) { case cgltf_primitive_type_points: assert(mesh.indices.empty()); simplifyPointMesh(mesh, settings.simplify_threshold); sortPointMesh(mesh); break; case cgltf_primitive_type_triangles: reindexMesh(mesh); filterMesh(mesh); simplifyMesh(mesh, settings.simplify_threshold, settings.simplify_aggressive); optimizeMesh(mesh); sortBoneInfluences(mesh); break; default: assert(!"Unknown primitive type"); } } if (settings.verbose) { printMeshStats(meshes, "output"); } QuantizationParams qp = prepareQuantization(meshes, settings); std::string json_images; std::string json_textures; std::string json_materials; std::string json_accessors; std::string json_meshes; std::string json_nodes; std::string json_skins; std::string json_roots; std::string json_animations; std::string json_cameras; std::string json_lights; std::vector views; bool ext_pbr_specular_glossiness = false; bool ext_unlit = false; size_t accr_offset = 0; size_t node_offset = 0; size_t mesh_offset = 0; size_t material_offset = 0; for (size_t i = 0; i < data->images_count; ++i) { const cgltf_image& image = data->images[i]; comma(json_images); append(json_images, "{"); if (image.uri) { std::string mime_type; std::string img; if (parseDataUri(image.uri, mime_type, img)) { writeEmbeddedImage(json_images, views, img.c_str(), img.size(), mime_type.c_str()); } else { append(json_images, "\"uri\":\""); append(json_images, image.uri); append(json_images, "\""); } } else if (image.buffer_view && image.buffer_view->buffer->data && image.mime_type) { const char* img = static_cast(image.buffer_view->buffer->data) + image.buffer_view->offset; size_t size = image.buffer_view->size; writeEmbeddedImage(json_images, views, img, size, image.mime_type); } else { fprintf(stderr, "Warning: ignoring image %d since it has no URI and no valid buffer data\n", int(i)); } append(json_images, "}"); } for (size_t i = 0; i < data->textures_count; ++i) { const cgltf_texture& texture = data->textures[i]; comma(json_textures); append(json_textures, "{"); if (texture.image) { append(json_textures, "\"source\":"); append(json_textures, size_t(texture.image - data->images)); } append(json_textures, "}"); } for (size_t i = 0; i < data->materials_count; ++i) { MaterialInfo& mi = materials[i]; if (!mi.keep) continue; const cgltf_material& material = data->materials[i]; comma(json_materials); append(json_materials, "{"); writeMaterialInfo(json_materials, data, material, qp); append(json_materials, "}"); mi.remap = int(material_offset); material_offset++; ext_pbr_specular_glossiness = ext_pbr_specular_glossiness || material.has_pbr_specular_glossiness; ext_unlit = ext_unlit || material.unlit; } for (size_t i = 0; i < meshes.size(); ++i) { const Mesh& mesh = meshes[i]; comma(json_meshes); append(json_meshes, "{\"primitives\":["); size_t pi = i; for (; pi < meshes.size(); ++pi) { const Mesh& prim = meshes[pi]; if (prim.node != mesh.node || prim.skin != mesh.skin || prim.targets != mesh.targets) break; if (!compareMeshTargets(mesh, prim)) break; comma(json_meshes); append(json_meshes, "{\"attributes\":{"); writeMeshAttributes(json_meshes, views, json_accessors, accr_offset, prim, 0, qp, settings); append(json_meshes, "}"); append(json_meshes, ",\"mode\":"); append(json_meshes, size_t(prim.type)); if (mesh.targets) { append(json_meshes, ",\"targets\":["); for (size_t j = 0; j < mesh.targets; ++j) { comma(json_meshes); append(json_meshes, "{"); writeMeshAttributes(json_meshes, views, json_accessors, accr_offset, prim, int(1 + j), qp, settings); append(json_meshes, "}"); } append(json_meshes, "]"); } if (!prim.indices.empty()) { size_t index_accr = writeMeshIndices(views, json_accessors, accr_offset, prim, settings); append(json_meshes, ",\"indices\":"); append(json_meshes, index_accr); } if (prim.material) { MaterialInfo& mi = materials[prim.material - data->materials]; assert(mi.keep); append(json_meshes, ",\"material\":"); append(json_meshes, size_t(mi.remap)); } append(json_meshes, "}"); } append(json_meshes, "]"); if (mesh.target_weights.size()) { append(json_meshes, ",\"weights\":["); for (size_t j = 0; j < mesh.target_weights.size(); ++j) { comma(json_meshes); append(json_meshes, mesh.target_weights[j]); } append(json_meshes, "]"); } if (mesh.target_names.size()) { append(json_meshes, ",\"extras\":{\"targetNames\":["); for (size_t j = 0; j < mesh.target_names.size(); ++j) { comma(json_meshes); append(json_meshes, "\""); append(json_meshes, mesh.target_names[j]); append(json_meshes, "\""); } append(json_meshes, "]}"); } append(json_meshes, "}"); writeMeshNode(json_nodes, mesh_offset, mesh, data, qp); if (mesh.node) { NodeInfo& ni = nodes[mesh.node - data->nodes]; assert(ni.keep); ni.meshes.push_back(node_offset); } else { comma(json_roots); append(json_roots, node_offset); } node_offset++; mesh_offset++; // skip all meshes that we've written in this iteration assert(pi > i); i = pi - 1; } remapNodes(data, nodes, node_offset); for (size_t i = 0; i < data->nodes_count; ++i) { NodeInfo& ni = nodes[i]; if (!ni.keep) continue; const cgltf_node& node = data->nodes[i]; if (!node.parent) { comma(json_roots); append(json_roots, size_t(ni.remap)); } writeNode(json_nodes, node, nodes, data); } for (size_t i = 0; i < data->skins_count; ++i) { const cgltf_skin& skin = data->skins[i]; size_t matrix_accr = writeJointBindMatrices(views, json_accessors, accr_offset, skin, qp, settings); comma(json_skins); append(json_skins, "{"); append(json_skins, "\"joints\":["); for (size_t j = 0; j < skin.joints_count; ++j) { comma(json_skins); append(json_skins, size_t(nodes[skin.joints[j] - data->nodes].remap)); } append(json_skins, "]"); append(json_skins, ",\"inverseBindMatrices\":"); append(json_skins, matrix_accr); if (skin.skeleton) { comma(json_skins); append(json_skins, "\"skeleton\":"); append(json_skins, size_t(nodes[skin.skeleton - data->nodes].remap)); } append(json_skins, "}"); } for (size_t i = 0; i < data->animations_count; ++i) { const cgltf_animation& animation = data->animations[i]; writeAnimation(json_animations, views, json_accessors, accr_offset, animation, data, nodes, settings); } for (size_t i = 0; i < data->cameras_count; ++i) { const cgltf_camera& camera = data->cameras[i]; writeCamera(json_cameras, camera); } for (size_t i = 0; i < data->lights_count; ++i) { const cgltf_light& light = data->lights[i]; writeLight(json_lights, light); } char version[32]; sprintf(version, "%d.%d", MESHOPTIMIZER_VERSION / 1000, (MESHOPTIMIZER_VERSION % 1000) / 10); append(json, "\"asset\":{"); append(json, "\"version\":\"2.0\",\"generator\":\"gltfpack "); append(json, version); append(json, "\""); if (data->asset.extras.start_offset) { append(json, ",\"extras\":"); json.append(data->json + data->asset.extras.start_offset, data->json + data->asset.extras.end_offset); } append(json, "}"); append(json, ",\"extensionsUsed\":["); append(json, "\"KHR_quantized_geometry\""); if (settings.compress) { comma(json); append(json, "\"MESHOPT_compression\""); } if (!json_textures.empty()) { comma(json); append(json, "\"KHR_texture_transform\""); } if (ext_pbr_specular_glossiness) { comma(json); append(json, "\"KHR_materials_pbrSpecularGlossiness\""); } if (ext_unlit) { comma(json); append(json, "\"KHR_materials_unlit\""); } if (data->lights_count) { comma(json); append(json, "\"KHR_lights_punctual\""); } append(json, "]"); append(json, ",\"extensionsRequired\":["); append(json, "\"KHR_quantized_geometry\""); if (settings.compress && !settings.fallback) { comma(json); append(json, "\"MESHOPT_compression\""); } append(json, "]"); if (!views.empty()) { std::string json_views; finalizeBufferViews(json_views, views, bin, fallback); append(json, ",\"bufferViews\":["); append(json, json_views); append(json, "]"); } if (!json_accessors.empty()) { append(json, ",\"accessors\":["); append(json, json_accessors); append(json, "]"); } if (!json_images.empty()) { append(json, ",\"images\":["); append(json, json_images); append(json, "]"); } if (!json_textures.empty()) { append(json, ",\"textures\":["); append(json, json_textures); append(json, "]"); } if (!json_materials.empty()) { append(json, ",\"materials\":["); append(json, json_materials); append(json, "]"); } if (!json_meshes.empty()) { append(json, ",\"meshes\":["); append(json, json_meshes); append(json, "]"); } if (!json_skins.empty()) { append(json, ",\"skins\":["); append(json, json_skins); append(json, "]"); } if (!json_animations.empty()) { append(json, ",\"animations\":["); append(json, json_animations); append(json, "]"); } if (!json_roots.empty()) { append(json, ",\"nodes\":["); append(json, json_nodes); append(json, "],\"scenes\":["); append(json, "{\"nodes\":["); append(json, json_roots); append(json, "]}]"); } if (!json_cameras.empty()) { append(json, ",\"cameras\":["); append(json, json_cameras); append(json, "]"); } if (!json_lights.empty()) { append(json, ",\"extensions\":{\"KHR_lights_punctual\":{\"lights\":["); append(json, json_lights); append(json, "]}}"); } if (!json_roots.empty()) { append(json, ",\"scene\":0"); } if (settings.verbose) { size_t bytes[BufferView::Kind_Count] = {}; for (size_t i = 0; i < views.size(); ++i) { BufferView& view = views[i]; bytes[view.kind] += view.bytes; } printf("output: %d nodes, %d meshes (%d primitives), %d materials\n", int(node_offset), int(mesh_offset), int(meshes.size()), int(material_offset)); printf("output: JSON %d bytes, buffers %d bytes\n", int(json.size()), int(bin.size())); printf("output: buffers: vertex %d bytes, index %d bytes, skin %d bytes, time %d bytes, keyframe %d bytes, image %d bytes\n", int(bytes[BufferView::Kind_Vertex]), int(bytes[BufferView::Kind_Index]), int(bytes[BufferView::Kind_Skin]), int(bytes[BufferView::Kind_Time]), int(bytes[BufferView::Kind_Keyframe]), int(bytes[BufferView::Kind_Image])); } if (settings.verbose > 1) { printAttributeStats(views, BufferView::Kind_Vertex, "vertex"); printAttributeStats(views, BufferView::Kind_Index, "index"); printAttributeStats(views, BufferView::Kind_Keyframe, "keyframe"); } } void writeU32(FILE* out, uint32_t data) { fwrite(&data, 4, 1, out); } bool requiresExtension(cgltf_data* data, const char* name) { for (size_t i = 0; i < data->extensions_required_count; ++i) if (strcmp(data->extensions_required[i], name) == 0) return true; return false; } const char* getBaseName(const char* path) { const char* slash = strrchr(path, '/'); const char* backslash = strrchr(path, '\\'); const char* rs = slash ? slash + 1 : path; const char* bs = backslash ? backslash + 1 : path; return std::max(rs, bs); } std::string getBufferSpec(const char* bin_path, size_t bin_size, const char* fallback_path, size_t fallback_size, bool fallback_ref) { std::string json; append(json, "\"buffers\":["); append(json, "{"); if (bin_path) { append(json, "\"uri\":\""); append(json, bin_path); append(json, "\""); } comma(json); append(json, "\"byteLength\":"); append(json, bin_size); append(json, "}"); if (fallback_ref) { comma(json); append(json, "{"); if (fallback_path) { append(json, "\"uri\":\""); append(json, fallback_path); append(json, "\""); } comma(json); append(json, "\"byteLength\":"); append(json, fallback_size); append(json, ",\"extensions\":{"); append(json, "\"MESHOPT_compression\":{"); append(json, "\"fallback\":true"); append(json, "}}"); append(json, "}"); } append(json, "]"); return json; } int gltfpack(const char* input, const char* output, const Settings& settings) { cgltf_data* data = 0; std::vector meshes; const char* iext = strrchr(input, '.'); if (iext && (strcmp(iext, ".gltf") == 0 || strcmp(iext, ".GLTF") == 0 || strcmp(iext, ".glb") == 0 || strcmp(iext, ".GLB") == 0)) { cgltf_options options = {}; cgltf_result result = cgltf_parse_file(&options, input, &data); result = (result == cgltf_result_success) ? cgltf_validate(data) : result; result = (result == cgltf_result_success) ? cgltf_load_buffers(&options, data, input) : result; const char* error = NULL; if (result != cgltf_result_success) error = getError(result); else if (requiresExtension(data, "KHR_draco_mesh_compression")) error = "file requires Draco mesh compression support"; else if (requiresExtension(data, "MESHOPT_compression")) error = "file has already been compressed using gltfpack"; if (error) { fprintf(stderr, "Error loading %s: %s\n", input, error); cgltf_free(data); return 2; } parseMeshesGltf(data, meshes); } else if (iext && (strcmp(iext, ".obj") == 0 || strcmp(iext, ".OBJ") == 0)) { fastObjMesh* obj = fast_obj_read(input); if (!obj) { fprintf(stderr, "Error loading %s: file not found\n", input); cgltf_free(data); return 2; } data = parseSceneObj(obj); parseMeshesObj(obj, data, meshes); fast_obj_destroy(obj); } else { fprintf(stderr, "Error loading %s: unknown extension (expected .gltf or .glb or .obj)\n", input); return 2; } std::string json, bin, fallback; process(data, meshes, settings, json, bin, fallback); cgltf_free(data); if (!output) { return 0; } const char* oext = strrchr(output, '.'); if (oext && (strcmp(oext, ".gltf") == 0 || strcmp(oext, ".GLTF") == 0)) { std::string binpath = output; binpath.replace(binpath.size() - 5, 5, ".bin"); std::string fbpath = output; fbpath.replace(fbpath.size() - 5, 5, ".fallback.bin"); FILE* outjson = fopen(output, "wb"); FILE* outbin = fopen(binpath.c_str(), "wb"); FILE* outfb = settings.fallback ? fopen(fbpath.c_str(), "wb") : NULL; if (!outjson || !outbin || (!outfb && settings.fallback)) { fprintf(stderr, "Error saving %s\n", output); return 4; } std::string bufferspec = getBufferSpec(getBaseName(binpath.c_str()), bin.size(), settings.fallback ? getBaseName(fbpath.c_str()) : NULL, fallback.size(), settings.compress); fprintf(outjson, "{"); fwrite(bufferspec.c_str(), bufferspec.size(), 1, outjson); fprintf(outjson, ","); fwrite(json.c_str(), json.size(), 1, outjson); fprintf(outjson, "}"); fwrite(bin.c_str(), bin.size(), 1, outbin); if (settings.fallback) fwrite(fallback.c_str(), fallback.size(), 1, outfb); fclose(outjson); fclose(outbin); if (outfb) fclose(outfb); } else if (oext && (strcmp(oext, ".glb") == 0 || strcmp(oext, ".GLB") == 0)) { std::string fbpath = output; fbpath.replace(fbpath.size() - 4, 4, ".fallback.bin"); FILE* out = fopen(output, "wb"); FILE* outfb = settings.fallback ? fopen(fbpath.c_str(), "wb") : NULL; if (!out || (!outfb && settings.fallback)) { fprintf(stderr, "Error saving %s\n", output); return 4; } std::string bufferspec = getBufferSpec(NULL, bin.size(), settings.fallback ? getBaseName(fbpath.c_str()) : NULL, fallback.size(), settings.compress); json.insert(0, "{" + bufferspec + ","); json.push_back('}'); while (json.size() % 4) json.push_back(' '); while (bin.size() % 4) bin.push_back('\0'); writeU32(out, 0x46546C67); writeU32(out, 2); writeU32(out, uint32_t(12 + 8 + json.size() + 8 + bin.size())); writeU32(out, uint32_t(json.size())); writeU32(out, 0x4E4F534A); fwrite(json.c_str(), json.size(), 1, out); writeU32(out, uint32_t(bin.size())); writeU32(out, 0x004E4942); fwrite(bin.c_str(), bin.size(), 1, out); if (settings.fallback) fwrite(fallback.c_str(), fallback.size(), 1, outfb); fclose(out); if (outfb) fclose(outfb); } else { fprintf(stderr, "Error saving %s: unknown extension (expected .gltf or .glb)\n", output); return 4; } return 0; } int main(int argc, char** argv) { Settings settings = {}; settings.pos_bits = 14; settings.tex_bits = 12; settings.nrm_bits = 8; settings.anim_freq = 30; settings.simplify_threshold = 1.f; const char* input = 0; const char* output = 0; bool help = false; int test = 0; for (int i = 1; i < argc; ++i) { const char* arg = argv[i]; if (strcmp(arg, "-vp") == 0 && i + 1 < argc && isdigit(argv[i + 1][0])) { settings.pos_bits = atoi(argv[++i]); } else if (strcmp(arg, "-vt") == 0 && i + 1 < argc && isdigit(argv[i + 1][0])) { settings.tex_bits = atoi(argv[++i]); } else if (strcmp(arg, "-vn") == 0 && i + 1 < argc && isdigit(argv[i + 1][0])) { settings.nrm_bits = atoi(argv[++i]); } else if (strcmp(arg, "-vu") == 0) { settings.nrm_unnormalized = true; } else if (strcmp(arg, "-af") == 0 && i + 1 < argc && isdigit(argv[i + 1][0])) { settings.anim_freq = atoi(argv[++i]); } else if (strcmp(arg, "-ac") == 0) { settings.anim_const = true; } else if (strcmp(arg, "-kn") == 0) { settings.keep_named = true; } else if (strcmp(arg, "-si") == 0 && i + 1 < argc && isdigit(argv[i + 1][0])) { settings.simplify_threshold = float(atof(argv[++i])); } else if (strcmp(arg, "-sa") == 0) { settings.simplify_aggressive = true; } else if (strcmp(arg, "-i") == 0 && i + 1 < argc && !input) { input = argv[++i]; } else if (strcmp(arg, "-o") == 0 && i + 1 < argc && !output) { output = argv[++i]; } else if (strcmp(arg, "-c") == 0) { settings.compress = true; } else if (strcmp(arg, "-cf") == 0) { settings.compress = true; settings.fallback = true; } else if (strcmp(arg, "-v") == 0) { settings.verbose = 1; } else if (strcmp(arg, "-vv") == 0) { settings.verbose = 2; } else if (strcmp(arg, "-h") == 0) { help = true; } else if (strcmp(arg, "-test") == 0) { test = i + 1; break; } else { fprintf(stderr, "Unrecognized option %s\n", arg); return 1; } } if (test) { for (int i = test; i < argc; ++i) { printf("%s\n", argv[i]); gltfpack(argv[i], NULL, settings); } return 0; } if (!input || !output || help) { fprintf(stderr, "Usage: gltfpack [options] -i input -o output\n"); fprintf(stderr, "\n"); fprintf(stderr, "Options:\n"); fprintf(stderr, "-i file: input file to process, .obj/.gltf/.glb\n"); fprintf(stderr, "-o file: output file path, .gltf/.glb\n"); fprintf(stderr, "-vp N: use N-bit quantization for positions (default: 14; N should be between 1 and 16)\n"); fprintf(stderr, "-vt N: use N-bit quantization for texture corodinates (default: 12; N should be between 1 and 16)\n"); fprintf(stderr, "-vn N: use N-bit quantization for normals and tangents (default: 8; N should be between 1 and 16)\n"); fprintf(stderr, "-vu: use unnormalized normal/tangent vectors to improve compression (default: off)\n"); fprintf(stderr, "-af N: resample animations at N Hz (default: 30)\n"); fprintf(stderr, "-ac: keep constant animation tracks even if they don't modify the node transform\n"); fprintf(stderr, "-kn: keep named nodes and meshes attached to named nodes so that named nodes can be transformed externally\n"); fprintf(stderr, "-si R: simplify meshes to achieve the ratio R (default: 1; R should be between 0 and 1)\n"); fprintf(stderr, "-sa: aggressively simplify to the target ratio disregarding quality\n"); fprintf(stderr, "-c: produce compressed gltf/glb files\n"); fprintf(stderr, "-cf: produce compressed gltf/glb files with fallback for loaders that don't support compression\n"); fprintf(stderr, "-v: verbose output\n"); fprintf(stderr, "-h: display this help and exit\n"); return 1; } return gltfpack(input, output, settings); }