debugdraw.cpp 43 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867
  1. /*
  2. * Copyright 2011-2016 Branimir Karadzic. All rights reserved.
  3. * License: http://www.opensource.org/licenses/BSD-2-Clause
  4. */
  5. #include <bgfx/bgfx.h>
  6. #include "debugdraw.h"
  7. #include <bx/fpumath.h>
  8. #include <bx/radixsort.h>
  9. #include <bx/uint32_t.h>
  10. #include <bx/crtimpl.h>
  11. struct DebugVertex
  12. {
  13. float m_x;
  14. float m_y;
  15. float m_z;
  16. float m_len;
  17. uint32_t m_abgr;
  18. static void init()
  19. {
  20. ms_decl
  21. .begin()
  22. .add(bgfx::Attrib::Position, 3, bgfx::AttribType::Float)
  23. .add(bgfx::Attrib::TexCoord0, 1, bgfx::AttribType::Float)
  24. .add(bgfx::Attrib::Color0, 4, bgfx::AttribType::Uint8, true)
  25. .end();
  26. }
  27. static bgfx::VertexDecl ms_decl;
  28. };
  29. bgfx::VertexDecl DebugVertex::ms_decl;
  30. struct DebugShapeVertex
  31. {
  32. float m_x;
  33. float m_y;
  34. float m_z;
  35. uint8_t m_indices[4];
  36. static void init()
  37. {
  38. ms_decl
  39. .begin()
  40. .add(bgfx::Attrib::Position, 3, bgfx::AttribType::Float)
  41. .add(bgfx::Attrib::Indices, 4, bgfx::AttribType::Uint8)
  42. .end();
  43. }
  44. static bgfx::VertexDecl ms_decl;
  45. };
  46. bgfx::VertexDecl DebugShapeVertex::ms_decl;
  47. static DebugShapeVertex s_cubeVertices[8] =
  48. {
  49. {-1.0f, 1.0f, 1.0f, { 0, 0, 0, 0 } },
  50. { 1.0f, 1.0f, 1.0f, { 0, 0, 0, 0 } },
  51. {-1.0f, -1.0f, 1.0f, { 0, 0, 0, 0 } },
  52. { 1.0f, -1.0f, 1.0f, { 0, 0, 0, 0 } },
  53. {-1.0f, 1.0f, -1.0f, { 0, 0, 0, 0 } },
  54. { 1.0f, 1.0f, -1.0f, { 0, 0, 0, 0 } },
  55. {-1.0f, -1.0f, -1.0f, { 0, 0, 0, 0 } },
  56. { 1.0f, -1.0f, -1.0f, { 0, 0, 0, 0 } },
  57. };
  58. static const uint16_t s_cubeIndices[36] =
  59. {
  60. 0, 1, 2, // 0
  61. 1, 3, 2,
  62. 4, 6, 5, // 2
  63. 5, 6, 7,
  64. 0, 2, 4, // 4
  65. 4, 2, 6,
  66. 1, 5, 3, // 6
  67. 5, 7, 3,
  68. 0, 4, 1, // 8
  69. 4, 5, 1,
  70. 2, 3, 6, // 10
  71. 6, 3, 7,
  72. };
  73. static const uint8_t s_circleLod[] =
  74. {
  75. 37,
  76. 29,
  77. 23,
  78. 17,
  79. 11,
  80. };
  81. static uint8_t getCircleLod(uint8_t _lod)
  82. {
  83. _lod = _lod > BX_COUNTOF(s_circleLod)-1 ? BX_COUNTOF(s_circleLod)-1 : _lod;
  84. return s_circleLod[_lod];
  85. }
  86. static void circle(float* _out, float _angle)
  87. {
  88. float sa = bx::fsin(_angle);
  89. float ca = bx::fcos(_angle);
  90. _out[0] = sa;
  91. _out[1] = ca;
  92. }
  93. static void squircle(float* _out, float _angle)
  94. {
  95. float sa = bx::fsin(_angle);
  96. float ca = bx::fcos(_angle);
  97. _out[0] = bx::fsqrt(bx::fabsolute(sa) ) * bx::fsign(sa);
  98. _out[1] = bx::fsqrt(bx::fabsolute(ca) ) * bx::fsign(ca);
  99. }
  100. uint32_t genSphere(uint8_t _subdiv0, void* _pos0 = NULL, uint16_t _posStride0 = 0, void* _normals0 = NULL, uint16_t _normalStride0 = 0)
  101. {
  102. if (NULL != _pos0)
  103. {
  104. struct Gen
  105. {
  106. Gen(void* _pos, uint16_t _posStride, void* _normals, uint16_t _normalStride, uint8_t _subdiv)
  107. : m_pos( (uint8_t*)_pos)
  108. , m_normals( (uint8_t*)_normals)
  109. , m_posStride(_posStride)
  110. , m_normalStride(_normalStride)
  111. {
  112. static const float scale = 1.0f;
  113. static const float golden = 1.6180339887f;
  114. static const float len = bx::fsqrt(golden*golden + 1.0f);
  115. static const float ss = 1.0f/len * scale;
  116. static const float ll = ss*golden;
  117. static const float vv[12][4] =
  118. {
  119. { -ll, 0.0f, -ss, 0.0f },
  120. { ll, 0.0f, -ss, 0.0f },
  121. { ll, 0.0f, ss, 0.0f },
  122. { -ll, 0.0f, ss, 0.0f },
  123. { -ss, ll, 0.0f, 0.0f },
  124. { ss, ll, 0.0f, 0.0f },
  125. { ss, -ll, 0.0f, 0.0f },
  126. { -ss, -ll, 0.0f, 0.0f },
  127. { 0.0f, -ss, ll, 0.0f },
  128. { 0.0f, ss, ll, 0.0f },
  129. { 0.0f, ss, -ll, 0.0f },
  130. { 0.0f, -ss, -ll, 0.0f },
  131. };
  132. m_numVertices = 0;
  133. triangle(vv[ 0], vv[ 4], vv[ 3], scale, _subdiv);
  134. triangle(vv[ 0], vv[10], vv[ 4], scale, _subdiv);
  135. triangle(vv[ 4], vv[10], vv[ 5], scale, _subdiv);
  136. triangle(vv[ 5], vv[10], vv[ 1], scale, _subdiv);
  137. triangle(vv[ 5], vv[ 1], vv[ 2], scale, _subdiv);
  138. triangle(vv[ 5], vv[ 2], vv[ 9], scale, _subdiv);
  139. triangle(vv[ 5], vv[ 9], vv[ 4], scale, _subdiv);
  140. triangle(vv[ 3], vv[ 4], vv[ 9], scale, _subdiv);
  141. triangle(vv[ 0], vv[ 3], vv[ 7], scale, _subdiv);
  142. triangle(vv[ 0], vv[ 7], vv[11], scale, _subdiv);
  143. triangle(vv[11], vv[ 7], vv[ 6], scale, _subdiv);
  144. triangle(vv[11], vv[ 6], vv[ 1], scale, _subdiv);
  145. triangle(vv[ 1], vv[ 6], vv[ 2], scale, _subdiv);
  146. triangle(vv[ 2], vv[ 6], vv[ 8], scale, _subdiv);
  147. triangle(vv[ 8], vv[ 6], vv[ 7], scale, _subdiv);
  148. triangle(vv[ 8], vv[ 7], vv[ 3], scale, _subdiv);
  149. triangle(vv[ 0], vv[11], vv[10], scale, _subdiv);
  150. triangle(vv[ 1], vv[10], vv[11], scale, _subdiv);
  151. triangle(vv[ 2], vv[ 8], vv[ 9], scale, _subdiv);
  152. triangle(vv[ 3], vv[ 9], vv[ 8], scale, _subdiv);
  153. }
  154. void addVert(const float* _v)
  155. {
  156. float* verts = (float*)m_pos;
  157. verts[0] = _v[0];
  158. verts[1] = _v[1];
  159. verts[2] = _v[2];
  160. m_pos += m_posStride;
  161. if (NULL != m_normals)
  162. {
  163. float* normals = (float*)m_normals;
  164. bx::vec3Norm(normals, _v);
  165. m_normals += m_normalStride;
  166. }
  167. m_numVertices++;
  168. }
  169. void triangle(const float* _v0, const float* _v1, const float* _v2, float _scale, uint8_t _subdiv)
  170. {
  171. if (0 == _subdiv)
  172. {
  173. addVert(_v0);
  174. addVert(_v1);
  175. addVert(_v2);
  176. }
  177. else
  178. {
  179. float tmp0[4];
  180. float tmp1[4];
  181. float v01[4];
  182. bx::vec3Add(tmp0, _v0, _v1);
  183. bx::vec3Norm(tmp1, tmp0);
  184. bx::vec3Mul(v01, tmp1, _scale);
  185. float v12[4];
  186. bx::vec3Add(tmp0, _v1, _v2);
  187. bx::vec3Norm(tmp1, tmp0);
  188. bx::vec3Mul(v12, tmp1, _scale);
  189. float v20[4];
  190. bx::vec3Add(tmp0, _v2, _v0);
  191. bx::vec3Norm(tmp1, tmp0);
  192. bx::vec3Mul(v20, tmp1, _scale);
  193. --_subdiv;
  194. triangle(_v0, v01, v20, _scale, _subdiv);
  195. triangle(_v1, v12, v01, _scale, _subdiv);
  196. triangle(_v2, v20, v12, _scale, _subdiv);
  197. triangle(v01, v12, v20, _scale, _subdiv);
  198. }
  199. }
  200. uint8_t* m_pos;
  201. uint8_t* m_normals;
  202. uint16_t m_posStride;
  203. uint16_t m_normalStride;
  204. uint32_t m_numVertices;
  205. } gen(_pos0, _posStride0, _normals0, _normalStride0, _subdiv0);
  206. }
  207. uint32_t numVertices = 20*3*bx::uint32_max(1, (uint32_t)bx::fpow(4.0f, _subdiv0) );
  208. return numVertices;
  209. }
  210. void getPoint(float* _result, Axis::Enum _axis, float _x, float _y)
  211. {
  212. switch (_axis)
  213. {
  214. case Axis::X:
  215. _result[0] = 0.0f;
  216. _result[1] = _x;
  217. _result[2] = _y;
  218. break;
  219. case Axis::Y:
  220. _result[0] = _y;
  221. _result[1] = 0.0f;
  222. _result[2] = _x;
  223. break;
  224. default:
  225. _result[0] = _x;
  226. _result[1] = _y;
  227. _result[2] = 0.0f;
  228. break;
  229. }
  230. }
  231. #include "vs_debugdraw_lines.bin.h"
  232. #include "fs_debugdraw_lines.bin.h"
  233. #include "vs_debugdraw_lines_stipple.bin.h"
  234. #include "fs_debugdraw_lines_stipple.bin.h"
  235. #include "vs_debugdraw_fill.bin.h"
  236. #include "fs_debugdraw_fill.bin.h"
  237. #include "vs_debugdraw_fill_lit.bin.h"
  238. #include "fs_debugdraw_fill_lit.bin.h"
  239. struct EmbeddedShader
  240. {
  241. bgfx::RendererType::Enum type;
  242. const uint8_t* data;
  243. uint32_t size;
  244. };
  245. #define BGFX_DECLARE_SHADER_EMBEDDED(_name) \
  246. { \
  247. { bgfx::RendererType::Direct3D9, BX_CONCATENATE(_name, _dx9 ), sizeof(BX_CONCATENATE(_name, _dx9 ) ) }, \
  248. { bgfx::RendererType::Direct3D11, BX_CONCATENATE(_name, _dx11), sizeof(BX_CONCATENATE(_name, _dx11) ) }, \
  249. { bgfx::RendererType::Direct3D12, BX_CONCATENATE(_name, _dx11), sizeof(BX_CONCATENATE(_name, _dx11) ) }, \
  250. { bgfx::RendererType::OpenGL, BX_CONCATENATE(_name, _glsl), sizeof(BX_CONCATENATE(_name, _glsl) ) }, \
  251. { bgfx::RendererType::OpenGLES, BX_CONCATENATE(_name, _glsl), sizeof(BX_CONCATENATE(_name, _glsl) ) }, \
  252. { bgfx::RendererType::Vulkan, BX_CONCATENATE(_name, _glsl), sizeof(BX_CONCATENATE(_name, _glsl) ) }, \
  253. { bgfx::RendererType::Metal, BX_CONCATENATE(_name, _mtl ), sizeof(BX_CONCATENATE(_name, _mtl ) ) }, \
  254. { bgfx::RendererType::Count, NULL, 0 }, \
  255. }
  256. static const EmbeddedShader s_embeddedShaders[][8] =
  257. {
  258. BGFX_DECLARE_SHADER_EMBEDDED(vs_debugdraw_lines),
  259. BGFX_DECLARE_SHADER_EMBEDDED(fs_debugdraw_lines),
  260. BGFX_DECLARE_SHADER_EMBEDDED(vs_debugdraw_lines_stipple),
  261. BGFX_DECLARE_SHADER_EMBEDDED(fs_debugdraw_lines_stipple),
  262. BGFX_DECLARE_SHADER_EMBEDDED(vs_debugdraw_fill),
  263. BGFX_DECLARE_SHADER_EMBEDDED(fs_debugdraw_fill),
  264. BGFX_DECLARE_SHADER_EMBEDDED(vs_debugdraw_fill_lit),
  265. BGFX_DECLARE_SHADER_EMBEDDED(fs_debugdraw_fill_lit),
  266. };
  267. static bgfx::ShaderHandle createEmbeddedShader(bgfx::RendererType::Enum _type, uint32_t _index)
  268. {
  269. for (const EmbeddedShader* es = s_embeddedShaders[_index]; bgfx::RendererType::Count != es->type; ++es)
  270. {
  271. if (_type == es->type)
  272. {
  273. return bgfx::createShader(bgfx::makeRef(es->data, es->size) );
  274. }
  275. }
  276. bgfx::ShaderHandle handle = BGFX_INVALID_HANDLE;
  277. return handle;
  278. }
  279. struct DebugDraw
  280. {
  281. DebugDraw()
  282. : m_depthTestLess(true)
  283. , m_state(State::Count)
  284. {
  285. }
  286. void init(bool _depthTestLess, bx::AllocatorI* _allocator)
  287. {
  288. m_allocator = _allocator;
  289. m_depthTestLess = _depthTestLess;
  290. #if BX_CONFIG_ALLOCATOR_CRT
  291. if (NULL == _allocator)
  292. {
  293. static bx::CrtAllocator allocator;
  294. m_allocator = &allocator;
  295. }
  296. #endif // BX_CONFIG_ALLOCATOR_CRT
  297. DebugVertex::init();
  298. DebugShapeVertex::init();
  299. bgfx::RendererType::Enum type = bgfx::getRendererType();
  300. m_program[Program::Lines] =
  301. bgfx::createProgram(createEmbeddedShader(type, 0)
  302. , createEmbeddedShader(type, 1)
  303. , true
  304. );
  305. m_program[Program::LinesStipple] =
  306. bgfx::createProgram(createEmbeddedShader(type, 2)
  307. , createEmbeddedShader(type, 3)
  308. , true
  309. );
  310. m_program[Program::Fill] =
  311. bgfx::createProgram(createEmbeddedShader(type, 4)
  312. , createEmbeddedShader(type, 5)
  313. , true
  314. );
  315. m_program[Program::FillLit] =
  316. bgfx::createProgram(createEmbeddedShader(type, 6)
  317. , createEmbeddedShader(type, 7)
  318. , true
  319. );
  320. u_params = bgfx::createUniform("u_params", bgfx::UniformType::Vec4, 4);
  321. void* vertices[Mesh::Count] = {};
  322. uint16_t* indices[Mesh::Count] = {};
  323. uint16_t stride = DebugShapeVertex::ms_decl.getStride();
  324. uint32_t startVertex = 0;
  325. uint32_t startIndex = 0;
  326. for (uint32_t mesh = 0; mesh < 4; ++mesh)
  327. {
  328. Mesh::Enum id = Mesh::Enum(Mesh::Sphere0+mesh);
  329. const uint8_t tess = uint8_t(3-mesh);
  330. const uint32_t numVertices = genSphere(tess);
  331. const uint32_t numIndices = numVertices;
  332. vertices[id] = BX_ALLOC(m_allocator, numVertices*stride);
  333. memset(vertices[id], 0, numVertices*stride);
  334. genSphere(tess, vertices[id], stride);
  335. uint16_t* trilist = (uint16_t*)BX_ALLOC(m_allocator, numIndices*sizeof(uint16_t) );
  336. for (uint32_t ii = 0; ii < numIndices; ++ii)
  337. {
  338. trilist[ii] = uint16_t(ii);
  339. }
  340. uint32_t numLineListIndices = bgfx::topologyConvert(bgfx::TopologyConvert::TriListToLineList
  341. , NULL
  342. , 0
  343. , trilist
  344. , numIndices
  345. , false
  346. );
  347. indices[id] = (uint16_t*)BX_ALLOC(m_allocator, (numIndices + numLineListIndices)*sizeof(uint16_t) );
  348. uint16_t* indicesOut = indices[id];
  349. memcpy(indicesOut, trilist, numIndices*sizeof(uint16_t) );
  350. bgfx::topologyConvert(bgfx::TopologyConvert::TriListToLineList
  351. , &indicesOut[numIndices]
  352. , numLineListIndices*sizeof(uint16_t)
  353. , trilist
  354. , numIndices
  355. , false
  356. );
  357. m_mesh[id].m_startVertex = startVertex;
  358. m_mesh[id].m_numVertices = numVertices;
  359. m_mesh[id].m_startIndex[0] = startIndex;
  360. m_mesh[id].m_numIndices[0] = numIndices;
  361. m_mesh[id].m_startIndex[1] = startIndex+numIndices;
  362. m_mesh[id].m_numIndices[1] = numLineListIndices;
  363. startVertex += numVertices;
  364. startIndex += numIndices + numLineListIndices;
  365. BX_FREE(m_allocator, trilist);
  366. }
  367. for (uint32_t mesh = 0; mesh < 4; ++mesh)
  368. {
  369. Mesh::Enum id = Mesh::Enum(Mesh::Cone0+mesh);
  370. const uint32_t num = getCircleLod(uint8_t(mesh) );
  371. const float step = bx::pi * 2.0f / num;
  372. const uint32_t numVertices = num+1;
  373. const uint32_t numIndices = num*6;
  374. const uint32_t numLineListIndices = num*4;
  375. vertices[id] = BX_ALLOC(m_allocator, numVertices*stride);
  376. indices[id] = (uint16_t*)BX_ALLOC(m_allocator, (numIndices + numLineListIndices)*sizeof(uint16_t) );
  377. memset(indices[id], 0, (numIndices + numLineListIndices)*sizeof(uint16_t) );
  378. DebugShapeVertex* vertex = (DebugShapeVertex*)vertices[id];
  379. uint16_t* index = indices[id];
  380. vertex[num].m_x = 0.0f;
  381. vertex[num].m_y = 0.0f;
  382. vertex[num].m_z = 0.0f;
  383. vertex[num].m_indices[0] = 1;
  384. for (uint32_t ii = 0; ii < num; ++ii)
  385. {
  386. const float angle = step * ii;
  387. float xy[2];
  388. circle(xy, angle);
  389. vertex[ii].m_x = xy[1];
  390. vertex[ii].m_y = 0.0f;
  391. vertex[ii].m_z = xy[0];
  392. vertex[ii].m_indices[0] = 0;
  393. index[ii*3+0] = uint16_t(num);
  394. index[ii*3+1] = uint16_t( (ii+1)%num);
  395. index[ii*3+2] = uint16_t(ii);
  396. index[num*3+ii*3+0] = 0;
  397. index[num*3+ii*3+1] = uint16_t(ii);
  398. index[num*3+ii*3+2] = uint16_t( (ii+1)%num);
  399. index[numIndices+ii*2+0] = uint16_t(ii);
  400. index[numIndices+ii*2+1] = uint16_t(num);
  401. index[numIndices+num*2+ii*2+0] = uint16_t(ii);
  402. index[numIndices+num*2+ii*2+1] = uint16_t( (ii+1)%num);
  403. }
  404. m_mesh[id].m_startVertex = startVertex;
  405. m_mesh[id].m_numVertices = numVertices;
  406. m_mesh[id].m_startIndex[0] = startIndex;
  407. m_mesh[id].m_numIndices[0] = numIndices;
  408. m_mesh[id].m_startIndex[1] = startIndex+numIndices;
  409. m_mesh[id].m_numIndices[1] = numLineListIndices;
  410. startVertex += numVertices;
  411. startIndex += numIndices + numLineListIndices;
  412. }
  413. for (uint32_t mesh = 0; mesh < 4; ++mesh)
  414. {
  415. Mesh::Enum id = Mesh::Enum(Mesh::Cylinder0+mesh);
  416. const uint32_t num = getCircleLod(uint8_t(mesh) );
  417. const float step = bx::pi * 2.0f / num;
  418. const uint32_t numVertices = num*2;
  419. const uint32_t numIndices = num*12;
  420. const uint32_t numLineListIndices = num*6;
  421. vertices[id] = BX_ALLOC(m_allocator, numVertices*stride);
  422. indices[id] = (uint16_t*)BX_ALLOC(m_allocator, (numIndices + numLineListIndices)*sizeof(uint16_t) );
  423. memset(indices[id], 0, (numIndices + numLineListIndices)*sizeof(uint16_t) );
  424. DebugShapeVertex* vertex = (DebugShapeVertex*)vertices[id];
  425. uint16_t* index = indices[id];
  426. for (uint32_t ii = 0; ii < num; ++ii)
  427. {
  428. const float angle = step * ii;
  429. float xy[2];
  430. circle(xy, angle);
  431. vertex[ii].m_x = xy[1];
  432. vertex[ii].m_y = 0.0f;
  433. vertex[ii].m_z = xy[0];
  434. vertex[ii].m_indices[0] = 0;
  435. vertex[ii+num].m_x = xy[1];
  436. vertex[ii+num].m_y = 0.0f;
  437. vertex[ii+num].m_z = xy[0];
  438. vertex[ii+num].m_indices[0] = 1;
  439. index[ii*6+0] = uint16_t(ii+num);
  440. index[ii*6+1] = uint16_t( (ii+1)%num);
  441. index[ii*6+2] = uint16_t(ii);
  442. index[ii*6+3] = uint16_t(ii+num);
  443. index[ii*6+4] = uint16_t( (ii+1)%num+num);
  444. index[ii*6+5] = uint16_t( (ii+1)%num);
  445. index[num*6+ii*6+0] = uint16_t(0);
  446. index[num*6+ii*6+1] = uint16_t(ii);
  447. index[num*6+ii*6+2] = uint16_t( (ii+1)%num);
  448. index[num*6+ii*6+3] = uint16_t(num);
  449. index[num*6+ii*6+4] = uint16_t( (ii+1)%num+num);
  450. index[num*6+ii*6+5] = uint16_t(ii+num);
  451. index[numIndices+ii*2+0] = uint16_t(ii);
  452. index[numIndices+ii*2+1] = uint16_t(ii+num);
  453. index[numIndices+num*2+ii*2+0] = uint16_t(ii);
  454. index[numIndices+num*2+ii*2+1] = uint16_t( (ii+1)%num);
  455. index[numIndices+num*4+ii*2+0] = uint16_t(num + ii);
  456. index[numIndices+num*4+ii*2+1] = uint16_t(num + (ii+1)%num);
  457. }
  458. m_mesh[id].m_startVertex = startVertex;
  459. m_mesh[id].m_numVertices = numVertices;
  460. m_mesh[id].m_startIndex[0] = startIndex;
  461. m_mesh[id].m_numIndices[0] = numIndices;
  462. m_mesh[id].m_startIndex[1] = startIndex+numIndices;
  463. m_mesh[id].m_numIndices[1] = numLineListIndices;
  464. startVertex += numVertices;
  465. startIndex += numIndices + numLineListIndices;
  466. }
  467. for (uint32_t mesh = 0; mesh < 4; ++mesh)
  468. {
  469. Mesh::Enum id = Mesh::Enum(Mesh::Capsule0+mesh);
  470. const uint32_t num = getCircleLod(uint8_t(mesh) );
  471. const float step = bx::pi * 2.0f / num;
  472. const uint32_t numVertices = num*2;
  473. const uint32_t numIndices = num*6;
  474. const uint32_t numLineListIndices = num*6;
  475. vertices[id] = BX_ALLOC(m_allocator, numVertices*stride);
  476. indices[id] = (uint16_t*)BX_ALLOC(m_allocator, (numIndices + numLineListIndices)*sizeof(uint16_t) );
  477. memset(indices[id], 0, (numIndices + numLineListIndices)*sizeof(uint16_t) );
  478. DebugShapeVertex* vertex = (DebugShapeVertex*)vertices[id];
  479. uint16_t* index = indices[id];
  480. for (uint32_t ii = 0; ii < num; ++ii)
  481. {
  482. const float angle = step * ii;
  483. float xy[2];
  484. circle(xy, angle);
  485. vertex[ii].m_x = xy[1];
  486. vertex[ii].m_y = 0.0f;
  487. vertex[ii].m_z = xy[0];
  488. vertex[ii].m_indices[0] = 0;
  489. vertex[ii+num].m_x = xy[1];
  490. vertex[ii+num].m_y = 0.0f;
  491. vertex[ii+num].m_z = xy[0];
  492. vertex[ii+num].m_indices[0] = 1;
  493. index[ii*6+0] = uint16_t(ii+num);
  494. index[ii*6+1] = uint16_t( (ii+1)%num);
  495. index[ii*6+2] = uint16_t(ii);
  496. index[ii*6+3] = uint16_t(ii+num);
  497. index[ii*6+4] = uint16_t( (ii+1)%num+num);
  498. index[ii*6+5] = uint16_t( (ii+1)%num);
  499. // index[num*6+ii*6+0] = uint16_t(0);
  500. // index[num*6+ii*6+1] = uint16_t(ii);
  501. // index[num*6+ii*6+2] = uint16_t( (ii+1)%num);
  502. // index[num*6+ii*6+3] = uint16_t(num);
  503. // index[num*6+ii*6+4] = uint16_t( (ii+1)%num+num);
  504. // index[num*6+ii*6+5] = uint16_t(ii+num);
  505. index[numIndices+ii*2+0] = uint16_t(ii);
  506. index[numIndices+ii*2+1] = uint16_t(ii+num);
  507. index[numIndices+num*2+ii*2+0] = uint16_t(ii);
  508. index[numIndices+num*2+ii*2+1] = uint16_t( (ii+1)%num);
  509. index[numIndices+num*4+ii*2+0] = uint16_t(num + ii);
  510. index[numIndices+num*4+ii*2+1] = uint16_t(num + (ii+1)%num);
  511. }
  512. m_mesh[id].m_startVertex = startVertex;
  513. m_mesh[id].m_numVertices = numVertices;
  514. m_mesh[id].m_startIndex[0] = startIndex;
  515. m_mesh[id].m_numIndices[0] = numIndices;
  516. m_mesh[id].m_startIndex[1] = startIndex+numIndices;
  517. m_mesh[id].m_numIndices[1] = numLineListIndices;
  518. startVertex += numVertices;
  519. startIndex += numIndices + numLineListIndices;
  520. }
  521. m_mesh[Mesh::Cube].m_startVertex = startVertex;
  522. m_mesh[Mesh::Cube].m_numVertices = BX_COUNTOF(s_cubeVertices);
  523. m_mesh[Mesh::Cube].m_startIndex[0] = startIndex;
  524. m_mesh[Mesh::Cube].m_numIndices[0] = BX_COUNTOF(s_cubeIndices);
  525. m_mesh[Mesh::Cube].m_startIndex[1] = 0;
  526. m_mesh[Mesh::Cube].m_numIndices[1] = 0;
  527. startVertex += m_mesh[Mesh::Cube].m_numVertices;
  528. startIndex += m_mesh[Mesh::Cube].m_numIndices[0];
  529. const bgfx::Memory* vb = bgfx::alloc(startVertex*stride);
  530. const bgfx::Memory* ib = bgfx::alloc(startIndex*sizeof(uint16_t) );
  531. for (uint32_t mesh = Mesh::Sphere0; mesh < Mesh::Cube; ++mesh)
  532. {
  533. Mesh::Enum id = Mesh::Enum(mesh);
  534. memcpy(&vb->data[m_mesh[id].m_startVertex * stride]
  535. , vertices[id]
  536. , m_mesh[id].m_numVertices*stride
  537. );
  538. memcpy(&ib->data[m_mesh[id].m_startIndex[0] * sizeof(uint16_t)]
  539. , indices[id]
  540. , (m_mesh[id].m_numIndices[0]+m_mesh[id].m_numIndices[1])*sizeof(uint16_t)
  541. );
  542. BX_FREE(m_allocator, vertices[id]);
  543. BX_FREE(m_allocator, indices[id]);
  544. }
  545. memcpy(&vb->data[m_mesh[Mesh::Cube].m_startVertex * stride]
  546. , s_cubeVertices
  547. , sizeof(s_cubeVertices)
  548. );
  549. memcpy(&ib->data[m_mesh[Mesh::Cube].m_startIndex[0] * sizeof(uint16_t)]
  550. , s_cubeIndices
  551. , sizeof(s_cubeIndices)
  552. );
  553. m_vbh = bgfx::createVertexBuffer(vb, DebugShapeVertex::ms_decl);
  554. m_ibh = bgfx::createIndexBuffer(ib);
  555. m_mtx = 0;
  556. m_viewId = 0;
  557. m_pos = 0;
  558. m_indexPos = 0;
  559. m_vertexPos = 0;
  560. }
  561. void shutdown()
  562. {
  563. bgfx::destroyIndexBuffer(m_ibh);
  564. bgfx::destroyVertexBuffer(m_vbh);
  565. for (uint32_t ii = 0; ii < Program::Count; ++ii)
  566. {
  567. bgfx::destroyProgram(m_program[ii]);
  568. }
  569. bgfx::destroyUniform(u_params);
  570. }
  571. void begin(uint8_t _viewId)
  572. {
  573. BX_CHECK(State::Count == m_state);
  574. m_viewId = _viewId;
  575. m_mtx = 0;
  576. m_state = State::None;
  577. m_stack = 0;
  578. Attrib& attrib = m_attrib[0];
  579. attrib.m_state = 0
  580. | BGFX_STATE_RGB_WRITE
  581. | (m_depthTestLess ? BGFX_STATE_DEPTH_TEST_LESS : BGFX_STATE_DEPTH_TEST_GREATER)
  582. | BGFX_STATE_CULL_CW
  583. | BGFX_STATE_DEPTH_WRITE
  584. ;
  585. attrib.m_scale = 1.0f;
  586. attrib.m_offset = 0.0f;
  587. attrib.m_abgr = UINT32_MAX;
  588. attrib.m_stipple = false;
  589. attrib.m_wireframe = false;
  590. attrib.m_lod = 0;
  591. }
  592. void end()
  593. {
  594. BX_CHECK(0 == m_stack, "Invalid stack %d.", m_stack);
  595. flush();
  596. m_state = State::Count;
  597. }
  598. void push()
  599. {
  600. BX_CHECK(State::Count != m_state);
  601. ++m_stack;
  602. m_attrib[m_stack] = m_attrib[m_stack-1];
  603. }
  604. void pop()
  605. {
  606. BX_CHECK(State::Count != m_state);
  607. const Attrib& curr = m_attrib[m_stack];
  608. const Attrib& prev = m_attrib[m_stack-1];
  609. if (curr.m_stipple != prev.m_stipple
  610. || curr.m_state != prev.m_state)
  611. {
  612. flush();
  613. }
  614. --m_stack;
  615. }
  616. void setTransform(const void* _mtx)
  617. {
  618. BX_CHECK(State::Count != m_state);
  619. flush();
  620. if (NULL == _mtx)
  621. {
  622. m_mtx = 0;
  623. return;
  624. }
  625. bgfx::Transform transform;
  626. m_mtx = bgfx::allocTransform(&transform, 1);
  627. memcpy(transform.data, _mtx, 64);
  628. }
  629. void setTranslate(float _x, float _y, float _z)
  630. {
  631. float mtx[16];
  632. bx::mtxTranslate(mtx, _x, _y, _z);
  633. setTransform(mtx);
  634. }
  635. void setTranslate(const float* _pos)
  636. {
  637. setTranslate(_pos[0], _pos[1], _pos[2]);
  638. }
  639. void setState(bool _depthTest, bool _depthWrite, bool _clockwise)
  640. {
  641. const uint64_t depthTest = m_depthTestLess
  642. ? BGFX_STATE_DEPTH_TEST_LESS
  643. : BGFX_STATE_DEPTH_TEST_GREATER
  644. ;
  645. m_attrib[m_stack].m_state &= ~(0
  646. | BGFX_STATE_DEPTH_TEST_MASK
  647. | BGFX_STATE_DEPTH_WRITE
  648. | BGFX_STATE_CULL_CW
  649. | BGFX_STATE_CULL_CCW
  650. );
  651. m_attrib[m_stack].m_state |= _depthTest
  652. ? depthTest
  653. : 0
  654. ;
  655. m_attrib[m_stack].m_state |= _depthWrite
  656. ? BGFX_STATE_DEPTH_WRITE
  657. : 0
  658. ;
  659. m_attrib[m_stack].m_state |= _clockwise
  660. ? BGFX_STATE_CULL_CW
  661. : BGFX_STATE_CULL_CCW
  662. ;
  663. }
  664. void setColor(uint32_t _abgr)
  665. {
  666. BX_CHECK(State::Count != m_state);
  667. m_attrib[m_stack].m_abgr = _abgr;
  668. }
  669. void setLod(uint8_t _lod)
  670. {
  671. BX_CHECK(State::Count != m_state);
  672. m_attrib[m_stack].m_lod = _lod;
  673. }
  674. void setWireframe(bool _wireframe)
  675. {
  676. BX_CHECK(State::Count != m_state);
  677. m_attrib[m_stack].m_wireframe = _wireframe;
  678. }
  679. void setStipple(bool _stipple, float _scale = 1.0f, float _offset = 0.0f)
  680. {
  681. BX_CHECK(State::Count != m_state);
  682. Attrib& attrib = m_attrib[m_stack];
  683. if (attrib.m_stipple != _stipple)
  684. {
  685. flush();
  686. }
  687. attrib.m_stipple = _stipple;
  688. attrib.m_offset = _offset;
  689. attrib.m_scale = _scale;
  690. }
  691. void moveTo(float _x, float _y, float _z = 0.0f)
  692. {
  693. BX_CHECK(State::Count != m_state);
  694. softFlush();
  695. m_state = State::MoveTo;
  696. DebugVertex& vertex = m_cache[m_pos];
  697. vertex.m_x = _x;
  698. vertex.m_y = _y;
  699. vertex.m_z = _z;
  700. Attrib& attrib = m_attrib[m_stack];
  701. vertex.m_abgr = attrib.m_abgr;
  702. vertex.m_len = attrib.m_offset;
  703. m_vertexPos = m_pos;
  704. }
  705. void moveTo(const void* _pos)
  706. {
  707. BX_CHECK(State::Count != m_state);
  708. const float* pos = (const float*)_pos;
  709. moveTo(pos[0], pos[1], pos[2]);
  710. }
  711. void moveTo(Axis::Enum _axis, float _x, float _y)
  712. {
  713. float pos[3];
  714. getPoint(pos, _axis, _x, _y);
  715. moveTo(pos);
  716. }
  717. void lineTo(float _x, float _y, float _z = 0.0f)
  718. {
  719. BX_CHECK(State::Count != m_state);
  720. if (State::None == m_state)
  721. {
  722. moveTo(_x, _y, _z);
  723. return;
  724. }
  725. if (m_pos+2 > uint16_t(BX_COUNTOF(m_cache) ) )
  726. {
  727. uint32_t pos = m_pos;
  728. uint32_t vertexPos = m_vertexPos;
  729. flush();
  730. memcpy(&m_cache[0], &m_cache[vertexPos], sizeof(DebugVertex) );
  731. if (vertexPos == pos)
  732. {
  733. m_pos = 1;
  734. }
  735. else
  736. {
  737. memcpy(&m_cache[1], &m_cache[pos - 1], sizeof(DebugVertex) );
  738. m_pos = 2;
  739. }
  740. m_state = State::LineTo;
  741. }
  742. else if (State::MoveTo == m_state)
  743. {
  744. ++m_pos;
  745. m_state = State::LineTo;
  746. }
  747. uint16_t prev = m_pos-1;
  748. uint16_t curr = m_pos++;
  749. DebugVertex& vertex = m_cache[curr];
  750. vertex.m_x = _x;
  751. vertex.m_y = _y;
  752. vertex.m_z = _z;
  753. Attrib& attrib = m_attrib[m_stack];
  754. vertex.m_abgr = attrib.m_abgr;
  755. vertex.m_len = attrib.m_offset;
  756. float tmp[3];
  757. bx::vec3Sub(tmp, &vertex.m_x, &m_cache[prev].m_x);
  758. float len = bx::vec3Length(tmp) * attrib.m_scale;
  759. vertex.m_len = m_cache[prev].m_len + len;
  760. m_indices[m_indexPos++] = prev;
  761. m_indices[m_indexPos++] = curr;
  762. }
  763. void lineTo(const void* _pos)
  764. {
  765. BX_CHECK(State::Count != m_state);
  766. const float* pos = (const float*)_pos;
  767. lineTo(pos[0], pos[1], pos[2]);
  768. }
  769. void lineTo(Axis::Enum _axis, float _x, float _y)
  770. {
  771. float pos[3];
  772. getPoint(pos, _axis, _x, _y);
  773. lineTo(pos);
  774. }
  775. void close()
  776. {
  777. BX_CHECK(State::Count != m_state);
  778. DebugVertex& vertex = m_cache[m_vertexPos];
  779. lineTo(vertex.m_x, vertex.m_y, vertex.m_z);
  780. m_state = State::None;
  781. }
  782. void draw(const Aabb& _aabb)
  783. {
  784. moveTo(_aabb.m_min[0], _aabb.m_min[1], _aabb.m_min[2]);
  785. lineTo(_aabb.m_max[0], _aabb.m_min[1], _aabb.m_min[2]);
  786. lineTo(_aabb.m_max[0], _aabb.m_max[1], _aabb.m_min[2]);
  787. lineTo(_aabb.m_min[0], _aabb.m_max[1], _aabb.m_min[2]);
  788. close();
  789. moveTo(_aabb.m_min[0], _aabb.m_min[1], _aabb.m_max[2]);
  790. lineTo(_aabb.m_max[0], _aabb.m_min[1], _aabb.m_max[2]);
  791. lineTo(_aabb.m_max[0], _aabb.m_max[1], _aabb.m_max[2]);
  792. lineTo(_aabb.m_min[0], _aabb.m_max[1], _aabb.m_max[2]);
  793. close();
  794. moveTo(_aabb.m_min[0], _aabb.m_min[1], _aabb.m_min[2]);
  795. lineTo(_aabb.m_min[0], _aabb.m_min[1], _aabb.m_max[2]);
  796. moveTo(_aabb.m_max[0], _aabb.m_min[1], _aabb.m_min[2]);
  797. lineTo(_aabb.m_max[0], _aabb.m_min[1], _aabb.m_max[2]);
  798. moveTo(_aabb.m_min[0], _aabb.m_max[1], _aabb.m_min[2]);
  799. lineTo(_aabb.m_min[0], _aabb.m_max[1], _aabb.m_max[2]);
  800. moveTo(_aabb.m_max[0], _aabb.m_max[1], _aabb.m_min[2]);
  801. lineTo(_aabb.m_max[0], _aabb.m_max[1], _aabb.m_max[2]);
  802. }
  803. void draw(const Cylinder& _cylinder, bool _capsule)
  804. {
  805. drawCylinder(_cylinder.m_pos, _cylinder.m_end, _cylinder.m_radius, _capsule);
  806. }
  807. void draw(const Disk& _disk)
  808. {
  809. BX_UNUSED(_disk);
  810. }
  811. void draw(const Obb& _obb)
  812. {
  813. const Attrib& attrib = m_attrib[m_stack];
  814. if (attrib.m_wireframe)
  815. {
  816. setTransform(_obb.m_mtx);
  817. moveTo(-1.0f, -1.0f, -1.0f);
  818. lineTo( 1.0f, -1.0f, -1.0f);
  819. lineTo( 1.0f, 1.0f, -1.0f);
  820. lineTo(-1.0f, 1.0f, -1.0f);
  821. close();
  822. moveTo(-1.0f, 1.0f, 1.0f);
  823. lineTo( 1.0f, 1.0f, 1.0f);
  824. lineTo( 1.0f, -1.0f, 1.0f);
  825. lineTo(-1.0f, -1.0f, 1.0f);
  826. close();
  827. moveTo( 1.0f, -1.0f, -1.0f);
  828. lineTo( 1.0f, -1.0f, 1.0f);
  829. moveTo( 1.0f, 1.0f, -1.0f);
  830. lineTo( 1.0f, 1.0f, 1.0f);
  831. moveTo(-1.0f, 1.0f, -1.0f);
  832. lineTo(-1.0f, 1.0f, 1.0f);
  833. moveTo(-1.0f, -1.0f, -1.0f);
  834. lineTo(-1.0f, -1.0f, 1.0f);
  835. setTransform(NULL);
  836. }
  837. else
  838. {
  839. draw(Mesh::Cube, _obb.m_mtx, 1, false);
  840. }
  841. }
  842. void draw(const Sphere& _sphere)
  843. {
  844. const Attrib& attrib = m_attrib[m_stack];
  845. float mtx[16];
  846. bx::mtxSRT(mtx
  847. , _sphere.m_radius
  848. , _sphere.m_radius
  849. , _sphere.m_radius
  850. , 0.0f
  851. , 0.0f
  852. , 0.0f
  853. , _sphere.m_center[0]
  854. , _sphere.m_center[1]
  855. , _sphere.m_center[2]
  856. );
  857. uint8_t lod = attrib.m_lod > Mesh::SphereMaxLod
  858. ? uint8_t(Mesh::SphereMaxLod)
  859. : attrib.m_lod
  860. ;
  861. draw(Mesh::Enum(Mesh::Sphere0 + lod), mtx, 1, attrib.m_wireframe);
  862. }
  863. void drawFrustum(const float* _viewProj)
  864. {
  865. Plane planes[6];
  866. buildFrustumPlanes(planes, _viewProj);
  867. float points[24];
  868. intersectPlanes(&points[ 0], planes[0], planes[2], planes[4]);
  869. intersectPlanes(&points[ 3], planes[0], planes[3], planes[4]);
  870. intersectPlanes(&points[ 6], planes[0], planes[3], planes[5]);
  871. intersectPlanes(&points[ 9], planes[0], planes[2], planes[5]);
  872. intersectPlanes(&points[12], planes[1], planes[2], planes[4]);
  873. intersectPlanes(&points[15], planes[1], planes[3], planes[4]);
  874. intersectPlanes(&points[18], planes[1], planes[3], planes[5]);
  875. intersectPlanes(&points[21], planes[1], planes[2], planes[5]);
  876. moveTo(&points[ 0]);
  877. lineTo(&points[ 3]);
  878. lineTo(&points[ 6]);
  879. lineTo(&points[ 9]);
  880. close();
  881. moveTo(&points[12]);
  882. lineTo(&points[15]);
  883. lineTo(&points[18]);
  884. lineTo(&points[21]);
  885. close();
  886. moveTo(&points[ 0]);
  887. lineTo(&points[12]);
  888. moveTo(&points[ 3]);
  889. lineTo(&points[15]);
  890. moveTo(&points[ 6]);
  891. lineTo(&points[18]);
  892. moveTo(&points[ 9]);
  893. lineTo(&points[21]);
  894. }
  895. void drawFrustum(const void* _viewProj)
  896. {
  897. drawFrustum( (const float*)_viewProj);
  898. }
  899. void drawArc(Axis::Enum _axis, float _x, float _y, float _z, float _radius, float _degrees)
  900. {
  901. const Attrib& attrib = m_attrib[m_stack];
  902. const uint32_t num = getCircleLod(attrib.m_lod);
  903. const float step = bx::pi * 2.0f / num;
  904. _degrees = bx::fwrap(_degrees, 360.0f);
  905. float pos[3];
  906. getPoint(pos, _axis
  907. , bx::fsin(step * 0)*_radius
  908. , bx::fcos(step * 0)*_radius
  909. );
  910. moveTo(pos[0] + _x, pos[1] + _y, pos[2] + _z);
  911. uint32_t n = uint32_t(num*_degrees/360.0f);
  912. for (uint32_t ii = 1; ii < n+1; ++ii)
  913. {
  914. getPoint(pos, _axis
  915. , bx::fsin(step * ii)*_radius
  916. , bx::fcos(step * ii)*_radius
  917. );
  918. lineTo(pos[0] + _x, pos[1] + _y, pos[2] + _z);
  919. }
  920. moveTo(_x, _y, _z);
  921. getPoint(pos, _axis
  922. , bx::fsin(step * 0)*_radius
  923. , bx::fcos(step * 0)*_radius
  924. );
  925. lineTo(pos[0] + _x, pos[1] + _y, pos[2] + _z);
  926. getPoint(pos, _axis
  927. , bx::fsin(step * n)*_radius
  928. , bx::fcos(step * n)*_radius
  929. );
  930. moveTo(pos[0] + _x, pos[1] + _y, pos[2] + _z);
  931. lineTo(_x, _y, _z);
  932. }
  933. void drawCircle(const float* _normal, const float* _center, float _radius, float _weight)
  934. {
  935. const Attrib& attrib = m_attrib[m_stack];
  936. const uint32_t num = getCircleLod(attrib.m_lod);
  937. const float step = bx::pi * 2.0f / num;
  938. _weight = bx::fclamp(_weight, 0.0f, 2.0f);
  939. Plane plane = { { _normal[0], _normal[1], _normal[2] }, 0.0f };
  940. float udir[3];
  941. float vdir[3];
  942. calcPlaneUv(plane, udir, vdir);
  943. float pos[3];
  944. float tmp0[3];
  945. float tmp1[3];
  946. float xy0[2];
  947. float xy1[2];
  948. circle(xy0, 0.0f);
  949. squircle(xy1, 0.0f);
  950. bx::vec3Mul(pos, udir, bx::flerp(xy0[0], xy1[0], _weight)*_radius);
  951. bx::vec3Mul(tmp0, vdir, bx::flerp(xy0[1], xy1[1], _weight)*_radius);
  952. bx::vec3Add(tmp1, pos, tmp0);
  953. bx::vec3Add(pos, tmp1, _center);
  954. moveTo(pos);
  955. for (uint32_t ii = 1; ii < num; ++ii)
  956. {
  957. float angle = step * ii;
  958. circle(xy0, angle);
  959. squircle(xy1, angle);
  960. bx::vec3Mul(pos, udir, bx::flerp(xy0[0], xy1[0], _weight)*_radius);
  961. bx::vec3Mul(tmp0, vdir, bx::flerp(xy0[1], xy1[1], _weight)*_radius);
  962. bx::vec3Add(tmp1, pos, tmp0);
  963. bx::vec3Add(pos, tmp1, _center);
  964. lineTo(pos);
  965. }
  966. close();
  967. }
  968. void drawCircle(const void* _normal, const void* _center, float _radius, float _weight)
  969. {
  970. drawCircle( (const float*)_normal, (const float*)_center, _radius, _weight);
  971. }
  972. void drawCircle(Axis::Enum _axis, float _x, float _y, float _z, float _radius, float _weight)
  973. {
  974. const Attrib& attrib = m_attrib[m_stack];
  975. const uint32_t num = getCircleLod(attrib.m_lod);
  976. const float step = bx::pi * 2.0f / num;
  977. _weight = bx::fclamp(_weight, 0.0f, 2.0f);
  978. float xy0[2];
  979. float xy1[2];
  980. circle(xy0, 0.0f);
  981. squircle(xy1, 0.0f);
  982. float pos[3];
  983. getPoint(pos, _axis
  984. , bx::flerp(xy0[0], xy1[0], _weight)*_radius
  985. , bx::flerp(xy0[1], xy1[1], _weight)*_radius
  986. );
  987. moveTo(pos[0] + _x, pos[1] + _y, pos[2] + _z);
  988. for (uint32_t ii = 1; ii < num; ++ii)
  989. {
  990. float angle = step * ii;
  991. circle(xy0, angle);
  992. squircle(xy1, angle);
  993. getPoint(pos, _axis
  994. , bx::flerp(xy0[0], xy1[0], _weight)*_radius
  995. , bx::flerp(xy0[1], xy1[1], _weight)*_radius
  996. );
  997. lineTo(pos[0] + _x, pos[1] + _y, pos[2] + _z);
  998. }
  999. close();
  1000. }
  1001. void drawCone(const float* _from, const float* _to, float _radius)
  1002. {
  1003. const Attrib& attrib = m_attrib[m_stack];
  1004. float tmp0[3];
  1005. bx::vec3Sub(tmp0, _from, _to);
  1006. float normal[3];
  1007. bx::vec3Norm(normal, tmp0);
  1008. float mtx[2][16];
  1009. bx::mtxFromNormal(mtx[0], normal, _radius, _from);
  1010. memcpy(mtx[1], mtx[0], 64);
  1011. mtx[1][12] = _to[0];
  1012. mtx[1][13] = _to[1];
  1013. mtx[1][14] = _to[2];
  1014. uint8_t lod = attrib.m_lod > Mesh::ConeMaxLod
  1015. ? uint8_t(Mesh::ConeMaxLod)
  1016. : attrib.m_lod
  1017. ;
  1018. draw(Mesh::Enum(Mesh::Cone0 + lod), mtx[0], 2, attrib.m_wireframe);
  1019. }
  1020. void drawCone(const void* _from, const void* _to, float _radius)
  1021. {
  1022. drawCone( (const float*)_from, (const float*)_to, _radius);
  1023. }
  1024. void drawCylinder(const float* _from, const float* _to, float _radius, bool _capsule)
  1025. {
  1026. const Attrib& attrib = m_attrib[m_stack];
  1027. float tmp0[3];
  1028. bx::vec3Sub(tmp0, _from, _to);
  1029. float normal[3];
  1030. bx::vec3Norm(normal, tmp0);
  1031. float mtx[2][16];
  1032. bx::mtxFromNormal(mtx[0], normal, _radius, _from);
  1033. memcpy(mtx[1], mtx[0], 64);
  1034. mtx[1][12] = _to[0];
  1035. mtx[1][13] = _to[1];
  1036. mtx[1][14] = _to[2];
  1037. if (_capsule)
  1038. {
  1039. uint8_t lod = attrib.m_lod > Mesh::CapsuleMaxLod
  1040. ? uint8_t(Mesh::CapsuleMaxLod)
  1041. : attrib.m_lod
  1042. ;
  1043. draw(Mesh::Enum(Mesh::Capsule0 + lod), mtx[0], 2, attrib.m_wireframe);
  1044. Sphere sphere;
  1045. bx::vec3Move(sphere.m_center, _from);
  1046. sphere.m_radius = _radius;
  1047. draw(sphere);
  1048. bx::vec3Move(sphere.m_center, _to);
  1049. draw(sphere);
  1050. }
  1051. else
  1052. {
  1053. uint8_t lod = attrib.m_lod > Mesh::CylinderMaxLod
  1054. ? uint8_t(Mesh::CylinderMaxLod)
  1055. : attrib.m_lod
  1056. ;
  1057. draw(Mesh::Enum(Mesh::Cylinder0 + lod), mtx[0], 2, attrib.m_wireframe);
  1058. }
  1059. }
  1060. void drawCylinder(const void* _from, const void* _to, float _radius, bool _capsule)
  1061. {
  1062. drawCylinder( (const float*)_from, (const float*)_to, _radius, _capsule);
  1063. }
  1064. void drawAxis(float _x, float _y, float _z, float _len, Axis::Enum _highlight, float _thickness)
  1065. {
  1066. push();
  1067. if (_thickness > 0.0f)
  1068. {
  1069. float from[3] = { _x, _y, _z };
  1070. float mid[3];
  1071. float to[3];
  1072. setColor(Axis::X == _highlight ? 0xff00ffff : 0xff0000ff);
  1073. mid[0] = _x + _len - _thickness;
  1074. mid[1] = _y;
  1075. mid[2] = _z;
  1076. to[0] = _x + _len;
  1077. to[1] = _y;
  1078. to[2] = _z;
  1079. drawCylinder(from, mid, _thickness, false);
  1080. drawCone(mid, to, _thickness);
  1081. setColor(Axis::Y == _highlight ? 0xff00ffff : 0xff00ff00);
  1082. mid[0] = _x;
  1083. mid[1] = _y + _len - _thickness;
  1084. mid[2] = _z;
  1085. to[0] = _x;
  1086. to[1] = _y + _len;
  1087. to[2] = _z;
  1088. drawCylinder(from, mid, _thickness, false);
  1089. drawCone(mid, to, _thickness);
  1090. setColor(Axis::Z == _highlight ? 0xff00ffff : 0xffff0000);
  1091. mid[0] = _x;
  1092. mid[1] = _y;
  1093. mid[2] = _z + _len - _thickness;
  1094. to[0] = _x;
  1095. to[1] = _y;
  1096. to[2] = _z + _len;
  1097. drawCylinder(from, mid, _thickness, false);
  1098. drawCone(mid, to, _thickness);
  1099. }
  1100. else
  1101. {
  1102. setColor(Axis::X == _highlight ? 0xff00ffff : 0xff0000ff);
  1103. moveTo(_x, _y, _z);
  1104. lineTo(_x + _len, _y, _z);
  1105. setColor(Axis::Y == _highlight ? 0xff00ffff : 0xff00ff00);
  1106. moveTo(_x, _y, _z);
  1107. lineTo(_x, _y + _len, _z);
  1108. setColor(Axis::Z == _highlight ? 0xff00ffff : 0xffff0000);
  1109. moveTo(_x, _y, _z);
  1110. lineTo(_x, _y, _z + _len);
  1111. }
  1112. pop();
  1113. }
  1114. void drawGrid(const float* _normal, const float* _center, uint32_t _size, float _step)
  1115. {
  1116. float udir[3];
  1117. float vdir[3];
  1118. Plane plane = { { _normal[0], _normal[1], _normal[2] }, 0.0f };
  1119. calcPlaneUv(plane, udir, vdir);
  1120. bx::vec3Mul(udir, udir, _step);
  1121. bx::vec3Mul(vdir, vdir, _step);
  1122. const uint32_t num = (_size/2)*2+1;
  1123. const float halfExtent = float(_size/2);
  1124. float umin[3];
  1125. bx::vec3Mul(umin, udir, -halfExtent);
  1126. float umax[3];
  1127. bx::vec3Mul(umax, udir, halfExtent);
  1128. float vmin[3];
  1129. bx::vec3Mul(vmin, vdir, -halfExtent);
  1130. float vmax[3];
  1131. bx::vec3Mul(vmax, vdir, halfExtent);
  1132. float tmp[3];
  1133. float xs[3];
  1134. float xe[3];
  1135. bx::vec3Add(tmp, umin, vmin);
  1136. bx::vec3Add(xs, _center, tmp);
  1137. bx::vec3Add(tmp, umax, vmin);
  1138. bx::vec3Add(xe, _center, tmp);
  1139. float ys[3];
  1140. float ye[3];
  1141. bx::vec3Add(tmp, umin, vmin);
  1142. bx::vec3Add(ys, _center, tmp);
  1143. bx::vec3Add(tmp, umin, vmax);
  1144. bx::vec3Add(ye, _center, tmp);
  1145. for (uint32_t ii = 0; ii < num; ++ii)
  1146. {
  1147. moveTo(xs);
  1148. lineTo(xe);
  1149. bx::vec3Add(xs, xs, vdir);
  1150. bx::vec3Add(xe, xe, vdir);
  1151. moveTo(ys);
  1152. lineTo(ye);
  1153. bx::vec3Add(ys, ys, udir);
  1154. bx::vec3Add(ye, ye, udir);
  1155. }
  1156. }
  1157. void drawGrid(const void* _normal, const void* _center, uint32_t _size, float _step)
  1158. {
  1159. drawGrid( (const float*)_normal, (const float*)_center, _size, _step);
  1160. }
  1161. void drawGrid(Axis::Enum _axis, const float* _center, uint32_t _size, float _step)
  1162. {
  1163. push();
  1164. setTranslate(_center);
  1165. const uint32_t num = (_size/2)*2-1;
  1166. const float halfExtent = float(_size/2) * _step;
  1167. setColor(0xff606060);
  1168. float yy = -halfExtent + _step;
  1169. for (uint32_t ii = 0; ii < num; ++ii)
  1170. {
  1171. moveTo(_axis, -halfExtent, yy);
  1172. lineTo(_axis, halfExtent, yy);
  1173. moveTo(_axis, yy, -halfExtent);
  1174. lineTo(_axis, yy, halfExtent);
  1175. yy += _step;
  1176. }
  1177. setColor(0xff101010);
  1178. moveTo(_axis, -halfExtent, -halfExtent);
  1179. lineTo(_axis, -halfExtent, halfExtent);
  1180. lineTo(_axis, halfExtent, halfExtent);
  1181. lineTo(_axis, halfExtent, -halfExtent);
  1182. close();
  1183. moveTo(_axis, -halfExtent, 0.0f);
  1184. lineTo(_axis, halfExtent, 0.0f);
  1185. moveTo(_axis, 0.0f, -halfExtent);
  1186. lineTo(_axis, 0.0f, halfExtent);
  1187. pop();
  1188. }
  1189. void drawGrid(Axis::Enum _axis, const void* _center, uint32_t _size, float _step)
  1190. {
  1191. drawGrid(_axis, (const float*)_center, _size, _step);
  1192. }
  1193. void drawOrb(float _x, float _y, float _z, float _radius, Axis::Enum _hightlight)
  1194. {
  1195. push();
  1196. setColor(Axis::X == _hightlight ? 0xff00ffff : 0xff0000ff);
  1197. drawCircle(Axis::X, _x, _y, _z, _radius, 0.0f);
  1198. setColor(Axis::Y == _hightlight ? 0xff00ffff : 0xff00ff00);
  1199. drawCircle(Axis::Y, _x, _y, _z, _radius, 0.0f);
  1200. setColor(Axis::Z == _hightlight ? 0xff00ffff : 0xffff0000);
  1201. drawCircle(Axis::Z, _x, _y, _z, _radius, 0.0f);
  1202. pop();
  1203. }
  1204. private:
  1205. struct Mesh
  1206. {
  1207. enum Enum
  1208. {
  1209. Sphere0,
  1210. Sphere1,
  1211. Sphere2,
  1212. Sphere3,
  1213. Cone0,
  1214. Cone1,
  1215. Cone2,
  1216. Cone3,
  1217. Cylinder0,
  1218. Cylinder1,
  1219. Cylinder2,
  1220. Cylinder3,
  1221. Capsule0,
  1222. Capsule1,
  1223. Capsule2,
  1224. Capsule3,
  1225. Cube,
  1226. Count,
  1227. SphereMaxLod = Sphere3 - Sphere0,
  1228. ConeMaxLod = Cone3 - Cone0,
  1229. CylinderMaxLod = Cylinder3 - Cylinder0,
  1230. CapsuleMaxLod = Capsule3 - Capsule0,
  1231. };
  1232. uint32_t m_startVertex;
  1233. uint32_t m_numVertices;
  1234. uint32_t m_startIndex[2];
  1235. uint32_t m_numIndices[2];
  1236. };
  1237. struct Program
  1238. {
  1239. enum Enum
  1240. {
  1241. Lines,
  1242. LinesStipple,
  1243. Fill,
  1244. FillLit,
  1245. Count
  1246. };
  1247. };
  1248. void draw(Mesh::Enum _mesh, const float* _mtx, uint16_t _num, bool _wireframe) const
  1249. {
  1250. const Mesh& mesh = m_mesh[_mesh];
  1251. const Attrib& attrib = m_attrib[m_stack];
  1252. if (0 != mesh.m_numIndices[_wireframe])
  1253. {
  1254. bgfx::setIndexBuffer(m_ibh
  1255. , mesh.m_startIndex[_wireframe]
  1256. , mesh.m_numIndices[_wireframe]
  1257. );
  1258. }
  1259. const float flip = 0 == (attrib.m_state & BGFX_STATE_CULL_CCW) ? 1.0f : -1.0f;
  1260. float params[4][4] =
  1261. {
  1262. { // lightDir
  1263. 0.0f * flip,
  1264. -1.0f * flip,
  1265. 0.0f * flip,
  1266. 3.0f, // shininess
  1267. },
  1268. { // skyColor
  1269. 1.0f,
  1270. 0.9f,
  1271. 0.8f,
  1272. 0.0f, // unused
  1273. },
  1274. { // groundColor.xyz0
  1275. 0.2f,
  1276. 0.22f,
  1277. 0.5f,
  1278. 0.0f, // unused
  1279. },
  1280. { // matColor
  1281. ( (attrib.m_abgr )&0xff)/255.0f,
  1282. ( (attrib.m_abgr>> 8)&0xff)/255.0f,
  1283. ( (attrib.m_abgr>>16)&0xff)/255.0f,
  1284. ( (attrib.m_abgr>>24) )/255.0f,
  1285. },
  1286. };
  1287. bx::vec3Norm(params[0], params[0]);
  1288. bgfx::setUniform(u_params, params, 4);
  1289. bgfx::setTransform(_mtx, _num);
  1290. bgfx::setVertexBuffer(m_vbh, mesh.m_startVertex, mesh.m_numVertices);
  1291. bgfx::setState(0
  1292. | attrib.m_state
  1293. | (_wireframe ? BGFX_STATE_PT_LINES|BGFX_STATE_LINEAA|BGFX_STATE_BLEND_ALPHA : 0)
  1294. );
  1295. bgfx::submit(m_viewId, m_program[_wireframe ? Program::Fill : Program::FillLit]);
  1296. }
  1297. void softFlush()
  1298. {
  1299. if (m_pos == uint16_t(BX_COUNTOF(m_cache) ) )
  1300. {
  1301. flush();
  1302. }
  1303. }
  1304. void flush()
  1305. {
  1306. if (0 != m_pos)
  1307. {
  1308. if (bgfx::checkAvailTransientBuffers(m_pos, DebugVertex::ms_decl, m_indexPos) )
  1309. {
  1310. bgfx::TransientVertexBuffer tvb;
  1311. bgfx::allocTransientVertexBuffer(&tvb, m_pos, DebugVertex::ms_decl);
  1312. memcpy(tvb.data, m_cache, m_pos * DebugVertex::ms_decl.m_stride);
  1313. bgfx::TransientIndexBuffer tib;
  1314. bgfx::allocTransientIndexBuffer(&tib, m_indexPos);
  1315. memcpy(tib.data, m_indices, m_indexPos * sizeof(uint16_t) );
  1316. const Attrib& attrib = m_attrib[m_stack];
  1317. bgfx::setVertexBuffer(&tvb);
  1318. bgfx::setIndexBuffer(&tib);
  1319. bgfx::setState(0
  1320. | BGFX_STATE_RGB_WRITE
  1321. | BGFX_STATE_PT_LINES
  1322. | attrib.m_state
  1323. | BGFX_STATE_LINEAA
  1324. | BGFX_STATE_BLEND_ALPHA
  1325. );
  1326. bgfx::setTransform(m_mtx);
  1327. bgfx::ProgramHandle program = m_program[attrib.m_stipple ? 1 : 0];
  1328. bgfx::submit(m_viewId, program);
  1329. }
  1330. m_state = State::None;
  1331. m_pos = 0;
  1332. m_indexPos = 0;
  1333. m_vertexPos = 0;
  1334. }
  1335. }
  1336. struct State
  1337. {
  1338. enum Enum
  1339. {
  1340. None,
  1341. MoveTo,
  1342. LineTo,
  1343. Count
  1344. };
  1345. };
  1346. static const uint32_t cacheSize = 1024;
  1347. static const uint32_t stackSize = 16;
  1348. BX_STATIC_ASSERT(cacheSize >= 3, "Cache must be at least 3 elements.");
  1349. DebugVertex m_cache[cacheSize+1];
  1350. uint32_t m_mtx;
  1351. uint16_t m_indices[cacheSize*2];
  1352. uint16_t m_pos;
  1353. uint16_t m_indexPos;
  1354. uint16_t m_vertexPos;
  1355. uint8_t m_viewId;
  1356. uint8_t m_stack;
  1357. bool m_depthTestLess;
  1358. struct Attrib
  1359. {
  1360. uint64_t m_state;
  1361. float m_offset;
  1362. float m_scale;
  1363. uint32_t m_abgr;
  1364. bool m_stipple;
  1365. bool m_wireframe;
  1366. uint8_t m_lod;
  1367. };
  1368. Attrib m_attrib[stackSize];
  1369. State::Enum m_state;
  1370. Mesh m_mesh[Mesh::Count];
  1371. bgfx::ProgramHandle m_program[Program::Count];
  1372. bgfx::UniformHandle u_params;
  1373. bgfx::VertexBufferHandle m_vbh;
  1374. bgfx::IndexBufferHandle m_ibh;
  1375. bx::AllocatorI* m_allocator;
  1376. };
  1377. static DebugDraw s_dd;
  1378. void ddInit(bool _depthTestLess, bx::AllocatorI* _allocator)
  1379. {
  1380. s_dd.init(_depthTestLess, _allocator);
  1381. }
  1382. void ddShutdown()
  1383. {
  1384. s_dd.shutdown();
  1385. }
  1386. void ddBegin(uint8_t _viewId)
  1387. {
  1388. s_dd.begin(_viewId);
  1389. }
  1390. void ddEnd()
  1391. {
  1392. s_dd.end();
  1393. }
  1394. void ddPush()
  1395. {
  1396. s_dd.push();
  1397. }
  1398. void ddPop()
  1399. {
  1400. s_dd.pop();
  1401. }
  1402. void ddSetState(bool _depthTest, bool _depthWrite, bool _clockwise)
  1403. {
  1404. s_dd.setState(_depthTest, _depthWrite, _clockwise);
  1405. }
  1406. void ddSetColor(uint32_t _abgr)
  1407. {
  1408. s_dd.setColor(_abgr);
  1409. }
  1410. void ddSetLod(uint8_t _lod)
  1411. {
  1412. s_dd.setLod(_lod);
  1413. }
  1414. void ddSetWireframe(bool _wireframe)
  1415. {
  1416. s_dd.setWireframe(_wireframe);
  1417. }
  1418. void ddSetStipple(bool _stipple, float _scale, float _offset)
  1419. {
  1420. s_dd.setStipple(_stipple, _scale, _offset);
  1421. }
  1422. void ddSetTransform(const void* _mtx)
  1423. {
  1424. s_dd.setTransform(_mtx);
  1425. }
  1426. void ddSetTranslate(float _x, float _y, float _z)
  1427. {
  1428. s_dd.setTranslate(_x, _y, _z);
  1429. }
  1430. void ddMoveTo(float _x, float _y, float _z)
  1431. {
  1432. s_dd.moveTo(_x, _y, _z);
  1433. }
  1434. void ddMoveTo(const void* _pos)
  1435. {
  1436. s_dd.moveTo(_pos);
  1437. }
  1438. void ddLineTo(float _x, float _y, float _z)
  1439. {
  1440. s_dd.lineTo(_x, _y, _z);
  1441. }
  1442. void ddLineTo(const void* _pos)
  1443. {
  1444. s_dd.lineTo(_pos);
  1445. }
  1446. void ddClose()
  1447. {
  1448. s_dd.close();
  1449. }
  1450. void ddDraw(const Aabb& _aabb)
  1451. {
  1452. s_dd.draw(_aabb);
  1453. }
  1454. void ddDraw(const Cylinder& _cylinder, bool _capsule)
  1455. {
  1456. s_dd.draw(_cylinder, _capsule);
  1457. }
  1458. void ddDraw(const Disk& _disk)
  1459. {
  1460. s_dd.draw(_disk);
  1461. }
  1462. void ddDraw(const Obb& _obb)
  1463. {
  1464. s_dd.draw(_obb);
  1465. }
  1466. void ddDraw(const Sphere& _sphere)
  1467. {
  1468. s_dd.draw(_sphere);
  1469. }
  1470. void ddDrawFrustum(const void* _viewProj)
  1471. {
  1472. s_dd.drawFrustum(_viewProj);
  1473. }
  1474. void ddDrawArc(Axis::Enum _axis, float _x, float _y, float _z, float _radius, float _degrees)
  1475. {
  1476. s_dd.drawArc(_axis, _x, _y, _z, _radius, _degrees);
  1477. }
  1478. void ddDrawCircle(const void* _normal, const void* _center, float _radius, float _weight)
  1479. {
  1480. s_dd.drawCircle(_normal, _center, _radius, _weight);
  1481. }
  1482. void ddDrawCircle(Axis::Enum _axis, float _x, float _y, float _z, float _radius, float _weight)
  1483. {
  1484. s_dd.drawCircle(_axis, _x, _y, _z, _radius, _weight);
  1485. }
  1486. void ddDrawCone(const void* _from, const void* _to, float _radius)
  1487. {
  1488. s_dd.drawCone(_from, _to, _radius);
  1489. }
  1490. void ddDrawCylinder(const void* _from, const void* _to, float _radius, bool _capsule)
  1491. {
  1492. if (_capsule)
  1493. {
  1494. s_dd.push();
  1495. s_dd.setLod(0);
  1496. s_dd.drawCylinder(_from, _to, _radius, true);
  1497. s_dd.pop();
  1498. }
  1499. else
  1500. {
  1501. s_dd.drawCylinder(_from, _to, _radius, false);
  1502. }
  1503. }
  1504. void ddDrawCapsule(const void* _from, const void* _to, float _radius)
  1505. {
  1506. s_dd.drawCylinder(_from, _to, _radius, true);
  1507. }
  1508. void ddDrawAxis(float _x, float _y, float _z, float _len, Axis::Enum _hightlight, float _thickness)
  1509. {
  1510. s_dd.drawAxis(_x, _y, _z, _len, _hightlight, _thickness);
  1511. }
  1512. void ddDrawGrid(const void* _normal, const void* _center, uint32_t _size, float _step)
  1513. {
  1514. s_dd.drawGrid(_normal, _center, _size, _step);
  1515. }
  1516. void ddDrawGrid(Axis::Enum _axis, const void* _center, uint32_t _size, float _step)
  1517. {
  1518. s_dd.drawGrid(_axis, _center, _size, _step);
  1519. }
  1520. void ddDrawOrb(float _x, float _y, float _z, float _radius, Axis::Enum _hightlight)
  1521. {
  1522. s_dd.drawOrb(_x, _y, _z, _radius, _hightlight);
  1523. }