particle_system.cpp 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703
  1. /*
  2. * Copyright 2011-2017 Branimir Karadzic. All rights reserved.
  3. * License: https://github.com/bkaradzic/bgfx#license-bsd-2-clause
  4. */
  5. #include <bgfx/bgfx.h>
  6. #include <bgfx/embedded_shader.h>
  7. #include "particle_system.h"
  8. #include "../bgfx_utils.h"
  9. #include <bx/easing.h>
  10. #include <bx/crtimpl.h>
  11. #include <bx/handlealloc.h>
  12. #include "vs_particle.bin.h"
  13. #include "fs_particle.bin.h"
  14. static const bgfx::EmbeddedShader s_embeddedShaders[] =
  15. {
  16. BGFX_EMBEDDED_SHADER(vs_particle),
  17. BGFX_EMBEDDED_SHADER(fs_particle),
  18. BGFX_EMBEDDED_SHADER_END()
  19. };
  20. static const bx::EaseFn s_easeFunc[] =
  21. {
  22. bx::easeLinear,
  23. bx::easeInQuad,
  24. bx::easeOutQuad,
  25. bx::easeInOutQuad,
  26. bx::easeOutInQuad,
  27. bx::easeInCubic,
  28. bx::easeOutCubic,
  29. bx::easeInOutCubic,
  30. bx::easeOutInCubic,
  31. bx::easeInQuart,
  32. bx::easeOutQuart,
  33. bx::easeInOutQuart,
  34. bx::easeOutInQuart,
  35. bx::easeInQuint,
  36. bx::easeOutQuint,
  37. bx::easeInOutQuint,
  38. bx::easeOutInQuint,
  39. bx::easeInSine,
  40. bx::easeOutSine,
  41. bx::easeInOutSine,
  42. bx::easeOutInSine,
  43. bx::easeInExpo,
  44. bx::easeOutExpo,
  45. bx::easeInOutExpo,
  46. bx::easeOutInExpo,
  47. bx::easeInCirc,
  48. bx::easeOutCirc,
  49. bx::easeInOutCirc,
  50. bx::easeOutInCirc,
  51. bx::easeInElastic,
  52. bx::easeOutElastic,
  53. bx::easeInOutElastic,
  54. bx::easeOutInElastic,
  55. bx::easeInBack,
  56. bx::easeOutBack,
  57. bx::easeInOutBack,
  58. bx::easeOutInBack,
  59. bx::easeInBounce,
  60. bx::easeOutBounce,
  61. bx::easeInOutBounce,
  62. bx::easeOutInBounce,
  63. };
  64. BX_STATIC_ASSERT(BX_COUNTOF(s_easeFunc) == bx::Easing::Count);
  65. struct PosColorTexCoord0Vertex
  66. {
  67. float m_x;
  68. float m_y;
  69. float m_z;
  70. uint32_t m_abgr;
  71. float m_u;
  72. float m_v;
  73. float m_blend;
  74. float m_angle;
  75. static void init()
  76. {
  77. ms_decl
  78. .begin()
  79. .add(bgfx::Attrib::Position, 3, bgfx::AttribType::Float)
  80. .add(bgfx::Attrib::Color0, 4, bgfx::AttribType::Uint8, true)
  81. .add(bgfx::Attrib::TexCoord0, 4, bgfx::AttribType::Float)
  82. .end();
  83. }
  84. static bgfx::VertexDecl ms_decl;
  85. };
  86. bgfx::VertexDecl PosColorTexCoord0Vertex::ms_decl;
  87. void EmitterUniforms::reset()
  88. {
  89. m_position[0] = 0.0f;
  90. m_position[1] = 0.0f;
  91. m_position[2] = 0.0f;
  92. m_angle[0] = 0.0f;
  93. m_angle[1] = 0.0f;
  94. m_angle[2] = 0.0f;
  95. m_particlesPerSecond = 0;
  96. m_offsetStart[0] = 0.0f;
  97. m_offsetStart[1] = 1.0f;
  98. m_offsetEnd[0] = 2.0f;
  99. m_offsetEnd[1] = 3.0f;
  100. m_rgba[0] = 0x00ffffff;
  101. m_rgba[1] = UINT32_MAX;
  102. m_rgba[2] = UINT32_MAX;
  103. m_rgba[3] = UINT32_MAX;
  104. m_rgba[4] = 0x00ffffff;
  105. m_blendStart[0] = 0.8f;
  106. m_blendStart[1] = 1.0f;
  107. m_blendEnd[0] = 0.0f;
  108. m_blendEnd[1] = 0.2f;
  109. m_scaleStart[0] = 0.1f;
  110. m_scaleStart[1] = 0.2f;
  111. m_scaleEnd[0] = 0.3f;
  112. m_scaleEnd[1] = 0.4f;
  113. m_lifeSpan[0] = 1.0f;
  114. m_lifeSpan[1] = 2.0f;
  115. m_gravityScale = 0.0f;
  116. m_easePos = bx::Easing::Linear;
  117. m_easeRgba = bx::Easing::Linear;
  118. m_easeBlend = bx::Easing::Linear;
  119. m_easeScale = bx::Easing::Linear;
  120. }
  121. namespace ps
  122. {
  123. struct Particle
  124. {
  125. float start[3];
  126. float end[2][3];
  127. float blendStart;
  128. float blendEnd;
  129. float scaleStart;
  130. float scaleEnd;
  131. uint32_t rgba[5];
  132. float life;
  133. float lifeSpan;
  134. };
  135. struct ParticleSort
  136. {
  137. float dist;
  138. uint32_t idx;
  139. };
  140. inline uint32_t toAbgr(const float* _rgba)
  141. {
  142. return 0
  143. | (uint8_t(_rgba[0]*255.0f)<< 0)
  144. | (uint8_t(_rgba[1]*255.0f)<< 8)
  145. | (uint8_t(_rgba[2]*255.0f)<<16)
  146. | (uint8_t(_rgba[3]*255.0f)<<24)
  147. ;
  148. }
  149. inline uint32_t toAbgr(float _rr, float _gg, float _bb, float _aa)
  150. {
  151. return 0
  152. | (uint8_t(_rr*255.0f)<< 0)
  153. | (uint8_t(_gg*255.0f)<< 8)
  154. | (uint8_t(_bb*255.0f)<<16)
  155. | (uint8_t(_aa*255.0f)<<24)
  156. ;
  157. }
  158. struct Emitter
  159. {
  160. void create(EmitterShape::Enum _shape, EmitterDirection::Enum _direction, uint32_t _maxParticles);
  161. void destroy();
  162. void reset()
  163. {
  164. m_num = 0;
  165. bx::memSet(&m_aabb, 0, sizeof(Aabb) );
  166. }
  167. void update(float _dt)
  168. {
  169. uint32_t num = m_num;
  170. for (uint32_t ii = 0; ii < num; ++ii)
  171. {
  172. Particle& particle = m_particles[ii];
  173. particle.life += _dt * 1.0f/particle.lifeSpan;
  174. if (particle.life > 1.0f)
  175. {
  176. if (ii != num-1)
  177. {
  178. bx::memCopy(&particle, &m_particles[num-1], sizeof(Particle) );
  179. --ii;
  180. }
  181. --num;
  182. }
  183. }
  184. m_num = num;
  185. if (0 < m_uniforms.m_particlesPerSecond)
  186. {
  187. spawn(_dt);
  188. }
  189. }
  190. void spawn(float _dt)
  191. {
  192. float mtx[16];
  193. bx::mtxSRT(mtx
  194. , 1.0f, 1.0f, 1.0f
  195. , m_uniforms.m_angle[0], m_uniforms.m_angle[1], m_uniforms.m_angle[2]
  196. , m_uniforms.m_position[0], m_uniforms.m_position[1], m_uniforms.m_position[2]
  197. );
  198. const float timePerParticle = 1.0f/m_uniforms.m_particlesPerSecond;
  199. m_dt += _dt;
  200. const uint32_t numParticles = uint32_t(m_dt / timePerParticle);
  201. m_dt -= numParticles * timePerParticle;
  202. float time = 0.0f;
  203. for (uint32_t ii = 0
  204. ; ii < numParticles && m_num < m_max
  205. ; ++ii
  206. )
  207. {
  208. Particle& particle = m_particles[m_num];
  209. m_num++;
  210. const float up[3] = { 0.0f, 1.0f, 0.0f };
  211. float pos[3];
  212. switch (m_shape)
  213. {
  214. default:
  215. case EmitterShape::Sphere:
  216. bx::randUnitSphere(pos, &m_rng);
  217. break;
  218. case EmitterShape::Hemisphere:
  219. bx::randUnitHemisphere(pos, &m_rng, up);
  220. break;
  221. case EmitterShape::Circle:
  222. bx::randUnitCircle(pos, &m_rng);
  223. break;
  224. case EmitterShape::Disc:
  225. {
  226. float tmp[3];
  227. bx::randUnitCircle(tmp, &m_rng);
  228. bx::vec3Mul(pos, tmp, bx::frnd(&m_rng) );
  229. }
  230. break;
  231. case EmitterShape::Rect:
  232. pos[0] = bx::frndh(&m_rng);
  233. pos[1] = 0.0f;
  234. pos[2] = bx::frndh(&m_rng);
  235. break;
  236. }
  237. float dir[3];
  238. switch (m_direction)
  239. {
  240. default:
  241. case EmitterDirection::Up:
  242. bx::vec3Move(dir, up);
  243. break;
  244. case EmitterDirection::Outward:
  245. bx::vec3Norm(dir, pos);
  246. break;
  247. }
  248. float start[3];
  249. float end[3];
  250. const float startOffset = bx::flerp(m_uniforms.m_offsetStart[0], m_uniforms.m_offsetStart[1], bx::frnd(&m_rng) );
  251. bx::vec3Mul(start, pos, startOffset);
  252. const float endOffset = bx::flerp(m_uniforms.m_offsetEnd[0], m_uniforms.m_offsetEnd[1], bx::frnd(&m_rng) );
  253. float tmp1[3];
  254. bx::vec3Mul(tmp1, dir, endOffset);
  255. bx::vec3Add(end, tmp1, start);
  256. particle.life = time;
  257. particle.lifeSpan = bx::flerp(m_uniforms.m_lifeSpan[0], m_uniforms.m_lifeSpan[1], bx::frnd(&m_rng) );
  258. float gravity[3] = { 0.0f, -9.81f * m_uniforms.m_gravityScale * bx::fsq(particle.lifeSpan), 0.0f };
  259. bx::vec3MulMtx(particle.start, start, mtx);
  260. bx::vec3MulMtx(particle.end[0], end, mtx);
  261. bx::vec3Add(particle.end[1], particle.end[0], gravity);
  262. bx::memCopy(particle.rgba, m_uniforms.m_rgba, BX_COUNTOF(m_uniforms.m_rgba)*sizeof(uint32_t) );
  263. particle.blendStart = bx::flerp(m_uniforms.m_blendStart[0], m_uniforms.m_blendStart[1], bx::frnd(&m_rng) );
  264. particle.blendEnd = bx::flerp(m_uniforms.m_blendEnd[0], m_uniforms.m_blendEnd[1], bx::frnd(&m_rng) );
  265. particle.scaleStart = bx::flerp(m_uniforms.m_scaleStart[0], m_uniforms.m_scaleStart[1], bx::frnd(&m_rng) );
  266. particle.scaleEnd = bx::flerp(m_uniforms.m_scaleEnd[0], m_uniforms.m_scaleEnd[1], bx::frnd(&m_rng) );
  267. time += timePerParticle;
  268. }
  269. }
  270. uint32_t render(const float* _mtxView, const float* _eye, uint32_t _first, uint32_t _max, ParticleSort* _outSort, PosColorTexCoord0Vertex* _outVertices)
  271. {
  272. bx::EaseFn easeRgba = s_easeFunc[m_uniforms.m_easeRgba];
  273. bx::EaseFn easePos = s_easeFunc[m_uniforms.m_easePos];
  274. bx::EaseFn easeBlend = s_easeFunc[m_uniforms.m_easeBlend];
  275. bx::EaseFn easeScale = s_easeFunc[m_uniforms.m_easeScale];
  276. Aabb aabb =
  277. {
  278. { bx::huge, bx::huge, bx::huge },
  279. { -bx::huge, -bx::huge, -bx::huge },
  280. };
  281. for (uint32_t jj = 0, num = m_num, current = _first
  282. ; jj < num && current < _max
  283. ; ++jj, ++current
  284. )
  285. {
  286. const Particle& particle = m_particles[jj];
  287. const float ttPos = easePos(particle.life);
  288. const float ttScale = easeScale(particle.life);
  289. const float ttBlend = bx::fsaturate(easeBlend(particle.life) );
  290. const float ttRgba = bx::fsaturate(easeRgba(particle.life) );
  291. float p0[3];
  292. bx::vec3Lerp(p0, particle.start, particle.end[0], ttPos);
  293. float p1[3];
  294. bx::vec3Lerp(p1, particle.end[0], particle.end[1], ttPos);
  295. float pos[3];
  296. bx::vec3Lerp(pos, p0, p1, ttPos);
  297. ParticleSort& sort = _outSort[current];
  298. float tmp[3];
  299. bx::vec3Sub(tmp, _eye, pos);
  300. sort.dist = bx::fsqrt(bx::vec3Dot(tmp, tmp) );
  301. sort.idx = current;
  302. uint32_t idx = uint32_t(ttRgba*4);
  303. float ttmod = bx::fmod(ttRgba, 0.25f)/0.25f;
  304. uint32_t rgbaStart = particle.rgba[idx];
  305. uint32_t rgbaEnd = particle.rgba[idx+1];
  306. float rr = bx::flerp( ( (uint8_t*)&rgbaStart)[0], ( (uint8_t*)&rgbaEnd)[0], ttmod)/255.0f;
  307. float gg = bx::flerp( ( (uint8_t*)&rgbaStart)[1], ( (uint8_t*)&rgbaEnd)[1], ttmod)/255.0f;
  308. float bb = bx::flerp( ( (uint8_t*)&rgbaStart)[2], ( (uint8_t*)&rgbaEnd)[2], ttmod)/255.0f;
  309. float aa = bx::flerp( ( (uint8_t*)&rgbaStart)[3], ( (uint8_t*)&rgbaEnd)[3], ttmod)/255.0f;
  310. float blend = bx::flerp(particle.blendStart, particle.blendEnd, ttBlend);
  311. float scale = bx::flerp(particle.scaleStart, particle.scaleEnd, ttScale);
  312. uint32_t abgr = toAbgr(rr, gg, bb, aa);
  313. float udir[3] = { _mtxView[0]*scale, _mtxView[4]*scale, _mtxView[8]*scale };
  314. float vdir[3] = { _mtxView[1]*scale, _mtxView[5]*scale, _mtxView[9]*scale };
  315. PosColorTexCoord0Vertex* vertex = &_outVertices[current*4];
  316. bx::vec3Sub(tmp, pos, udir);
  317. bx::vec3Sub(&vertex->m_x, tmp, vdir);
  318. aabbExpand(aabb, &vertex->m_x);
  319. vertex->m_abgr = abgr;
  320. vertex->m_u = 0.0f;
  321. vertex->m_v = 0.0f;
  322. vertex->m_blend = blend;
  323. ++vertex;
  324. bx::vec3Add(tmp, pos, udir);
  325. bx::vec3Sub(&vertex->m_x, tmp, vdir);
  326. aabbExpand(aabb, &vertex->m_x);
  327. vertex->m_abgr = abgr;
  328. vertex->m_u = 1.0f;
  329. vertex->m_v = 0.0f;
  330. vertex->m_blend = blend;
  331. ++vertex;
  332. bx::vec3Add(tmp, pos, udir);
  333. bx::vec3Add(&vertex->m_x, tmp, vdir);
  334. aabbExpand(aabb, &vertex->m_x);
  335. vertex->m_abgr = abgr;
  336. vertex->m_u = 1.0f;
  337. vertex->m_v = 1.0f;
  338. vertex->m_blend = blend;
  339. ++vertex;
  340. bx::vec3Sub(tmp, pos, udir);
  341. bx::vec3Add(&vertex->m_x, tmp, vdir);
  342. aabbExpand(aabb, &vertex->m_x);
  343. vertex->m_abgr = abgr;
  344. vertex->m_u = 0.0f;
  345. vertex->m_v = 1.0f;
  346. vertex->m_blend = blend;
  347. ++vertex;
  348. }
  349. m_aabb = aabb;
  350. return m_num;
  351. }
  352. EmitterShape::Enum m_shape;
  353. EmitterDirection::Enum m_direction;
  354. float m_dt;
  355. bx::RngMwc m_rng;
  356. EmitterUniforms m_uniforms;
  357. Aabb m_aabb;
  358. Particle* m_particles;
  359. uint32_t m_num;
  360. uint32_t m_max;
  361. };
  362. static int32_t particleSortFn(const void* _lhs, const void* _rhs)
  363. {
  364. const ParticleSort& lhs = *(const ParticleSort*)_lhs;
  365. const ParticleSort& rhs = *(const ParticleSort*)_rhs;
  366. return lhs.dist > rhs.dist ? -1 : 1;
  367. }
  368. struct ParticleSystem
  369. {
  370. void init(uint16_t _maxEmitters, bx::AllocatorI* _allocator)
  371. {
  372. m_allocator = _allocator;
  373. #if BX_CONFIG_ALLOCATOR_CRT
  374. if (NULL == _allocator)
  375. {
  376. static bx::CrtAllocator allocator;
  377. m_allocator = &allocator;
  378. }
  379. #endif // BX_CONFIG_ALLOCATOR_CRT
  380. m_emitterAlloc = bx::createHandleAlloc(m_allocator, _maxEmitters);
  381. m_emitter = (Emitter*)BX_ALLOC(m_allocator, sizeof(Emitter)*_maxEmitters);
  382. PosColorTexCoord0Vertex::init();
  383. m_num = 0;
  384. s_texColor = bgfx::createUniform("s_texColor", bgfx::UniformType::Int1);
  385. m_particleTexture = loadTexture("textures/particle.ktx");
  386. bgfx::RendererType::Enum type = bgfx::getRendererType();
  387. m_particleProgram = bgfx::createProgram(
  388. bgfx::createEmbeddedShader(s_embeddedShaders, type, "vs_particle")
  389. , bgfx::createEmbeddedShader(s_embeddedShaders, type, "fs_particle")
  390. , true
  391. );
  392. }
  393. void shutdown()
  394. {
  395. bgfx::destroyProgram(m_particleProgram);
  396. bgfx::destroyTexture(m_particleTexture);
  397. bgfx::destroyUniform(s_texColor);
  398. bx::destroyHandleAlloc(m_allocator, m_emitterAlloc);
  399. BX_FREE(m_allocator, m_emitter);
  400. m_allocator = NULL;
  401. }
  402. void update(float _dt)
  403. {
  404. uint32_t numParticles = 0;
  405. for (uint16_t ii = 0, num = m_emitterAlloc->getNumHandles(); ii < num; ++ii)
  406. {
  407. const uint16_t idx = m_emitterAlloc->getHandleAt(ii);
  408. Emitter& emitter = m_emitter[idx];
  409. emitter.update(_dt);
  410. numParticles += emitter.m_num;
  411. }
  412. m_num = numParticles;
  413. }
  414. void render(uint8_t _view, const float* _mtxView, const float* _eye)
  415. {
  416. if (0 != m_num)
  417. {
  418. bgfx::TransientVertexBuffer tvb;
  419. bgfx::TransientIndexBuffer tib;
  420. const uint32_t numVertices = bgfx::getAvailTransientVertexBuffer(m_num*4, PosColorTexCoord0Vertex::ms_decl);
  421. const uint32_t numIndices = bgfx::getAvailTransientIndexBuffer(m_num*6);
  422. const uint32_t max = bx::uint32_min(numVertices/4, numIndices/6);
  423. BX_WARN(m_num == max
  424. , "Truncating transient buffer for particles to maximum available (requested %d, available %d)."
  425. , m_num
  426. , max
  427. );
  428. if (0 < max)
  429. {
  430. bgfx::allocTransientBuffers(&tvb
  431. , PosColorTexCoord0Vertex::ms_decl
  432. , max*4
  433. , &tib
  434. , max*6
  435. );
  436. PosColorTexCoord0Vertex* vertices = (PosColorTexCoord0Vertex*)tvb.data;
  437. ParticleSort* particleSort = (ParticleSort*)BX_ALLOC(m_allocator, max*sizeof(ParticleSort) );
  438. uint32_t pos = 0;
  439. for (uint16_t ii = 0, numEmitters = m_emitterAlloc->getNumHandles(); ii < numEmitters; ++ii)
  440. {
  441. const uint16_t idx = m_emitterAlloc->getHandleAt(ii);
  442. Emitter& emitter = m_emitter[idx];
  443. pos += emitter.render(_mtxView, _eye, pos, max, particleSort, vertices);
  444. }
  445. qsort(particleSort
  446. , max
  447. , sizeof(ParticleSort)
  448. , particleSortFn
  449. );
  450. uint16_t* indices = (uint16_t*)tib.data;
  451. for (uint32_t ii = 0; ii < max; ++ii)
  452. {
  453. const ParticleSort& sort = particleSort[ii];
  454. uint16_t* index = &indices[ii*6];
  455. uint16_t idx = (uint16_t)sort.idx;
  456. index[0] = idx*4+0;
  457. index[1] = idx*4+1;
  458. index[2] = idx*4+2;
  459. index[3] = idx*4+2;
  460. index[4] = idx*4+3;
  461. index[5] = idx*4+0;
  462. }
  463. BX_FREE(m_allocator, particleSort);
  464. bgfx::setState(0
  465. | BGFX_STATE_RGB_WRITE
  466. | BGFX_STATE_ALPHA_WRITE
  467. | BGFX_STATE_DEPTH_TEST_LESS
  468. | BGFX_STATE_CULL_CW
  469. | BGFX_STATE_BLEND_NORMAL
  470. );
  471. bgfx::setVertexBuffer(&tvb);
  472. bgfx::setIndexBuffer(&tib);
  473. bgfx::setTexture(0, s_texColor, m_particleTexture);
  474. bgfx::submit(_view, m_particleProgram);
  475. }
  476. }
  477. }
  478. EmitterHandle createEmitter(EmitterShape::Enum _shape, EmitterDirection::Enum _direction, uint32_t _maxParticles)
  479. {
  480. EmitterHandle handle = { m_emitterAlloc->alloc() };
  481. if (UINT16_MAX != handle.idx)
  482. {
  483. m_emitter[handle.idx].create(_shape, _direction, _maxParticles);
  484. }
  485. return handle;
  486. }
  487. void updateEmitter(EmitterHandle _handle, const EmitterUniforms* _uniforms)
  488. {
  489. BX_CHECK(m_emitterAlloc.isValid(_handle.idx)
  490. , "destroyEmitter handle %d is not valid."
  491. , _handle.idx
  492. );
  493. Emitter& emitter = m_emitter[_handle.idx];
  494. if (NULL == _uniforms)
  495. {
  496. emitter.reset();
  497. }
  498. else
  499. {
  500. bx::memCopy(&emitter.m_uniforms, _uniforms, sizeof(EmitterUniforms) );
  501. }
  502. }
  503. void getAabb(EmitterHandle _handle, Aabb& _outAabb)
  504. {
  505. BX_CHECK(m_emitterAlloc.isValid(_handle.idx)
  506. , "getAabb handle %d is not valid."
  507. , _handle.idx
  508. );
  509. _outAabb = m_emitter[_handle.idx].m_aabb;
  510. }
  511. void destroyEmitter(EmitterHandle _handle)
  512. {
  513. BX_CHECK(m_emitterAlloc.isValid(_handle.idx)
  514. , "destroyEmitter handle %d is not valid."
  515. , _handle.idx
  516. );
  517. m_emitter[_handle.idx].destroy();
  518. m_emitterAlloc->free(_handle.idx);
  519. }
  520. bx::AllocatorI* m_allocator;
  521. bx::HandleAlloc* m_emitterAlloc;
  522. Emitter* m_emitter;
  523. bgfx::UniformHandle s_texColor;
  524. bgfx::TextureHandle m_particleTexture;
  525. bgfx::ProgramHandle m_particleProgram;
  526. uint32_t m_num;
  527. };
  528. static ParticleSystem s_ctx;
  529. void Emitter::create(EmitterShape::Enum _shape, EmitterDirection::Enum _direction, uint32_t _maxParticles)
  530. {
  531. m_dt = 0.0f;
  532. m_uniforms.reset();
  533. m_shape = _shape;
  534. m_direction = _direction;
  535. m_num = 0;
  536. m_max = _maxParticles;
  537. m_particles = (Particle*)BX_ALLOC(s_ctx.m_allocator, m_max*sizeof(Particle) );
  538. }
  539. void Emitter::destroy()
  540. {
  541. BX_FREE(s_ctx.m_allocator, m_particles);
  542. m_particles = NULL;
  543. }
  544. } // namespace ps
  545. using namespace ps;
  546. void psInit(uint16_t _maxEmitters, bx::AllocatorI* _allocator)
  547. {
  548. s_ctx.init(_maxEmitters, _allocator);
  549. }
  550. void psShutdown()
  551. {
  552. s_ctx.shutdown();
  553. }
  554. EmitterHandle psCreateEmitter(EmitterShape::Enum _shape, EmitterDirection::Enum _direction, uint32_t _maxParticles)
  555. {
  556. return s_ctx.createEmitter(_shape, _direction, _maxParticles);
  557. }
  558. void psUpdateEmitter(EmitterHandle _handle, const EmitterUniforms* _uniforms)
  559. {
  560. s_ctx.updateEmitter(_handle, _uniforms);
  561. }
  562. void psGetAabb(EmitterHandle _handle, Aabb& _outAabb)
  563. {
  564. s_ctx.getAabb(_handle, _outAabb);
  565. }
  566. void psDestroyEmitter(EmitterHandle _handle)
  567. {
  568. s_ctx.destroyEmitter(_handle);
  569. }
  570. void psUpdate(float _dt)
  571. {
  572. s_ctx.update(_dt);
  573. }
  574. void psRender(uint8_t _view, const float* _mtxView, const float* _eye)
  575. {
  576. s_ctx.render(_view, _mtxView, _eye);
  577. }