#include "../src/meshoptimizer.h" #include "fast_obj.h" #include #include #include #include #include #include #include const int kCacheSizeMax = 16; const int kValenceMax = 8; namespace meshopt { extern thread_local float kVertexScoreTableCache[1 + kCacheSizeMax]; extern thread_local float kVertexScoreTableLive[1 + kValenceMax]; } // namespace meshopt struct { int cache, warp, triangle; } profiles[] = { {14, 64, 128}, // AMD GCN {32, 32, 32}, // NVidia Pascal // { 16, 32, 32 }, // NVidia Kepler, Maxwell // { 128, 0, 0 }, // Intel }; const int Profile_Count = sizeof(profiles) / sizeof(profiles[0]); struct pcg32_random_t { uint64_t state; uint64_t inc; }; #define PCG32_INITIALIZER { 0x853c49e6748fea9bULL, 0xda3e39cb94b95bdbULL } uint32_t pcg32_random_r(pcg32_random_t* rng) { uint64_t oldstate = rng->state; // Advance internal state rng->state = oldstate * 6364136223846793005ULL + (rng->inc | 1); // Calculate output function (XSH RR), uses old state for max ILP uint32_t xorshifted = ((oldstate >> 18u) ^ oldstate) >> 27u; uint32_t rot = oldstate >> 59u; return (xorshifted >> rot) | (xorshifted << ((-rot) & 31)); } pcg32_random_t rngstate = PCG32_INITIALIZER; float rand01() { return pcg32_random_r(&rngstate) / float(1ull << 32); } uint32_t rand32() { return pcg32_random_r(&rngstate); } struct State { float cache[kCacheSizeMax]; float live[kValenceMax]; float fitness; }; struct Mesh { size_t vertex_count; std::vector indices; float atvr_base[Profile_Count]; }; Mesh gridmesh(unsigned int N) { Mesh result; result.vertex_count = (N + 1) * (N + 1); result.indices.reserve(N * N * 6); for (unsigned int y = 0; y < N; ++y) for (unsigned int x = 0; x < N; ++x) { result.indices.push_back((y + 0) * (N + 1) + (x + 0)); result.indices.push_back((y + 0) * (N + 1) + (x + 1)); result.indices.push_back((y + 1) * (N + 1) + (x + 0)); result.indices.push_back((y + 1) * (N + 1) + (x + 0)); result.indices.push_back((y + 0) * (N + 1) + (x + 1)); result.indices.push_back((y + 1) * (N + 1) + (x + 1)); } return result; } Mesh objmesh(const char* path) { fastObjMesh* obj = fast_obj_read(path); if (!obj) { printf("Error loading %s: file not found\n", path); return Mesh(); } size_t total_indices = 0; for (unsigned int i = 0; i < obj->face_count; ++i) total_indices += 3 * (obj->face_vertices[i] - 2); struct Vertex { float px, py, pz; float nx, ny, nz; float tx, ty; }; std::vector vertices(total_indices); size_t vertex_offset = 0; size_t index_offset = 0; for (unsigned int i = 0; i < obj->face_count; ++i) { for (unsigned int j = 0; j < obj->face_vertices[i]; ++j) { fastObjIndex gi = obj->indices[index_offset + j]; Vertex v = { obj->positions[gi.p * 3 + 0], obj->positions[gi.p * 3 + 1], obj->positions[gi.p * 3 + 2], obj->normals[gi.n * 3 + 0], obj->normals[gi.n * 3 + 1], obj->normals[gi.n * 3 + 2], obj->texcoords[gi.t * 2 + 0], obj->texcoords[gi.t * 2 + 1], }; // triangulate polygon on the fly; offset-3 is always the first polygon vertex if (j >= 3) { vertices[vertex_offset + 0] = vertices[vertex_offset - 3]; vertices[vertex_offset + 1] = vertices[vertex_offset - 1]; vertex_offset += 2; } vertices[vertex_offset] = v; vertex_offset++; } index_offset += obj->face_vertices[i]; } fast_obj_destroy(obj); Mesh result; std::vector remap(total_indices); size_t total_vertices = meshopt_generateVertexRemap(&remap[0], NULL, total_indices, &vertices[0], total_indices, sizeof(Vertex)); result.indices.resize(total_indices); meshopt_remapIndexBuffer(&result.indices[0], NULL, total_indices, &remap[0]); result.vertex_count = total_vertices; return result; } void compute_atvr(const State& state, const Mesh& mesh, float result[Profile_Count]) { memcpy(meshopt::kVertexScoreTableCache + 1, state.cache, kCacheSizeMax * sizeof(float)); memcpy(meshopt::kVertexScoreTableLive + 1, state.live, kValenceMax * sizeof(float)); std::vector indices(mesh.indices.size()); meshopt_optimizeVertexCache(&indices[0], &mesh.indices[0], mesh.indices.size(), mesh.vertex_count); for (int profile = 0; profile < Profile_Count; ++profile) result[profile] = meshopt_analyzeVertexCache(&indices[0], indices.size(), mesh.vertex_count, profiles[profile].cache, profiles[profile].warp, profiles[profile].triangle).atvr; } float fitness_score(const State& state, const std::vector& meshes) { float result = 0; float count = 0; for (auto& mesh : meshes) { float atvr[Profile_Count]; compute_atvr(state, mesh, atvr); for (int profile = 0; profile < Profile_Count; ++profile) { result += mesh.atvr_base[profile] / atvr[profile]; count += 1; } } return result / count; } std::vector gen0(size_t count, const std::vector& meshes) { std::vector result; for (size_t i = 0; i < count; ++i) { State state = {}; for (int j = 0; j < kCacheSizeMax; ++j) state.cache[j] = rand01(); for (int j = 0; j < kValenceMax; ++j) state.live[j] = rand01(); state.fitness = fitness_score(state, meshes); result.push_back(state); } return result; } // https://en.wikipedia.org/wiki/Differential_evolution // Good Parameters for Differential Evolution. Magnus Erik Hvass Pedersen, 2010 std::pair genN(std::vector& seed, const std::vector& meshes, float crossover = 0.8803f, float weight = 0.4717f) { std::vector result(seed.size()); for (size_t i = 0; i < seed.size(); ++i) { for (;;) { int a = rand32() % seed.size(); int b = rand32() % seed.size(); int c = rand32() % seed.size(); if (a == b || a == c || b == c || a == int(i) || b == int(i) || c == int(i)) continue; int rc = rand32() % kCacheSizeMax; int rl = rand32() % kValenceMax; for (int j = 0; j < kCacheSizeMax; ++j) { float r = rand01(); if (r < crossover || j == rc) result[i].cache[j] = std::max(0.f, std::min(1.f, seed[a].cache[j] + weight * (seed[b].cache[j] - seed[c].cache[j]))); else result[i].cache[j] = seed[i].cache[j]; } for (int j = 0; j < kValenceMax; ++j) { float r = rand01(); if (r < crossover || j == rl) result[i].live[j] = std::max(0.f, std::min(1.f, seed[a].live[j] + weight * (seed[b].live[j] - seed[c].live[j]))); else result[i].live[j] = seed[i].live[j]; } break; } } #pragma omp parallel for for (size_t i = 0; i < seed.size(); ++i) { result[i].fitness = fitness_score(result[i], meshes); } State best = {}; float bestfit = 0; for (size_t i = 0; i < seed.size(); ++i) { if (result[i].fitness > seed[i].fitness) seed[i] = result[i]; if (seed[i].fitness > bestfit) { best = seed[i]; bestfit = seed[i].fitness; } } return std::make_pair(best, bestfit); } bool load_state(const char* path, std::vector& result) { FILE* file = fopen(path, "rb"); if (!file) return false; State state; result.clear(); while (fread(&state, sizeof(State), 1, file) == 1) result.push_back(state); fclose(file); return true; } bool save_state(const char* path, const std::vector& result) { FILE* file = fopen(path, "wb"); if (!file) return false; for (auto& state : result) { if (fwrite(&state, sizeof(State), 1, file) != 1) { fclose(file); return false; } } return fclose(file) == 0; } void dump_state(const State& state) { printf("cache:"); for (int i = 0; i < kCacheSizeMax; ++i) { printf(" %.3f", state.cache[i]); } printf("\n"); printf("live:"); for (int i = 0; i < kValenceMax; ++i) { printf(" %.3f", state.live[i]); } printf("\n"); } int main(int argc, char** argv) { bool annealing = false; State baseline; memcpy(baseline.cache, meshopt::kVertexScoreTableCache + 1, kCacheSizeMax * sizeof(float)); memcpy(baseline.live, meshopt::kVertexScoreTableLive + 1, kValenceMax * sizeof(float)); std::vector meshes; meshes.push_back(gridmesh(50)); for (int i = 1; i < argc; ++i) meshes.push_back(objmesh(argv[i])); size_t total_triangles = 0; for (auto& mesh : meshes) { compute_atvr(baseline, mesh, mesh.atvr_base); total_triangles += mesh.indices.size() / 3; } std::vector pop; size_t gen = 0; if (load_state("mutator.state", pop)) { printf("Loaded %d state vectors\n", int(pop.size())); } else { pop = gen0(95, meshes); } printf("%d meshes, %.1fM triangles\n", int(meshes.size()), double(total_triangles) / 1e6); float atvr_0[Profile_Count]; float atvr_N[Profile_Count]; compute_atvr(baseline, meshes[0], atvr_0); compute_atvr(baseline, meshes.back(), atvr_N); printf("baseline: grid %f %f %s %f %f\n", atvr_0[0], atvr_0[1], argv[argc - 1], atvr_N[0], atvr_N[1]); for (;;) { auto best = genN(pop, meshes); gen++; compute_atvr(best.first, meshes[0], atvr_0); compute_atvr(best.first, meshes.back(), atvr_N); printf("%d: fitness %f; grid %f %f %s %f %f\n", int(gen), best.second, atvr_0[0], atvr_0[1], argv[argc - 1], atvr_N[0], atvr_N[1]); if (gen % 100 == 0) { char buf[128]; sprintf(buf, "gcloud logging write vcache-log \"fitness %f; grid %f %f %s %f %f\"", best.second, atvr_0[0], atvr_0[1], argv[argc - 1], atvr_N[0], atvr_N[1]); int rc = system(buf); (void)rc; } dump_state(best.first); if (save_state("mutator.state-temp", pop) && rename("mutator.state-temp", "mutator.state") == 0) { } else { printf("ERROR: Can't save state\n"); } } }