| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055 |
- #include "../src/meshoptimizer.h"
- #include <assert.h>
- #include <math.h>
- #include <stdio.h>
- #include <string.h>
- #include <time.h>
- #include <vector>
- #include "../tools/fast_obj.h"
- #include "miniz.h"
- // This file uses assert() to verify algorithm correctness
- #undef NDEBUG
- #include <assert.h>
- #if defined(__linux__)
- double timestamp()
- {
- timespec ts;
- clock_gettime(CLOCK_MONOTONIC, &ts);
- return double(ts.tv_sec) + 1e-9 * double(ts.tv_nsec);
- }
- #elif defined(_WIN32)
- struct LARGE_INTEGER
- {
- __int64 QuadPart;
- };
- extern "C" __declspec(dllimport) int __stdcall QueryPerformanceCounter(LARGE_INTEGER* lpPerformanceCount);
- extern "C" __declspec(dllimport) int __stdcall QueryPerformanceFrequency(LARGE_INTEGER* lpFrequency);
- double timestamp()
- {
- LARGE_INTEGER freq, counter;
- QueryPerformanceFrequency(&freq);
- QueryPerformanceCounter(&counter);
- return double(counter.QuadPart) / double(freq.QuadPart);
- }
- #else
- double timestamp()
- {
- return double(clock()) / double(CLOCKS_PER_SEC);
- }
- #endif
- const size_t kCacheSize = 16;
- struct Vertex
- {
- float px, py, pz;
- float nx, ny, nz;
- float tx, ty;
- };
- struct Mesh
- {
- std::vector<Vertex> vertices;
- std::vector<unsigned int> indices;
- };
- union Triangle {
- Vertex v[3];
- char data[sizeof(Vertex) * 3];
- };
- Mesh parseObj(const char* path, double& reindex)
- {
- fastObjMesh* obj = fast_obj_read(path);
- if (!obj)
- {
- printf("Error loading %s: file not found\n", path);
- return Mesh();
- }
- size_t total_indices = 0;
- for (unsigned int i = 0; i < obj->face_count; ++i)
- total_indices += 3 * (obj->face_vertices[i] - 2);
- std::vector<Vertex> vertices(total_indices);
- size_t vertex_offset = 0;
- size_t index_offset = 0;
- for (unsigned int i = 0; i < obj->face_count; ++i)
- {
- for (unsigned int j = 0; j < obj->face_vertices[i]; ++j)
- {
- fastObjIndex gi = obj->indices[index_offset + j];
- Vertex v =
- {
- obj->positions[gi.p * 3 + 0],
- obj->positions[gi.p * 3 + 1],
- obj->positions[gi.p * 3 + 2],
- obj->normals[gi.n * 3 + 0],
- obj->normals[gi.n * 3 + 1],
- obj->normals[gi.n * 3 + 2],
- obj->texcoords[gi.t * 2 + 0],
- obj->texcoords[gi.t * 2 + 1],
- };
- // triangulate polygon on the fly; offset-3 is always the first polygon vertex
- if (j >= 3)
- {
- vertices[vertex_offset + 0] = vertices[vertex_offset - 3];
- vertices[vertex_offset + 1] = vertices[vertex_offset - 1];
- vertex_offset += 2;
- }
- vertices[vertex_offset] = v;
- vertex_offset++;
- }
- index_offset += obj->face_vertices[i];
- }
- fast_obj_destroy(obj);
- reindex = timestamp();
- Mesh result;
- std::vector<unsigned int> remap(total_indices);
- size_t total_vertices = meshopt_generateVertexRemap(&remap[0], NULL, total_indices, &vertices[0], total_indices, sizeof(Vertex));
- result.indices.resize(total_indices);
- meshopt_remapIndexBuffer(&result.indices[0], NULL, total_indices, &remap[0]);
- result.vertices.resize(total_vertices);
- meshopt_remapVertexBuffer(&result.vertices[0], &vertices[0], total_indices, sizeof(Vertex), &remap[0]);
- return result;
- }
- bool isMeshValid(const Mesh& mesh)
- {
- size_t index_count = mesh.indices.size();
- size_t vertex_count = mesh.vertices.size();
- if (index_count % 3 != 0)
- return false;
- const unsigned int* indices = &mesh.indices[0];
- for (size_t i = 0; i < index_count; ++i)
- if (indices[i] >= vertex_count)
- return false;
- return true;
- }
- bool rotateTriangle(Triangle& t)
- {
- int c01 = memcmp(&t.v[0], &t.v[1], sizeof(Vertex));
- int c02 = memcmp(&t.v[0], &t.v[2], sizeof(Vertex));
- int c12 = memcmp(&t.v[1], &t.v[2], sizeof(Vertex));
- if (c12 < 0 && c01 > 0)
- {
- // 1 is minimum, rotate 012 => 120
- Vertex tv = t.v[0];
- t.v[0] = t.v[1], t.v[1] = t.v[2], t.v[2] = tv;
- }
- else if (c02 > 0 && c12 > 0)
- {
- // 2 is minimum, rotate 012 => 201
- Vertex tv = t.v[2];
- t.v[2] = t.v[1], t.v[1] = t.v[0], t.v[0] = tv;
- }
- return c01 != 0 && c02 != 0 && c12 != 0;
- }
- unsigned int hashRange(const char* key, size_t len)
- {
- // MurmurHash2
- const unsigned int m = 0x5bd1e995;
- const int r = 24;
- unsigned int h = 0;
- while (len >= 4)
- {
- unsigned int k = *reinterpret_cast<const unsigned int*>(key);
- k *= m;
- k ^= k >> r;
- k *= m;
- h *= m;
- h ^= k;
- key += 4;
- len -= 4;
- }
- return h;
- }
- unsigned int hashMesh(const Mesh& mesh)
- {
- size_t triangle_count = mesh.indices.size() / 3;
- const Vertex* vertices = &mesh.vertices[0];
- const unsigned int* indices = &mesh.indices[0];
- unsigned int h1 = 0;
- unsigned int h2 = 0;
- for (size_t i = 0; i < triangle_count; ++i)
- {
- Triangle t;
- t.v[0] = vertices[indices[i * 3 + 0]];
- t.v[1] = vertices[indices[i * 3 + 1]];
- t.v[2] = vertices[indices[i * 3 + 2]];
- // skip degenerate triangles since some algorithms don't preserve them
- if (rotateTriangle(t))
- {
- unsigned int hash = hashRange(t.data, sizeof(t.data));
- h1 ^= hash;
- h2 += hash;
- }
- }
- return h1 * 0x5bd1e995 + h2;
- }
- void optNone(Mesh& mesh)
- {
- (void)mesh;
- }
- void optRandomShuffle(Mesh& mesh)
- {
- size_t triangle_count = mesh.indices.size() / 3;
- unsigned int* indices = &mesh.indices[0];
- unsigned int rng = 0;
- for (size_t i = triangle_count - 1; i > 0; --i)
- {
- // Fisher-Yates shuffle
- size_t j = rng % (i + 1);
- unsigned int t;
- t = indices[3 * j + 0], indices[3 * j + 0] = indices[3 * i + 0], indices[3 * i + 0] = t;
- t = indices[3 * j + 1], indices[3 * j + 1] = indices[3 * i + 1], indices[3 * i + 1] = t;
- t = indices[3 * j + 2], indices[3 * j + 2] = indices[3 * i + 2], indices[3 * i + 2] = t;
- // LCG RNG, constants from Numerical Recipes
- rng = rng * 1664525 + 1013904223;
- }
- }
- void optCache(Mesh& mesh)
- {
- meshopt_optimizeVertexCache(&mesh.indices[0], &mesh.indices[0], mesh.indices.size(), mesh.vertices.size());
- }
- void optCacheFifo(Mesh& mesh)
- {
- meshopt_optimizeVertexCacheFifo(&mesh.indices[0], &mesh.indices[0], mesh.indices.size(), mesh.vertices.size(), kCacheSize);
- }
- void optOverdraw(Mesh& mesh)
- {
- // use worst-case ACMR threshold so that overdraw optimizer can sort *all* triangles
- // warning: this significantly deteriorates the vertex cache efficiency so it is not advised; look at optComplete for the recommended method
- const float kThreshold = 3.f;
- meshopt_optimizeOverdraw(&mesh.indices[0], &mesh.indices[0], mesh.indices.size(), &mesh.vertices[0].px, mesh.vertices.size(), sizeof(Vertex), kThreshold);
- }
- void optFetch(Mesh& mesh)
- {
- meshopt_optimizeVertexFetch(&mesh.vertices[0], &mesh.indices[0], mesh.indices.size(), &mesh.vertices[0], mesh.vertices.size(), sizeof(Vertex));
- }
- void optFetchRemap(Mesh& mesh)
- {
- // this produces results equivalent to optFetch, but can be used to remap multiple vertex streams
- std::vector<unsigned int> remap(mesh.vertices.size());
- meshopt_optimizeVertexFetchRemap(&remap[0], &mesh.indices[0], mesh.indices.size(), mesh.vertices.size());
- meshopt_remapIndexBuffer(&mesh.indices[0], &mesh.indices[0], mesh.indices.size(), &remap[0]);
- meshopt_remapVertexBuffer(&mesh.vertices[0], &mesh.vertices[0], mesh.vertices.size(), sizeof(Vertex), &remap[0]);
- }
- void optComplete(Mesh& mesh)
- {
- // vertex cache optimization should go first as it provides starting order for overdraw
- meshopt_optimizeVertexCache(&mesh.indices[0], &mesh.indices[0], mesh.indices.size(), mesh.vertices.size());
- // reorder indices for overdraw, balancing overdraw and vertex cache efficiency
- const float kThreshold = 1.01f; // allow up to 1% worse ACMR to get more reordering opportunities for overdraw
- meshopt_optimizeOverdraw(&mesh.indices[0], &mesh.indices[0], mesh.indices.size(), &mesh.vertices[0].px, mesh.vertices.size(), sizeof(Vertex), kThreshold);
- // vertex fetch optimization should go last as it depends on the final index order
- meshopt_optimizeVertexFetch(&mesh.vertices[0], &mesh.indices[0], mesh.indices.size(), &mesh.vertices[0], mesh.vertices.size(), sizeof(Vertex));
- }
- struct PackedVertex
- {
- unsigned short px, py, pz;
- unsigned short pw; // padding to 4b boundary
- signed char nx, ny, nz, nw;
- unsigned short tx, ty;
- };
- void packMesh(std::vector<PackedVertex>& pv, const std::vector<Vertex>& vertices)
- {
- for (size_t i = 0; i < vertices.size(); ++i)
- {
- const Vertex& vi = vertices[i];
- PackedVertex& pvi = pv[i];
- pvi.px = meshopt_quantizeHalf(vi.px);
- pvi.py = meshopt_quantizeHalf(vi.py);
- pvi.pz = meshopt_quantizeHalf(vi.pz);
- pvi.pw = 0;
- pvi.nx = char(meshopt_quantizeSnorm(vi.nx, 8));
- pvi.ny = char(meshopt_quantizeSnorm(vi.ny, 8));
- pvi.nz = char(meshopt_quantizeSnorm(vi.nz, 8));
- pvi.nw = 0;
- pvi.tx = meshopt_quantizeHalf(vi.tx);
- pvi.ty = meshopt_quantizeHalf(vi.ty);
- }
- }
- struct PackedVertexOct
- {
- unsigned short px, py, pz;
- signed char nu, nv; // octahedron encoded normal, aliases .pw
- unsigned short tx, ty;
- };
- void packMesh(std::vector<PackedVertexOct>& pv, const std::vector<Vertex>& vertices)
- {
- for (size_t i = 0; i < vertices.size(); ++i)
- {
- const Vertex& vi = vertices[i];
- PackedVertexOct& pvi = pv[i];
- pvi.px = meshopt_quantizeHalf(vi.px);
- pvi.py = meshopt_quantizeHalf(vi.py);
- pvi.pz = meshopt_quantizeHalf(vi.pz);
- float nsum = fabsf(vi.nx) + fabsf(vi.ny) + fabsf(vi.nz);
- float nx = vi.nx / nsum;
- float ny = vi.ny / nsum;
- float nz = vi.nz;
- float nu = nz >= 0 ? nx : (1 - fabsf(ny)) * (nx >= 0 ? 1 : -1);
- float nv = nz >= 0 ? ny : (1 - fabsf(nx)) * (ny >= 0 ? 1 : -1);
- pvi.nu = char(meshopt_quantizeSnorm(nu, 8));
- pvi.nv = char(meshopt_quantizeSnorm(nv, 8));
- pvi.tx = meshopt_quantizeHalf(vi.tx);
- pvi.ty = meshopt_quantizeHalf(vi.ty);
- }
- }
- void simplify(const Mesh& mesh, float threshold = 0.2f)
- {
- Mesh lod;
- double start = timestamp();
- size_t target_index_count = size_t(mesh.indices.size() * threshold);
- float target_error = 1e-2f;
- lod.indices.resize(mesh.indices.size()); // note: simplify needs space for index_count elements in the destination array, not target_index_count
- lod.indices.resize(meshopt_simplify(&lod.indices[0], &mesh.indices[0], mesh.indices.size(), &mesh.vertices[0].px, mesh.vertices.size(), sizeof(Vertex), target_index_count, target_error));
- lod.vertices.resize(lod.indices.size() < mesh.vertices.size() ? lod.indices.size() : mesh.vertices.size()); // note: this is just to reduce the cost of resize()
- lod.vertices.resize(meshopt_optimizeVertexFetch(&lod.vertices[0], &lod.indices[0], lod.indices.size(), &mesh.vertices[0], mesh.vertices.size(), sizeof(Vertex)));
- double end = timestamp();
- printf("%-9s: %d triangles => %d triangles in %.2f msec\n",
- "Simplify",
- int(mesh.indices.size() / 3), int(lod.indices.size() / 3), (end - start) * 1000);
- }
- void simplifySloppy(const Mesh& mesh, float threshold = 0.2f)
- {
- Mesh lod;
- double start = timestamp();
- size_t target_index_count = size_t(mesh.indices.size() * threshold);
- lod.indices.resize(target_index_count); // note: simplifySloppy, unlike simplify, is guaranteed to output results that don't exceed the requested target_index_count
- lod.indices.resize(meshopt_simplifySloppy(&lod.indices[0], &mesh.indices[0], mesh.indices.size(), &mesh.vertices[0].px, mesh.vertices.size(), sizeof(Vertex), target_index_count));
- lod.vertices.resize(lod.indices.size() < mesh.vertices.size() ? lod.indices.size() : mesh.vertices.size()); // note: this is just to reduce the cost of resize()
- lod.vertices.resize(meshopt_optimizeVertexFetch(&lod.vertices[0], &lod.indices[0], lod.indices.size(), &mesh.vertices[0], mesh.vertices.size(), sizeof(Vertex)));
- double end = timestamp();
- printf("%-9s: %d triangles => %d triangles in %.2f msec\n",
- "SimplifyS",
- int(mesh.indices.size() / 3), int(lod.indices.size() / 3), (end - start) * 1000);
- }
- void simplifyPoints(const Mesh& mesh, float threshold = 0.2f)
- {
- double start = timestamp();
- size_t target_vertex_count = size_t(mesh.vertices.size() * threshold);
- std::vector<unsigned int> indices(target_vertex_count);
- indices.resize(meshopt_simplifyPoints(&indices[0], &mesh.vertices[0].px, mesh.vertices.size(), sizeof(Vertex), target_vertex_count));
- double end = timestamp();
- printf("%-9s: %d points => %d points in %.2f msec\n",
- "SimplifyP",
- int(mesh.vertices.size()), int(indices.size()), (end - start) * 1000);
- }
- void simplifyComplete(const Mesh& mesh)
- {
- static const size_t lod_count = 5;
- double start = timestamp();
- // generate 4 LOD levels (1-4), with each subsequent LOD using 70% triangles
- // note that each LOD uses the same (shared) vertex buffer
- std::vector<unsigned int> lods[lod_count];
- lods[0] = mesh.indices;
- for (size_t i = 1; i < lod_count; ++i)
- {
- std::vector<unsigned int>& lod = lods[i];
- float threshold = powf(0.7f, float(i));
- size_t target_index_count = size_t(mesh.indices.size() * threshold) / 3 * 3;
- float target_error = 1e-2f;
- // we can simplify all the way from base level or from the last result
- // simplifying from the base level sometimes produces better results, but simplifying from last level is faster
- const std::vector<unsigned int>& source = lods[i - 1];
- if (source.size() < target_index_count)
- target_index_count = source.size();
- lod.resize(source.size());
- lod.resize(meshopt_simplify(&lod[0], &source[0], source.size(), &mesh.vertices[0].px, mesh.vertices.size(), sizeof(Vertex), target_index_count, target_error));
- }
- double middle = timestamp();
- // optimize each individual LOD for vertex cache & overdraw
- for (size_t i = 0; i < lod_count; ++i)
- {
- std::vector<unsigned int>& lod = lods[i];
- meshopt_optimizeVertexCache(&lod[0], &lod[0], lod.size(), mesh.vertices.size());
- meshopt_optimizeOverdraw(&lod[0], &lod[0], lod.size(), &mesh.vertices[0].px, mesh.vertices.size(), sizeof(Vertex), 1.0f);
- }
- // concatenate all LODs into one IB
- // note: the order of concatenation is important - since we optimize the entire IB for vertex fetch,
- // putting coarse LODs first makes sure that the vertex range referenced by them is as small as possible
- // some GPUs process the entire range referenced by the index buffer region so doing this optimizes the vertex transform
- // cost for coarse LODs
- // this order also produces much better vertex fetch cache coherency for coarse LODs (since they're essentially optimized first)
- // somewhat surprisingly, the vertex fetch cache coherency for fine LODs doesn't seem to suffer that much.
- size_t lod_index_offsets[lod_count] = {};
- size_t lod_index_counts[lod_count] = {};
- size_t total_index_count = 0;
- for (int i = lod_count - 1; i >= 0; --i)
- {
- lod_index_offsets[i] = total_index_count;
- lod_index_counts[i] = lods[i].size();
- total_index_count += lods[i].size();
- }
- std::vector<unsigned int> indices(total_index_count);
- for (size_t i = 0; i < lod_count; ++i)
- {
- memcpy(&indices[lod_index_offsets[i]], &lods[i][0], lods[i].size() * sizeof(lods[i][0]));
- }
- std::vector<Vertex> vertices = mesh.vertices;
- // vertex fetch optimization should go last as it depends on the final index order
- // note that the order of LODs above affects vertex fetch results
- meshopt_optimizeVertexFetch(&vertices[0], &indices[0], indices.size(), &vertices[0], vertices.size(), sizeof(Vertex));
- double end = timestamp();
- printf("%-9s: %d triangles => %d LOD levels down to %d triangles in %.2f msec, optimized in %.2f msec\n",
- "SimplifyC",
- int(lod_index_counts[0]) / 3, int(lod_count), int(lod_index_counts[lod_count - 1]) / 3,
- (middle - start) * 1000, (end - middle) * 1000);
- // for using LOD data at runtime, in addition to vertices and indices you have to save lod_index_offsets/lod_index_counts.
- {
- meshopt_VertexCacheStatistics vcs0 = meshopt_analyzeVertexCache(&indices[lod_index_offsets[0]], lod_index_counts[0], vertices.size(), kCacheSize, 0, 0);
- meshopt_VertexFetchStatistics vfs0 = meshopt_analyzeVertexFetch(&indices[lod_index_offsets[0]], lod_index_counts[0], vertices.size(), sizeof(Vertex));
- meshopt_VertexCacheStatistics vcsN = meshopt_analyzeVertexCache(&indices[lod_index_offsets[lod_count - 1]], lod_index_counts[lod_count - 1], vertices.size(), kCacheSize, 0, 0);
- meshopt_VertexFetchStatistics vfsN = meshopt_analyzeVertexFetch(&indices[lod_index_offsets[lod_count - 1]], lod_index_counts[lod_count - 1], vertices.size(), sizeof(Vertex));
- typedef PackedVertexOct PV;
- std::vector<PV> pv(vertices.size());
- packMesh(pv, vertices);
- std::vector<unsigned char> vbuf(meshopt_encodeVertexBufferBound(vertices.size(), sizeof(PV)));
- vbuf.resize(meshopt_encodeVertexBuffer(&vbuf[0], vbuf.size(), &pv[0], vertices.size(), sizeof(PV)));
- std::vector<unsigned char> ibuf(meshopt_encodeIndexBufferBound(indices.size(), vertices.size()));
- ibuf.resize(meshopt_encodeIndexBuffer(&ibuf[0], ibuf.size(), &indices[0], indices.size()));
- printf("%-9s ACMR %f...%f Overfetch %f..%f Codec VB %.1f bits/vertex IB %.1f bits/triangle\n",
- "",
- vcs0.acmr, vcsN.acmr, vfs0.overfetch, vfsN.overfetch,
- double(vbuf.size()) / double(vertices.size()) * 8,
- double(ibuf.size()) / double(indices.size() / 3) * 8);
- }
- }
- void optimize(const Mesh& mesh, const char* name, void (*optf)(Mesh& mesh))
- {
- Mesh copy = mesh;
- double start = timestamp();
- optf(copy);
- double end = timestamp();
- assert(isMeshValid(copy));
- assert(hashMesh(mesh) == hashMesh(copy));
- meshopt_VertexCacheStatistics vcs = meshopt_analyzeVertexCache(©.indices[0], copy.indices.size(), copy.vertices.size(), kCacheSize, 0, 0);
- meshopt_VertexFetchStatistics vfs = meshopt_analyzeVertexFetch(©.indices[0], copy.indices.size(), copy.vertices.size(), sizeof(Vertex));
- meshopt_OverdrawStatistics os = meshopt_analyzeOverdraw(©.indices[0], copy.indices.size(), ©.vertices[0].px, copy.vertices.size(), sizeof(Vertex));
- meshopt_VertexCacheStatistics vcs_nv = meshopt_analyzeVertexCache(©.indices[0], copy.indices.size(), copy.vertices.size(), 32, 32, 32);
- meshopt_VertexCacheStatistics vcs_amd = meshopt_analyzeVertexCache(©.indices[0], copy.indices.size(), copy.vertices.size(), 14, 64, 128);
- meshopt_VertexCacheStatistics vcs_intel = meshopt_analyzeVertexCache(©.indices[0], copy.indices.size(), copy.vertices.size(), 128, 0, 0);
- printf("%-9s: ACMR %f ATVR %f (NV %f AMD %f Intel %f) Overfetch %f Overdraw %f in %.2f msec\n", name, vcs.acmr, vcs.atvr, vcs_nv.atvr, vcs_amd.atvr, vcs_intel.atvr, vfs.overfetch, os.overdraw, (end - start) * 1000);
- }
- template <typename T>
- size_t compress(const std::vector<T>& data)
- {
- std::vector<unsigned char> cbuf(tdefl_compress_bound(data.size() * sizeof(T)));
- unsigned int flags = tdefl_create_comp_flags_from_zip_params(MZ_DEFAULT_LEVEL, 15, MZ_DEFAULT_STRATEGY);
- return tdefl_compress_mem_to_mem(&cbuf[0], cbuf.size(), &data[0], data.size() * sizeof(T), flags);
- }
- void encodeIndex(const Mesh& mesh)
- {
- // allocate result outside of the timing loop to exclude memset() from decode timing
- std::vector<unsigned int> result(mesh.indices.size());
- double start = timestamp();
- std::vector<unsigned char> buffer(meshopt_encodeIndexBufferBound(mesh.indices.size(), mesh.vertices.size()));
- buffer.resize(meshopt_encodeIndexBuffer(&buffer[0], buffer.size(), &mesh.indices[0], mesh.indices.size()));
- double middle = timestamp();
- int res = meshopt_decodeIndexBuffer(&result[0], mesh.indices.size(), &buffer[0], buffer.size());
- assert(res == 0);
- (void)res;
- double end = timestamp();
- size_t csize = compress(buffer);
- for (size_t i = 0; i < mesh.indices.size(); i += 3)
- {
- assert(
- (result[i + 0] == mesh.indices[i + 0] && result[i + 1] == mesh.indices[i + 1] && result[i + 2] == mesh.indices[i + 2]) ||
- (result[i + 1] == mesh.indices[i + 0] && result[i + 2] == mesh.indices[i + 1] && result[i + 0] == mesh.indices[i + 2]) ||
- (result[i + 2] == mesh.indices[i + 0] && result[i + 0] == mesh.indices[i + 1] && result[i + 1] == mesh.indices[i + 2]));
- }
- printf("IdxCodec : %.1f bits/triangle (post-deflate %.1f bits/triangle); encode %.2f msec, decode %.2f msec (%.2f GB/s)\n",
- double(buffer.size() * 8) / double(mesh.indices.size() / 3),
- double(csize * 8) / double(mesh.indices.size() / 3),
- (middle - start) * 1000,
- (end - middle) * 1000,
- (double(result.size() * 4) / (1 << 30)) / (end - middle));
- }
- template <typename PV>
- void packVertex(const Mesh& mesh, const char* pvn)
- {
- std::vector<PV> pv(mesh.vertices.size());
- packMesh(pv, mesh.vertices);
- size_t csize = compress(pv);
- printf("VtxPack%s : %.1f bits/vertex (post-deflate %.1f bits/vertex)\n", pvn,
- double(pv.size() * sizeof(PV) * 8) / double(mesh.vertices.size()),
- double(csize * 8) / double(mesh.vertices.size()));
- }
- template <typename PV>
- void encodeVertex(const Mesh& mesh, const char* pvn)
- {
- std::vector<PV> pv(mesh.vertices.size());
- packMesh(pv, mesh.vertices);
- // allocate result outside of the timing loop to exclude memset() from decode timing
- std::vector<PV> result(mesh.vertices.size());
- double start = timestamp();
- std::vector<unsigned char> vbuf(meshopt_encodeVertexBufferBound(mesh.vertices.size(), sizeof(PV)));
- vbuf.resize(meshopt_encodeVertexBuffer(&vbuf[0], vbuf.size(), &pv[0], mesh.vertices.size(), sizeof(PV)));
- double middle = timestamp();
- int res = meshopt_decodeVertexBuffer(&result[0], mesh.vertices.size(), sizeof(PV), &vbuf[0], vbuf.size());
- assert(res == 0);
- (void)res;
- double end = timestamp();
- assert(memcmp(&pv[0], &result[0], pv.size() * sizeof(PV)) == 0);
- size_t csize = compress(vbuf);
- printf("VtxCodec%1s: %.1f bits/vertex (post-deflate %.1f bits/vertex); encode %.2f msec, decode %.2f msec (%.2f GB/s)\n", pvn,
- double(vbuf.size() * 8) / double(mesh.vertices.size()),
- double(csize * 8) / double(mesh.vertices.size()),
- (middle - start) * 1000,
- (end - middle) * 1000,
- (double(result.size() * sizeof(PV)) / (1 << 30)) / (end - middle));
- }
- void stripify(const Mesh& mesh, bool use_restart)
- {
- unsigned int restart_index = use_restart ? ~0u : 0;
- // note: input mesh is assumed to be optimized for vertex cache and vertex fetch
- double start = timestamp();
- std::vector<unsigned int> strip(meshopt_stripifyBound(mesh.indices.size()));
- strip.resize(meshopt_stripify(&strip[0], &mesh.indices[0], mesh.indices.size(), mesh.vertices.size(), restart_index));
- double end = timestamp();
- Mesh copy = mesh;
- copy.indices.resize(meshopt_unstripify(©.indices[0], &strip[0], strip.size(), restart_index));
- assert(copy.indices.size() <= meshopt_unstripifyBound(strip.size()));
- assert(isMeshValid(copy));
- assert(hashMesh(mesh) == hashMesh(copy));
- meshopt_VertexCacheStatistics vcs = meshopt_analyzeVertexCache(©.indices[0], mesh.indices.size(), mesh.vertices.size(), kCacheSize, 0, 0);
- meshopt_VertexCacheStatistics vcs_nv = meshopt_analyzeVertexCache(©.indices[0], mesh.indices.size(), mesh.vertices.size(), 32, 32, 32);
- meshopt_VertexCacheStatistics vcs_amd = meshopt_analyzeVertexCache(©.indices[0], mesh.indices.size(), mesh.vertices.size(), 14, 64, 128);
- meshopt_VertexCacheStatistics vcs_intel = meshopt_analyzeVertexCache(©.indices[0], mesh.indices.size(), mesh.vertices.size(), 128, 0, 0);
- printf("Stripify%c: ACMR %f ATVR %f (NV %f AMD %f Intel %f); %d strip indices (%.1f%%) in %.2f msec\n",
- use_restart ? 'R' : ' ',
- vcs.acmr, vcs.atvr, vcs_nv.atvr, vcs_amd.atvr, vcs_intel.atvr,
- int(strip.size()), double(strip.size()) / double(mesh.indices.size()) * 100,
- (end - start) * 1000);
- }
- void shadow(const Mesh& mesh)
- {
- // note: input mesh is assumed to be optimized for vertex cache and vertex fetch
- double start = timestamp();
- // this index buffer can be used for position-only rendering using the same vertex data that the original index buffer uses
- std::vector<unsigned int> shadow_indices(mesh.indices.size());
- meshopt_generateShadowIndexBuffer(&shadow_indices[0], &mesh.indices[0], mesh.indices.size(), &mesh.vertices[0], mesh.vertices.size(), sizeof(float) * 3, sizeof(Vertex));
- double end = timestamp();
- // while you can't optimize the vertex data after shadow IB was constructed, you can and should optimize the shadow IB for vertex cache
- // this is valuable even if the original indices array was optimized for vertex cache!
- meshopt_optimizeVertexCache(&shadow_indices[0], &shadow_indices[0], shadow_indices.size(), mesh.vertices.size());
- meshopt_VertexCacheStatistics vcs = meshopt_analyzeVertexCache(&mesh.indices[0], mesh.indices.size(), mesh.vertices.size(), kCacheSize, 0, 0);
- meshopt_VertexCacheStatistics vcss = meshopt_analyzeVertexCache(&shadow_indices[0], shadow_indices.size(), mesh.vertices.size(), kCacheSize, 0, 0);
- std::vector<char> shadow_flags(mesh.vertices.size());
- size_t shadow_vertices = 0;
- for (size_t i = 0; i < shadow_indices.size(); ++i)
- {
- unsigned int index = shadow_indices[i];
- shadow_vertices += 1 - shadow_flags[index];
- shadow_flags[index] = 1;
- }
- printf("ShadowIB : ACMR %f (%.2fx improvement); %d shadow vertices (%.2fx improvement) in %.2f msec\n",
- vcss.acmr, double(vcs.vertices_transformed) / double(vcss.vertices_transformed),
- int(shadow_vertices), double(mesh.vertices.size()) / double(shadow_vertices),
- (end - start) * 1000);
- }
- void meshlets(const Mesh& mesh)
- {
- const size_t max_vertices = 64;
- const size_t max_triangles = 126;
- // note: input mesh is assumed to be optimized for vertex cache and vertex fetch
- double start = timestamp();
- std::vector<meshopt_Meshlet> meshlets(meshopt_buildMeshletsBound(mesh.indices.size(), max_vertices, max_triangles));
- meshlets.resize(meshopt_buildMeshlets(&meshlets[0], &mesh.indices[0], mesh.indices.size(), mesh.vertices.size(), max_vertices, max_triangles));
- double end = timestamp();
- double avg_vertices = 0;
- double avg_triangles = 0;
- size_t not_full = 0;
- for (size_t i = 0; i < meshlets.size(); ++i)
- {
- const meshopt_Meshlet& m = meshlets[i];
- avg_vertices += m.vertex_count;
- avg_triangles += m.triangle_count;
- not_full += m.vertex_count < max_vertices;
- }
- avg_vertices /= double(meshlets.size());
- avg_triangles /= double(meshlets.size());
- printf("Meshlets : %d meshlets (avg vertices %.1f, avg triangles %.1f, not full %d) in %.2f msec\n",
- int(meshlets.size()), avg_vertices, avg_triangles, int(not_full), (end - start) * 1000);
- float camera[3] = {100, 100, 100};
- size_t rejected = 0;
- size_t rejected_s8 = 0;
- size_t rejected_alt = 0;
- size_t rejected_alt_s8 = 0;
- size_t accepted = 0;
- size_t accepted_s8 = 0;
- double startc = timestamp();
- for (size_t i = 0; i < meshlets.size(); ++i)
- {
- meshopt_Bounds bounds = meshopt_computeMeshletBounds(&meshlets[i], &mesh.vertices[0].px, mesh.vertices.size(), sizeof(Vertex));
- // trivial accept: we can't ever backface cull this meshlet
- accepted += (bounds.cone_cutoff >= 1);
- accepted_s8 += (bounds.cone_cutoff_s8 >= 127);
- // perspective projection: dot(normalize(cone_apex - camera_position), cone_axis) > cone_cutoff
- float mview[3] = {bounds.cone_apex[0] - camera[0], bounds.cone_apex[1] - camera[1], bounds.cone_apex[2] - camera[2]};
- float mviewlength = sqrtf(mview[0] * mview[0] + mview[1] * mview[1] + mview[2] * mview[2]);
- rejected += mview[0] * bounds.cone_axis[0] + mview[1] * bounds.cone_axis[1] + mview[2] * bounds.cone_axis[2] >= bounds.cone_cutoff * mviewlength;
- rejected_s8 += mview[0] * (bounds.cone_axis_s8[0] / 127.f) + mview[1] * (bounds.cone_axis_s8[1] / 127.f) + mview[2] * (bounds.cone_axis_s8[2] / 127.f) >= (bounds.cone_cutoff_s8 / 127.f) * mviewlength;
- // alternative formulation for perspective projection that doesn't use apex (and uses cluster bounding sphere instead):
- // dot(normalize(center - camera_position), cone_axis) > cone_cutoff + radius / length(center - camera_position)
- float cview[3] = {bounds.center[0] - camera[0], bounds.center[1] - camera[1], bounds.center[2] - camera[2]};
- float cviewlength = sqrtf(cview[0] * cview[0] + cview[1] * cview[1] + cview[2] * cview[2]);
- rejected_alt += cview[0] * bounds.cone_axis[0] + cview[1] * bounds.cone_axis[1] + cview[2] * bounds.cone_axis[2] >= bounds.cone_cutoff * cviewlength + bounds.radius;
- rejected_alt_s8 += cview[0] * (bounds.cone_axis_s8[0] / 127.f) + cview[1] * (bounds.cone_axis_s8[1] / 127.f) + cview[2] * (bounds.cone_axis_s8[2] / 127.f) >= (bounds.cone_cutoff_s8 / 127.f) * cviewlength + bounds.radius;
- }
- double endc = timestamp();
- printf("ConeCull : rejected apex %d (%.1f%%) / center %d (%.1f%%), trivially accepted %d (%.1f%%) in %.2f msec\n",
- int(rejected), double(rejected) / double(meshlets.size()) * 100,
- int(rejected_alt), double(rejected_alt) / double(meshlets.size()) * 100,
- int(accepted), double(accepted) / double(meshlets.size()) * 100,
- (endc - startc) * 1000);
- printf("ConeCull8: rejected apex %d (%.1f%%) / center %d (%.1f%%), trivially accepted %d (%.1f%%) in %.2f msec\n",
- int(rejected_s8), double(rejected_s8) / double(meshlets.size()) * 100,
- int(rejected_alt_s8), double(rejected_alt_s8) / double(meshlets.size()) * 100,
- int(accepted_s8), double(accepted_s8) / double(meshlets.size()) * 100,
- (endc - startc) * 1000);
- }
- void spatialSort(const Mesh& mesh)
- {
- typedef PackedVertexOct PV;
- std::vector<PV> pv(mesh.vertices.size());
- packMesh(pv, mesh.vertices);
- double start = timestamp();
- std::vector<unsigned int> remap(mesh.vertices.size());
- meshopt_spatialSortRemap(&remap[0], &mesh.vertices[0].px, mesh.vertices.size(), sizeof(Vertex));
- double end = timestamp();
- meshopt_remapVertexBuffer(&pv[0], &pv[0], mesh.vertices.size(), sizeof(PV), &remap[0]);
- std::vector<unsigned char> vbuf(meshopt_encodeVertexBufferBound(mesh.vertices.size(), sizeof(PV)));
- vbuf.resize(meshopt_encodeVertexBuffer(&vbuf[0], vbuf.size(), &pv[0], mesh.vertices.size(), sizeof(PV)));
- size_t csize = compress(vbuf);
- printf("Spatial : %.1f bits/vertex (post-deflate %.1f bits/vertex); sort %.2f msec\n",
- double(vbuf.size() * 8) / double(mesh.vertices.size()),
- double(csize * 8) / double(mesh.vertices.size()),
- (end - start) * 1000);
- }
- void spatialSortTriangles(const Mesh& mesh)
- {
- typedef PackedVertexOct PV;
- Mesh copy = mesh;
- double start = timestamp();
- meshopt_spatialSortTriangles(©.indices[0], ©.indices[0], mesh.indices.size(), ©.vertices[0].px, copy.vertices.size(), sizeof(Vertex));
- double end = timestamp();
- meshopt_optimizeVertexCache(©.indices[0], ©.indices[0], copy.indices.size(), copy.vertices.size());
- meshopt_optimizeVertexFetch(©.vertices[0], ©.indices[0], copy.indices.size(), ©.vertices[0], copy.vertices.size(), sizeof(Vertex));
- std::vector<PV> pv(mesh.vertices.size());
- packMesh(pv, copy.vertices);
- std::vector<unsigned char> vbuf(meshopt_encodeVertexBufferBound(mesh.vertices.size(), sizeof(PV)));
- vbuf.resize(meshopt_encodeVertexBuffer(&vbuf[0], vbuf.size(), &pv[0], mesh.vertices.size(), sizeof(PV)));
- std::vector<unsigned char> ibuf(meshopt_encodeIndexBufferBound(mesh.indices.size(), mesh.vertices.size()));
- ibuf.resize(meshopt_encodeIndexBuffer(&ibuf[0], ibuf.size(), ©.indices[0], mesh.indices.size()));
- size_t csizev = compress(vbuf);
- size_t csizei = compress(ibuf);
- printf("SpatialT : %.1f bits/vertex (post-deflate %.1f bits/vertex); %.1f bits/triangle (post-deflate %.1f bits/triangle); sort %.2f msec\n",
- double(vbuf.size() * 8) / double(mesh.vertices.size()),
- double(csizev * 8) / double(mesh.vertices.size()),
- double(ibuf.size() * 8) / double(mesh.indices.size() / 3),
- double(csizei * 8) / double(mesh.indices.size() / 3),
- (end - start) * 1000);
- }
- bool loadMesh(Mesh& mesh, const char* path)
- {
- double start = timestamp();
- double middle;
- mesh = parseObj(path, middle);
- double end = timestamp();
- if (mesh.vertices.empty())
- {
- printf("Mesh %s is empty, skipping\n", path);
- return false;
- }
- printf("# %s: %d vertices, %d triangles; read in %.2f msec; indexed in %.2f msec\n", path, int(mesh.vertices.size()), int(mesh.indices.size() / 3), (middle - start) * 1000, (end - middle) * 1000);
- return true;
- }
- void processDeinterleaved(const char* path)
- {
- // Most algorithms in the library work out of the box with deinterleaved geometry, but some require slightly special treatment;
- // this code runs a simplified version of complete opt. pipeline using deinterleaved geo. There's no compression performed but you
- // can trivially run it by quantizing all elements and running meshopt_encodeVertexBuffer once for each vertex stream.
- fastObjMesh* obj = fast_obj_read(path);
- if (!obj)
- {
- printf("Error loading %s: file not found\n", path);
- return;
- }
- size_t total_indices = 0;
- for (unsigned int i = 0; i < obj->face_count; ++i)
- total_indices += 3 * (obj->face_vertices[i] - 2);
- std::vector<float> unindexed_pos(total_indices * 3);
- std::vector<float> unindexed_nrm(total_indices * 3);
- std::vector<float> unindexed_uv(total_indices * 2);
- size_t vertex_offset = 0;
- size_t index_offset = 0;
- for (unsigned int i = 0; i < obj->face_count; ++i)
- {
- for (unsigned int j = 0; j < obj->face_vertices[i]; ++j)
- {
- fastObjIndex gi = obj->indices[index_offset + j];
- // triangulate polygon on the fly; offset-3 is always the first polygon vertex
- if (j >= 3)
- {
- memcpy(&unindexed_pos[(vertex_offset + 0) * 3], &unindexed_pos[(vertex_offset - 3) * 3], 3 * sizeof(float));
- memcpy(&unindexed_nrm[(vertex_offset + 0) * 3], &unindexed_nrm[(vertex_offset - 3) * 3], 3 * sizeof(float));
- memcpy(&unindexed_uv[(vertex_offset + 0) * 2], &unindexed_uv[(vertex_offset - 3) * 2], 2 * sizeof(float));
- memcpy(&unindexed_pos[(vertex_offset + 1) * 3], &unindexed_pos[(vertex_offset - 1) * 3], 3 * sizeof(float));
- memcpy(&unindexed_nrm[(vertex_offset + 1) * 3], &unindexed_nrm[(vertex_offset - 1) * 3], 3 * sizeof(float));
- memcpy(&unindexed_uv[(vertex_offset + 1) * 2], &unindexed_uv[(vertex_offset - 1) * 2], 2 * sizeof(float));
- vertex_offset += 2;
- }
- memcpy(&unindexed_pos[vertex_offset * 3], &obj->positions[gi.p * 3], 3 * sizeof(float));
- memcpy(&unindexed_nrm[vertex_offset * 3], &obj->normals[gi.n * 3], 3 * sizeof(float));
- memcpy(&unindexed_uv[vertex_offset * 2], &obj->texcoords[gi.t * 2], 2 * sizeof(float));
- vertex_offset++;
- }
- index_offset += obj->face_vertices[i];
- }
- fast_obj_destroy(obj);
- double start = timestamp();
- meshopt_Stream streams[] = {
- {&unindexed_pos[0], sizeof(float) * 3, sizeof(float) * 3},
- {&unindexed_nrm[0], sizeof(float) * 3, sizeof(float) * 3},
- {&unindexed_uv[0], sizeof(float) * 2, sizeof(float) * 2},
- };
- std::vector<unsigned int> remap(total_indices);
- size_t total_vertices = meshopt_generateVertexRemapMulti(&remap[0], NULL, total_indices, total_indices, streams, sizeof(streams) / sizeof(streams[0]));
- std::vector<unsigned int> indices(total_indices);
- meshopt_remapIndexBuffer(&indices[0], NULL, total_indices, &remap[0]);
- std::vector<float> pos(total_vertices * 3);
- meshopt_remapVertexBuffer(&pos[0], &unindexed_pos[0], total_indices, sizeof(float) * 3, &remap[0]);
- std::vector<float> nrm(total_vertices * 3);
- meshopt_remapVertexBuffer(&nrm[0], &unindexed_nrm[0], total_indices, sizeof(float) * 3, &remap[0]);
- std::vector<float> uv(total_vertices * 2);
- meshopt_remapVertexBuffer(&uv[0], &unindexed_uv[0], total_indices, sizeof(float) * 2, &remap[0]);
- double reindex = timestamp();
- meshopt_optimizeVertexCache(&indices[0], &indices[0], total_indices, total_vertices);
- meshopt_optimizeVertexFetchRemap(&remap[0], &indices[0], total_indices, total_vertices);
- meshopt_remapVertexBuffer(&pos[0], &pos[0], total_vertices, sizeof(float) * 3, &remap[0]);
- meshopt_remapVertexBuffer(&nrm[0], &nrm[0], total_vertices, sizeof(float) * 3, &remap[0]);
- meshopt_remapVertexBuffer(&uv[0], &uv[0], total_vertices, sizeof(float) * 2, &remap[0]);
- double optimize = timestamp();
- // note: since shadow index buffer is computed based on regular vertex/index buffer, the stream points at the indexed data - not unindexed_pos
- meshopt_Stream shadow_stream = {&pos[0], sizeof(float) * 3, sizeof(float) * 3};
- std::vector<unsigned int> shadow_indices(total_indices);
- meshopt_generateShadowIndexBufferMulti(&shadow_indices[0], &indices[0], total_indices, total_vertices, &shadow_stream, 1);
- meshopt_optimizeVertexCache(&shadow_indices[0], &shadow_indices[0], total_indices, total_vertices);
- double shadow = timestamp();
- printf("Deintrlvd: %d vertices, reindexed in %.2f msec, optimized in %.2f msec, generated & optimized shadow indices in %.2f msec\n",
- int(total_vertices), (reindex - start) * 1000, (optimize - reindex) * 1000, (shadow - optimize) * 1000);
- }
- void process(const char* path)
- {
- Mesh mesh;
- if (!loadMesh(mesh, path))
- return;
- optimize(mesh, "Original", optNone);
- optimize(mesh, "Random", optRandomShuffle);
- optimize(mesh, "Cache", optCache);
- optimize(mesh, "CacheFifo", optCacheFifo);
- optimize(mesh, "Overdraw", optOverdraw);
- optimize(mesh, "Fetch", optFetch);
- optimize(mesh, "FetchMap", optFetchRemap);
- optimize(mesh, "Complete", optComplete);
- Mesh copy = mesh;
- meshopt_optimizeVertexCache(©.indices[0], ©.indices[0], copy.indices.size(), copy.vertices.size());
- meshopt_optimizeVertexFetch(©.vertices[0], ©.indices[0], copy.indices.size(), ©.vertices[0], copy.vertices.size(), sizeof(Vertex));
- stripify(copy, false);
- stripify(copy, true);
- meshlets(copy);
- shadow(copy);
- encodeIndex(copy);
- packVertex<PackedVertex>(copy, "");
- encodeVertex<PackedVertex>(copy, "");
- encodeVertex<PackedVertexOct>(copy, "O");
- simplify(mesh);
- simplifySloppy(mesh);
- simplifyComplete(mesh);
- simplifyPoints(mesh);
- spatialSort(mesh);
- spatialSortTriangles(mesh);
- if (path)
- processDeinterleaved(path);
- }
- void processDev(const char* path)
- {
- Mesh mesh;
- if (!loadMesh(mesh, path))
- return;
- Mesh copy = mesh;
- meshopt_optimizeVertexCache(©.indices[0], ©.indices[0], copy.indices.size(), copy.vertices.size());
- meshopt_optimizeVertexFetch(©.vertices[0], ©.indices[0], copy.indices.size(), ©.vertices[0], copy.vertices.size(), sizeof(Vertex));
- encodeIndex(copy);
- encodeVertex<PackedVertex>(copy, "");
- encodeVertex<PackedVertexOct>(copy, "O");
- }
- int main(int argc, char** argv)
- {
- void runTests();
- if (argc == 1)
- {
- runTests();
- }
- else
- {
- if (strcmp(argv[1], "-d") == 0)
- {
- for (int i = 2; i < argc; ++i)
- {
- processDev(argv[i]);
- }
- }
- else
- {
- for (int i = 1; i < argc; ++i)
- {
- process(argv[i]);
- }
- runTests();
- }
- }
- }
|