transformation_composite_construct.cpp 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294
  1. // Copyright (c) 2019 Google LLC
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. #include "source/fuzz/transformation_composite_construct.h"
  15. #include "source/fuzz/data_descriptor.h"
  16. #include "source/fuzz/fuzzer_util.h"
  17. #include "source/fuzz/instruction_descriptor.h"
  18. #include "source/opt/instruction.h"
  19. namespace spvtools {
  20. namespace fuzz {
  21. TransformationCompositeConstruct::TransformationCompositeConstruct(
  22. const protobufs::TransformationCompositeConstruct& message)
  23. : message_(message) {}
  24. TransformationCompositeConstruct::TransformationCompositeConstruct(
  25. uint32_t composite_type_id, std::vector<uint32_t> component,
  26. const protobufs::InstructionDescriptor& instruction_to_insert_before,
  27. uint32_t fresh_id) {
  28. message_.set_composite_type_id(composite_type_id);
  29. for (auto a_component : component) {
  30. message_.add_component(a_component);
  31. }
  32. *message_.mutable_instruction_to_insert_before() =
  33. instruction_to_insert_before;
  34. message_.set_fresh_id(fresh_id);
  35. }
  36. bool TransformationCompositeConstruct::IsApplicable(
  37. opt::IRContext* ir_context, const TransformationContext& /*unused*/) const {
  38. if (!fuzzerutil::IsFreshId(ir_context, message_.fresh_id())) {
  39. // We require the id for the composite constructor to be unused.
  40. return false;
  41. }
  42. auto insert_before =
  43. FindInstruction(message_.instruction_to_insert_before(), ir_context);
  44. if (!insert_before) {
  45. // The instruction before which the composite should be inserted was not
  46. // found.
  47. return false;
  48. }
  49. auto composite_type =
  50. ir_context->get_type_mgr()->GetType(message_.composite_type_id());
  51. if (!fuzzerutil::IsCompositeType(composite_type)) {
  52. // The type must actually be a composite.
  53. return false;
  54. }
  55. // If the type is an array, matrix, struct or vector, the components need to
  56. // be suitable for constructing something of that type.
  57. if (composite_type->AsArray() &&
  58. !ComponentsForArrayConstructionAreOK(ir_context,
  59. *composite_type->AsArray())) {
  60. return false;
  61. }
  62. if (composite_type->AsMatrix() &&
  63. !ComponentsForMatrixConstructionAreOK(ir_context,
  64. *composite_type->AsMatrix())) {
  65. return false;
  66. }
  67. if (composite_type->AsStruct() &&
  68. !ComponentsForStructConstructionAreOK(ir_context,
  69. *composite_type->AsStruct())) {
  70. return false;
  71. }
  72. if (composite_type->AsVector() &&
  73. !ComponentsForVectorConstructionAreOK(ir_context,
  74. *composite_type->AsVector())) {
  75. return false;
  76. }
  77. // Now check whether every component being used to initialize the composite is
  78. // available at the desired program point.
  79. for (auto& component : message_.component()) {
  80. if (!fuzzerutil::IdIsAvailableBeforeInstruction(ir_context, insert_before,
  81. component)) {
  82. return false;
  83. }
  84. }
  85. return true;
  86. }
  87. void TransformationCompositeConstruct::Apply(
  88. opt::IRContext* ir_context,
  89. TransformationContext* transformation_context) const {
  90. // Use the base and offset information from the transformation to determine
  91. // where in the module a new instruction should be inserted.
  92. auto insert_before_inst =
  93. FindInstruction(message_.instruction_to_insert_before(), ir_context);
  94. auto destination_block = ir_context->get_instr_block(insert_before_inst);
  95. auto insert_before = fuzzerutil::GetIteratorForInstruction(
  96. destination_block, insert_before_inst);
  97. // Prepare the input operands for an OpCompositeConstruct instruction.
  98. opt::Instruction::OperandList in_operands;
  99. for (auto& component_id : message_.component()) {
  100. in_operands.push_back({SPV_OPERAND_TYPE_ID, {component_id}});
  101. }
  102. // Insert an OpCompositeConstruct instruction.
  103. insert_before.InsertBefore(MakeUnique<opt::Instruction>(
  104. ir_context, SpvOpCompositeConstruct, message_.composite_type_id(),
  105. message_.fresh_id(), in_operands));
  106. fuzzerutil::UpdateModuleIdBound(ir_context, message_.fresh_id());
  107. ir_context->InvalidateAnalysesExceptFor(opt::IRContext::kAnalysisNone);
  108. // Inform the fact manager that we now have new synonyms: every component of
  109. // the composite is synonymous with the id used to construct that component,
  110. // except in the case of a vector where a single vector id can span multiple
  111. // components.
  112. auto composite_type =
  113. ir_context->get_type_mgr()->GetType(message_.composite_type_id());
  114. uint32_t index = 0;
  115. for (auto component : message_.component()) {
  116. auto component_type = ir_context->get_type_mgr()->GetType(
  117. ir_context->get_def_use_mgr()->GetDef(component)->type_id());
  118. if (composite_type->AsVector() && component_type->AsVector()) {
  119. // The case where the composite being constructed is a vector and the
  120. // component provided for construction is also a vector is special. It
  121. // requires adding a synonym fact relating each element of the sub-vector
  122. // to the corresponding element of the composite being constructed.
  123. assert(component_type->AsVector()->element_type() ==
  124. composite_type->AsVector()->element_type());
  125. assert(component_type->AsVector()->element_count() <
  126. composite_type->AsVector()->element_count());
  127. for (uint32_t subvector_index = 0;
  128. subvector_index < component_type->AsVector()->element_count();
  129. subvector_index++) {
  130. transformation_context->GetFactManager()->AddFactDataSynonym(
  131. MakeDataDescriptor(component, {subvector_index}),
  132. MakeDataDescriptor(message_.fresh_id(), {index}), ir_context);
  133. index++;
  134. }
  135. } else {
  136. // The other cases are simple: the component is made directly synonymous
  137. // with the element of the composite being constructed.
  138. transformation_context->GetFactManager()->AddFactDataSynonym(
  139. MakeDataDescriptor(component, {}),
  140. MakeDataDescriptor(message_.fresh_id(), {index}), ir_context);
  141. index++;
  142. }
  143. }
  144. }
  145. bool TransformationCompositeConstruct::ComponentsForArrayConstructionAreOK(
  146. opt::IRContext* ir_context, const opt::analysis::Array& array_type) const {
  147. if (array_type.length_info().words[0] !=
  148. opt::analysis::Array::LengthInfo::kConstant) {
  149. // We only handle constant-sized arrays.
  150. return false;
  151. }
  152. if (array_type.length_info().words.size() != 2) {
  153. // We only handle the case where the array size can be captured in a single
  154. // word.
  155. return false;
  156. }
  157. // Get the array size.
  158. auto array_size = array_type.length_info().words[1];
  159. if (static_cast<uint32_t>(message_.component().size()) != array_size) {
  160. // The number of components must match the array size.
  161. return false;
  162. }
  163. // Check that each component is the result id of an instruction whose type is
  164. // the array's element type.
  165. for (auto component_id : message_.component()) {
  166. auto inst = ir_context->get_def_use_mgr()->GetDef(component_id);
  167. if (inst == nullptr || !inst->type_id()) {
  168. // The component does not correspond to an instruction with a result
  169. // type.
  170. return false;
  171. }
  172. auto component_type = ir_context->get_type_mgr()->GetType(inst->type_id());
  173. assert(component_type);
  174. if (component_type != array_type.element_type()) {
  175. // The component's type does not match the array's element type.
  176. return false;
  177. }
  178. }
  179. return true;
  180. }
  181. bool TransformationCompositeConstruct::ComponentsForMatrixConstructionAreOK(
  182. opt::IRContext* ir_context,
  183. const opt::analysis::Matrix& matrix_type) const {
  184. if (static_cast<uint32_t>(message_.component().size()) !=
  185. matrix_type.element_count()) {
  186. // The number of components must match the number of columns of the matrix.
  187. return false;
  188. }
  189. // Check that each component is the result id of an instruction whose type is
  190. // the matrix's column type.
  191. for (auto component_id : message_.component()) {
  192. auto inst = ir_context->get_def_use_mgr()->GetDef(component_id);
  193. if (inst == nullptr || !inst->type_id()) {
  194. // The component does not correspond to an instruction with a result
  195. // type.
  196. return false;
  197. }
  198. auto component_type = ir_context->get_type_mgr()->GetType(inst->type_id());
  199. assert(component_type);
  200. if (component_type != matrix_type.element_type()) {
  201. // The component's type does not match the matrix's column type.
  202. return false;
  203. }
  204. }
  205. return true;
  206. }
  207. bool TransformationCompositeConstruct::ComponentsForStructConstructionAreOK(
  208. opt::IRContext* ir_context,
  209. const opt::analysis::Struct& struct_type) const {
  210. if (static_cast<uint32_t>(message_.component().size()) !=
  211. struct_type.element_types().size()) {
  212. // The number of components must match the number of fields of the struct.
  213. return false;
  214. }
  215. // Check that each component is the result id of an instruction those type
  216. // matches the associated field type.
  217. for (uint32_t field_index = 0;
  218. field_index < struct_type.element_types().size(); field_index++) {
  219. auto inst = ir_context->get_def_use_mgr()->GetDef(
  220. message_.component()[field_index]);
  221. if (inst == nullptr || !inst->type_id()) {
  222. // The component does not correspond to an instruction with a result
  223. // type.
  224. return false;
  225. }
  226. auto component_type = ir_context->get_type_mgr()->GetType(inst->type_id());
  227. assert(component_type);
  228. if (component_type != struct_type.element_types()[field_index]) {
  229. // The component's type does not match the corresponding field type.
  230. return false;
  231. }
  232. }
  233. return true;
  234. }
  235. bool TransformationCompositeConstruct::ComponentsForVectorConstructionAreOK(
  236. opt::IRContext* ir_context,
  237. const opt::analysis::Vector& vector_type) const {
  238. uint32_t base_element_count = 0;
  239. auto element_type = vector_type.element_type();
  240. for (auto& component_id : message_.component()) {
  241. auto inst = ir_context->get_def_use_mgr()->GetDef(component_id);
  242. if (inst == nullptr || !inst->type_id()) {
  243. // The component does not correspond to an instruction with a result
  244. // type.
  245. return false;
  246. }
  247. auto component_type = ir_context->get_type_mgr()->GetType(inst->type_id());
  248. assert(component_type);
  249. if (component_type == element_type) {
  250. base_element_count++;
  251. } else if (component_type->AsVector() &&
  252. component_type->AsVector()->element_type() == element_type) {
  253. base_element_count += component_type->AsVector()->element_count();
  254. } else {
  255. // The component was not appropriate; e.g. no type corresponding to the
  256. // given id was found, or the type that was found was not compatible
  257. // with the vector being constructed.
  258. return false;
  259. }
  260. }
  261. // The number of components provided (when vector components are flattened
  262. // out) needs to match the length of the vector being constructed.
  263. return base_element_count == vector_type.element_count();
  264. }
  265. protobufs::Transformation TransformationCompositeConstruct::ToMessage() const {
  266. protobufs::Transformation result;
  267. *result.mutable_composite_construct() = message_;
  268. return result;
  269. }
  270. } // namespace fuzz
  271. } // namespace spvtools