transformation_composite_construct.cpp 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305
  1. // Copyright (c) 2019 Google LLC
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. #include "source/fuzz/transformation_composite_construct.h"
  15. #include "source/fuzz/data_descriptor.h"
  16. #include "source/fuzz/fuzzer_util.h"
  17. #include "source/fuzz/instruction_descriptor.h"
  18. #include "source/opt/instruction.h"
  19. namespace spvtools {
  20. namespace fuzz {
  21. TransformationCompositeConstruct::TransformationCompositeConstruct(
  22. const protobufs::TransformationCompositeConstruct& message)
  23. : message_(message) {}
  24. TransformationCompositeConstruct::TransformationCompositeConstruct(
  25. uint32_t composite_type_id, std::vector<uint32_t> component,
  26. const protobufs::InstructionDescriptor& instruction_to_insert_before,
  27. uint32_t fresh_id) {
  28. message_.set_composite_type_id(composite_type_id);
  29. for (auto a_component : component) {
  30. message_.add_component(a_component);
  31. }
  32. *message_.mutable_instruction_to_insert_before() =
  33. instruction_to_insert_before;
  34. message_.set_fresh_id(fresh_id);
  35. }
  36. bool TransformationCompositeConstruct::IsApplicable(
  37. opt::IRContext* context, const FactManager& /*fact_manager*/) const {
  38. if (!fuzzerutil::IsFreshId(context, message_.fresh_id())) {
  39. // We require the id for the composite constructor to be unused.
  40. return false;
  41. }
  42. auto insert_before =
  43. FindInstruction(message_.instruction_to_insert_before(), context);
  44. if (!insert_before) {
  45. // The instruction before which the composite should be inserted was not
  46. // found.
  47. return false;
  48. }
  49. auto composite_type =
  50. context->get_type_mgr()->GetType(message_.composite_type_id());
  51. if (!fuzzerutil::IsCompositeType(composite_type)) {
  52. // The type must actually be a composite.
  53. return false;
  54. }
  55. // If the type is an array, matrix, struct or vector, the components need to
  56. // be suitable for constructing something of that type.
  57. if (composite_type->AsArray() && !ComponentsForArrayConstructionAreOK(
  58. context, *composite_type->AsArray())) {
  59. return false;
  60. }
  61. if (composite_type->AsMatrix() && !ComponentsForMatrixConstructionAreOK(
  62. context, *composite_type->AsMatrix())) {
  63. return false;
  64. }
  65. if (composite_type->AsStruct() && !ComponentsForStructConstructionAreOK(
  66. context, *composite_type->AsStruct())) {
  67. return false;
  68. }
  69. if (composite_type->AsVector() && !ComponentsForVectorConstructionAreOK(
  70. context, *composite_type->AsVector())) {
  71. return false;
  72. }
  73. // Now check whether every component being used to initialize the composite is
  74. // available at the desired program point.
  75. for (auto& component : message_.component()) {
  76. auto component_inst = context->get_def_use_mgr()->GetDef(component);
  77. if (!context->get_instr_block(component)) {
  78. // The component does not have a block; that means it is in global scope,
  79. // which is OK. (Whether the component actually corresponds to an
  80. // instruction is checked above when determining whether types are
  81. // suitable.)
  82. continue;
  83. }
  84. // Check whether the component is available.
  85. if (insert_before->HasResultId() &&
  86. insert_before->result_id() == component) {
  87. // This constitutes trying to use an id right before it is defined. The
  88. // special case is needed due to an instruction always dominating itself.
  89. return false;
  90. }
  91. if (!context
  92. ->GetDominatorAnalysis(
  93. context->get_instr_block(&*insert_before)->GetParent())
  94. ->Dominates(component_inst, &*insert_before)) {
  95. // The instruction defining the component must dominate the instruction we
  96. // wish to insert the composite before.
  97. return false;
  98. }
  99. }
  100. return true;
  101. }
  102. void TransformationCompositeConstruct::Apply(opt::IRContext* context,
  103. FactManager* fact_manager) const {
  104. // Use the base and offset information from the transformation to determine
  105. // where in the module a new instruction should be inserted.
  106. auto insert_before_inst =
  107. FindInstruction(message_.instruction_to_insert_before(), context);
  108. auto destination_block = context->get_instr_block(insert_before_inst);
  109. auto insert_before = fuzzerutil::GetIteratorForInstruction(
  110. destination_block, insert_before_inst);
  111. // Prepare the input operands for an OpCompositeConstruct instruction.
  112. opt::Instruction::OperandList in_operands;
  113. for (auto& component_id : message_.component()) {
  114. in_operands.push_back({SPV_OPERAND_TYPE_ID, {component_id}});
  115. }
  116. // Insert an OpCompositeConstruct instruction.
  117. insert_before.InsertBefore(MakeUnique<opt::Instruction>(
  118. context, SpvOpCompositeConstruct, message_.composite_type_id(),
  119. message_.fresh_id(), in_operands));
  120. fuzzerutil::UpdateModuleIdBound(context, message_.fresh_id());
  121. context->InvalidateAnalysesExceptFor(opt::IRContext::kAnalysisNone);
  122. // Inform the fact manager that we now have new synonyms: every component of
  123. // the composite is synonymous with the id used to construct that component,
  124. // except in the case of a vector where a single vector id can span multiple
  125. // components.
  126. auto composite_type =
  127. context->get_type_mgr()->GetType(message_.composite_type_id());
  128. uint32_t index = 0;
  129. for (auto component : message_.component()) {
  130. auto component_type = context->get_type_mgr()->GetType(
  131. context->get_def_use_mgr()->GetDef(component)->type_id());
  132. if (composite_type->AsVector() && component_type->AsVector()) {
  133. // The case where the composite being constructed is a vector and the
  134. // component provided for construction is also a vector is special. It
  135. // requires adding a synonym fact relating each element of the sub-vector
  136. // to the corresponding element of the composite being constructed.
  137. assert(component_type->AsVector()->element_type() ==
  138. composite_type->AsVector()->element_type());
  139. assert(component_type->AsVector()->element_count() <
  140. composite_type->AsVector()->element_count());
  141. for (uint32_t subvector_index = 0;
  142. subvector_index < component_type->AsVector()->element_count();
  143. subvector_index++) {
  144. fact_manager->AddFactDataSynonym(
  145. MakeDataDescriptor(component, {subvector_index}),
  146. MakeDataDescriptor(message_.fresh_id(), {index}), context);
  147. index++;
  148. }
  149. } else {
  150. // The other cases are simple: the component is made directly synonymous
  151. // with the element of the composite being constructed.
  152. fact_manager->AddFactDataSynonym(
  153. MakeDataDescriptor(component, {}),
  154. MakeDataDescriptor(message_.fresh_id(), {index}), context);
  155. index++;
  156. }
  157. }
  158. }
  159. bool TransformationCompositeConstruct::ComponentsForArrayConstructionAreOK(
  160. opt::IRContext* context, const opt::analysis::Array& array_type) const {
  161. if (array_type.length_info().words[0] !=
  162. opt::analysis::Array::LengthInfo::kConstant) {
  163. // We only handle constant-sized arrays.
  164. return false;
  165. }
  166. if (array_type.length_info().words.size() != 2) {
  167. // We only handle the case where the array size can be captured in a single
  168. // word.
  169. return false;
  170. }
  171. // Get the array size.
  172. auto array_size = array_type.length_info().words[1];
  173. if (static_cast<uint32_t>(message_.component().size()) != array_size) {
  174. // The number of components must match the array size.
  175. return false;
  176. }
  177. // Check that each component is the result id of an instruction whose type is
  178. // the array's element type.
  179. for (auto component_id : message_.component()) {
  180. auto inst = context->get_def_use_mgr()->GetDef(component_id);
  181. if (inst == nullptr || !inst->type_id()) {
  182. // The component does not correspond to an instruction with a result
  183. // type.
  184. return false;
  185. }
  186. auto component_type = context->get_type_mgr()->GetType(inst->type_id());
  187. assert(component_type);
  188. if (component_type != array_type.element_type()) {
  189. // The component's type does not match the array's element type.
  190. return false;
  191. }
  192. }
  193. return true;
  194. }
  195. bool TransformationCompositeConstruct::ComponentsForMatrixConstructionAreOK(
  196. opt::IRContext* context, const opt::analysis::Matrix& matrix_type) const {
  197. if (static_cast<uint32_t>(message_.component().size()) !=
  198. matrix_type.element_count()) {
  199. // The number of components must match the number of columns of the matrix.
  200. return false;
  201. }
  202. // Check that each component is the result id of an instruction whose type is
  203. // the matrix's column type.
  204. for (auto component_id : message_.component()) {
  205. auto inst = context->get_def_use_mgr()->GetDef(component_id);
  206. if (inst == nullptr || !inst->type_id()) {
  207. // The component does not correspond to an instruction with a result
  208. // type.
  209. return false;
  210. }
  211. auto component_type = context->get_type_mgr()->GetType(inst->type_id());
  212. assert(component_type);
  213. if (component_type != matrix_type.element_type()) {
  214. // The component's type does not match the matrix's column type.
  215. return false;
  216. }
  217. }
  218. return true;
  219. }
  220. bool TransformationCompositeConstruct::ComponentsForStructConstructionAreOK(
  221. opt::IRContext* context, const opt::analysis::Struct& struct_type) const {
  222. if (static_cast<uint32_t>(message_.component().size()) !=
  223. struct_type.element_types().size()) {
  224. // The number of components must match the number of fields of the struct.
  225. return false;
  226. }
  227. // Check that each component is the result id of an instruction those type
  228. // matches the associated field type.
  229. for (uint32_t field_index = 0;
  230. field_index < struct_type.element_types().size(); field_index++) {
  231. auto inst =
  232. context->get_def_use_mgr()->GetDef(message_.component()[field_index]);
  233. if (inst == nullptr || !inst->type_id()) {
  234. // The component does not correspond to an instruction with a result
  235. // type.
  236. return false;
  237. }
  238. auto component_type = context->get_type_mgr()->GetType(inst->type_id());
  239. assert(component_type);
  240. if (component_type != struct_type.element_types()[field_index]) {
  241. // The component's type does not match the corresponding field type.
  242. return false;
  243. }
  244. }
  245. return true;
  246. }
  247. bool TransformationCompositeConstruct::ComponentsForVectorConstructionAreOK(
  248. opt::IRContext* context, const opt::analysis::Vector& vector_type) const {
  249. uint32_t base_element_count = 0;
  250. auto element_type = vector_type.element_type();
  251. for (auto& component_id : message_.component()) {
  252. auto inst = context->get_def_use_mgr()->GetDef(component_id);
  253. if (inst == nullptr || !inst->type_id()) {
  254. // The component does not correspond to an instruction with a result
  255. // type.
  256. return false;
  257. }
  258. auto component_type = context->get_type_mgr()->GetType(inst->type_id());
  259. assert(component_type);
  260. if (component_type == element_type) {
  261. base_element_count++;
  262. } else if (component_type->AsVector() &&
  263. component_type->AsVector()->element_type() == element_type) {
  264. base_element_count += component_type->AsVector()->element_count();
  265. } else {
  266. // The component was not appropriate; e.g. no type corresponding to the
  267. // given id was found, or the type that was found was not compatible
  268. // with the vector being constructed.
  269. return false;
  270. }
  271. }
  272. // The number of components provided (when vector components are flattened
  273. // out) needs to match the length of the vector being constructed.
  274. return base_element_count == vector_type.element_count();
  275. }
  276. protobufs::Transformation TransformationCompositeConstruct::ToMessage() const {
  277. protobufs::Transformation result;
  278. *result.mutable_composite_construct() = message_;
  279. return result;
  280. }
  281. } // namespace fuzz
  282. } // namespace spvtools