// Copyright (c) 2019 Google LLC // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "source/fuzz/fuzzer_util.h" namespace spvtools { namespace fuzz { namespace fuzzerutil { bool IsFreshId(opt::IRContext* context, uint32_t id) { return !context->get_def_use_mgr()->GetDef(id); } void UpdateModuleIdBound(opt::IRContext* context, uint32_t id) { // TODO(https://github.com/KhronosGroup/SPIRV-Tools/issues/2541) consider the // case where the maximum id bound is reached. context->module()->SetIdBound( std::max(context->module()->id_bound(), id + 1)); } opt::BasicBlock* MaybeFindBlock(opt::IRContext* context, uint32_t maybe_block_id) { auto inst = context->get_def_use_mgr()->GetDef(maybe_block_id); if (inst == nullptr) { // No instruction defining this id was found. return nullptr; } if (inst->opcode() != SpvOpLabel) { // The instruction defining the id is not a label, so it cannot be a block // id. return nullptr; } return context->cfg()->block(maybe_block_id); } bool PhiIdsOkForNewEdge( opt::IRContext* context, opt::BasicBlock* bb_from, opt::BasicBlock* bb_to, const google::protobuf::RepeatedField& phi_ids) { if (bb_from->IsSuccessor(bb_to)) { // There is already an edge from |from_block| to |to_block|, so there is // no need to extend OpPhi instructions. Do not allow phi ids to be // present. This might turn out to be too strict; perhaps it would be OK // just to ignore the ids in this case. return phi_ids.empty(); } // The edge would add a previously non-existent edge from |from_block| to // |to_block|, so we go through the given phi ids and check that they exactly // match the OpPhi instructions in |to_block|. uint32_t phi_index = 0; // An explicit loop, rather than applying a lambda to each OpPhi in |bb_to|, // makes sense here because we need to increment |phi_index| for each OpPhi // instruction. for (auto& inst : *bb_to) { if (inst.opcode() != SpvOpPhi) { // The OpPhi instructions all occur at the start of the block; if we find // a non-OpPhi then we have seen them all. break; } if (phi_index == static_cast(phi_ids.size())) { // Not enough phi ids have been provided to account for the OpPhi // instructions. return false; } // Look for an instruction defining the next phi id. opt::Instruction* phi_extension = context->get_def_use_mgr()->GetDef(phi_ids[phi_index]); if (!phi_extension) { // The id given to extend this OpPhi does not exist. return false; } if (phi_extension->type_id() != inst.type_id()) { // The instruction given to extend this OpPhi either does not have a type // or its type does not match that of the OpPhi. return false; } if (context->get_instr_block(phi_extension)) { // The instruction defining the phi id has an associated block (i.e., it // is not a global value). Check whether its definition dominates the // exit of |from_block|. auto dominator_analysis = context->GetDominatorAnalysis(bb_from->GetParent()); if (!dominator_analysis->Dominates(phi_extension, bb_from->terminator())) { // The given id is no good as its definition does not dominate the exit // of |from_block| return false; } } phi_index++; } // Return false if not all of the ids for extending OpPhi instructions are // needed. This might turn out to be stricter than necessary; perhaps it would // be OK just to not use the ids in this case. return phi_index == static_cast(phi_ids.size()); } void AddUnreachableEdgeAndUpdateOpPhis( opt::IRContext* context, opt::BasicBlock* bb_from, opt::BasicBlock* bb_to, bool condition_value, const google::protobuf::RepeatedField& phi_ids) { assert(PhiIdsOkForNewEdge(context, bb_from, bb_to, phi_ids) && "Precondition on phi_ids is not satisfied"); assert(bb_from->terminator()->opcode() == SpvOpBranch && "Precondition on terminator of bb_from is not satisfied"); // Get the id of the boolean constant to be used as the condition. opt::analysis::Bool bool_type; opt::analysis::BoolConstant bool_constant( context->get_type_mgr()->GetRegisteredType(&bool_type)->AsBool(), condition_value); uint32_t bool_id = context->get_constant_mgr()->FindDeclaredConstant( &bool_constant, context->get_type_mgr()->GetId(&bool_type)); const bool from_to_edge_already_exists = bb_from->IsSuccessor(bb_to); auto successor = bb_from->terminator()->GetSingleWordInOperand(0); // Add the dead branch, by turning OpBranch into OpBranchConditional, and // ordering the targets depending on whether the given boolean corresponds to // true or false. bb_from->terminator()->SetOpcode(SpvOpBranchConditional); bb_from->terminator()->SetInOperands( {{SPV_OPERAND_TYPE_ID, {bool_id}}, {SPV_OPERAND_TYPE_ID, {condition_value ? successor : bb_to->id()}}, {SPV_OPERAND_TYPE_ID, {condition_value ? bb_to->id() : successor}}}); // Update OpPhi instructions in the target block if this branch adds a // previously non-existent edge from source to target. if (!from_to_edge_already_exists) { uint32_t phi_index = 0; for (auto& inst : *bb_to) { if (inst.opcode() != SpvOpPhi) { break; } assert(phi_index < static_cast(phi_ids.size()) && "There should be exactly one phi id per OpPhi instruction."); inst.AddOperand({SPV_OPERAND_TYPE_ID, {phi_ids[phi_index]}}); inst.AddOperand({SPV_OPERAND_TYPE_ID, {bb_from->id()}}); phi_index++; } assert(phi_index == static_cast(phi_ids.size()) && "There should be exactly one phi id per OpPhi instruction."); } } bool BlockIsInLoopContinueConstruct(opt::IRContext* context, uint32_t block_id, uint32_t maybe_loop_header_id) { // We deem a block to be part of a loop's continue construct if the loop's // continue target dominates the block. auto containing_construct_block = context->cfg()->block(maybe_loop_header_id); if (containing_construct_block->IsLoopHeader()) { auto continue_target = containing_construct_block->ContinueBlockId(); if (context->GetDominatorAnalysis(containing_construct_block->GetParent()) ->Dominates(continue_target, block_id)) { return true; } } return false; } opt::BasicBlock::iterator GetIteratorForInstruction( opt::BasicBlock* block, const opt::Instruction* inst) { for (auto inst_it = block->begin(); inst_it != block->end(); ++inst_it) { if (inst == &*inst_it) { return inst_it; } } return block->end(); } bool NewEdgeRespectsUseDefDominance(opt::IRContext* context, opt::BasicBlock* bb_from, opt::BasicBlock* bb_to) { assert(bb_from->terminator()->opcode() == SpvOpBranch); // If there is *already* an edge from |bb_from| to |bb_to|, then adding // another edge is fine from a dominance point of view. if (bb_from->terminator()->GetSingleWordInOperand(0) == bb_to->id()) { return true; } // TODO(https://github.com/KhronosGroup/SPIRV-Tools/issues/2919): the // solution below to determining whether a new edge respects dominance // rules is incomplete. Test // TransformationAddDeadContinueTest::DISABLED_Miscellaneous6 exposes the // problem. In practice, this limitation does not bite too often, and the // worst it does is leads to SPIR-V that spirv-val rejects. // Let us assume that the module being manipulated is valid according to the // rules of the SPIR-V language. // // Suppose that some block Y is dominated by |bb_to| (which includes the case // where Y = |bb_to|). // // Suppose that Y uses an id i that is defined in some other block X. // // Because the module is valid, X must dominate Y. We are concerned about // whether an edge from |bb_from| to |bb_to| could *stop* X from dominating // Y. // // Because |bb_to| dominates Y, a new edge from |bb_from| to |bb_to| can // only affect whether X dominates Y if X dominates |bb_to|. // // So let us assume that X does dominate |bb_to|, so that we have: // // (X defines i) dominates |bb_to| dominates (Y uses i) // // The new edge from |bb_from| to |bb_to| will stop the definition of i in X // from dominating the use of i in Y exactly when the new edge will stop X // from dominating |bb_to|. // // Now, the block X that we are worried about cannot dominate |bb_from|, // because in that case X would still dominate |bb_to| after we add an edge // from |bb_from| to |bb_to|. // // Also, it cannot be that X = |bb_to|, because nothing can stop a block // from dominating itself. // // So we are looking for a block X such that: // // - X strictly dominates |bb_to| // - X does not dominate |bb_from| // - X defines an id i // - i is used in some block Y // - |bb_to| dominates Y // Walk the dominator tree backwards, starting from the immediate dominator // of |bb_to|. We can stop when we find a block that also dominates // |bb_from|. auto dominator_analysis = context->GetDominatorAnalysis(bb_from->GetParent()); for (auto dominator = dominator_analysis->ImmediateDominator(bb_to); dominator != nullptr && !dominator_analysis->Dominates(dominator, bb_from); dominator = dominator_analysis->ImmediateDominator(dominator)) { // |dominator| is a candidate for block X in the above description. // We now look through the instructions for a candidate instruction i. for (auto& inst : *dominator) { // Consider all the uses of this instruction. if (!context->get_def_use_mgr()->WhileEachUse( &inst, [bb_to, context, dominator_analysis]( opt::Instruction* user, uint32_t operand_index) -> bool { // If this use is in an OpPhi, we need to check that dominance // of the relevant *parent* block is not spoiled. Otherwise we // need to check that dominance of the block containing the use // is not spoiled. opt::BasicBlock* use_block_or_phi_parent = user->opcode() == SpvOpPhi ? context->cfg()->block( user->GetSingleWordOperand(operand_index + 1)) : context->get_instr_block(user); // There might not be any relevant block, e.g. if the use is in // a decoration; in this case the new edge is unproblematic. if (use_block_or_phi_parent == nullptr) { return true; } // With reference to the above discussion, // |use_block_or_phi_parent| is a candidate for the block Y. // If |bb_to| dominates this block, the new edge would be // problematic. return !dominator_analysis->Dominates(bb_to, use_block_or_phi_parent); })) { return false; } } } return true; } bool BlockIsReachableInItsFunction(opt::IRContext* context, opt::BasicBlock* bb) { auto enclosing_function = bb->GetParent(); return context->GetDominatorAnalysis(enclosing_function) ->Dominates(enclosing_function->entry().get(), bb); } bool CanInsertOpcodeBeforeInstruction( SpvOp opcode, const opt::BasicBlock::iterator& instruction_in_block) { if (instruction_in_block->PreviousNode() && (instruction_in_block->PreviousNode()->opcode() == SpvOpLoopMerge || instruction_in_block->PreviousNode()->opcode() == SpvOpSelectionMerge)) { // We cannot insert directly after a merge instruction. return false; } if (opcode != SpvOpVariable && instruction_in_block->opcode() == SpvOpVariable) { // We cannot insert a non-OpVariable instruction directly before a // variable; variables in a function must be contiguous in the entry block. return false; } // We cannot insert a non-OpPhi instruction directly before an OpPhi, because // OpPhi instructions need to be contiguous at the start of a block. return opcode == SpvOpPhi || instruction_in_block->opcode() != SpvOpPhi; } bool CanMakeSynonymOf(opt::IRContext* ir_context, opt::Instruction* inst) { if (!inst->HasResultId()) { // We can only make a synonym of an instruction that generates an id. return false; } if (!inst->type_id()) { // We can only make a synonym of an instruction that has a type. return false; } // We do not make synonyms of objects that have decorations: if the synonym is // not decorated analogously, using the original object vs. its synonymous // form may not be equivalent. return ir_context->get_decoration_mgr() ->GetDecorationsFor(inst->result_id(), true) .empty(); } bool IsCompositeType(const opt::analysis::Type* type) { return type && (type->AsArray() || type->AsMatrix() || type->AsStruct() || type->AsVector()); } std::vector RepeatedFieldToVector( const google::protobuf::RepeatedField& repeated_field) { std::vector result; for (auto i : repeated_field) { result.push_back(i); } return result; } uint32_t WalkCompositeTypeIndices( opt::IRContext* context, uint32_t base_object_type_id, const google::protobuf::RepeatedField& indices) { uint32_t sub_object_type_id = base_object_type_id; for (auto index : indices) { auto should_be_composite_type = context->get_def_use_mgr()->GetDef(sub_object_type_id); assert(should_be_composite_type && "The type should exist."); if (SpvOpTypeArray == should_be_composite_type->opcode()) { auto array_length = GetArraySize(*should_be_composite_type, context); if (array_length == 0 || index >= array_length) { return 0; } sub_object_type_id = should_be_composite_type->GetSingleWordInOperand(0); } else if (SpvOpTypeMatrix == should_be_composite_type->opcode()) { auto matrix_column_count = should_be_composite_type->GetSingleWordInOperand(1); if (index >= matrix_column_count) { return 0; } sub_object_type_id = should_be_composite_type->GetSingleWordInOperand(0); } else if (SpvOpTypeStruct == should_be_composite_type->opcode()) { if (index >= GetNumberOfStructMembers(*should_be_composite_type)) { return 0; } sub_object_type_id = should_be_composite_type->GetSingleWordInOperand(index); } else if (SpvOpTypeVector == should_be_composite_type->opcode()) { auto vector_length = should_be_composite_type->GetSingleWordInOperand(1); if (index >= vector_length) { return 0; } sub_object_type_id = should_be_composite_type->GetSingleWordInOperand(0); } else { return 0; } } return sub_object_type_id; } uint32_t GetNumberOfStructMembers( const opt::Instruction& struct_type_instruction) { assert(struct_type_instruction.opcode() == SpvOpTypeStruct && "An OpTypeStruct instruction is required here."); return struct_type_instruction.NumInOperands(); } uint32_t GetArraySize(const opt::Instruction& array_type_instruction, opt::IRContext* context) { auto array_length_constant = context->get_constant_mgr() ->GetConstantFromInst(context->get_def_use_mgr()->GetDef( array_type_instruction.GetSingleWordInOperand(1))) ->AsIntConstant(); if (array_length_constant->words().size() != 1) { return 0; } return array_length_constant->GetU32(); } } // namespace fuzzerutil } // namespace fuzz } // namespace spvtools