graphics_robust_access_pass.cpp 45 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062
  1. // Copyright (c) 2019 Google LLC
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. // This pass injects code in a graphics shader to implement guarantees
  15. // satisfying Vulkan's robustBufferAcces rules. Robust access rules permit
  16. // an out-of-bounds access to be redirected to an access of the same type
  17. // (load, store, etc.) but within the same root object.
  18. //
  19. // We assume baseline functionality in Vulkan, i.e. the module uses
  20. // logical addressing mode, without VK_KHR_variable_pointers.
  21. //
  22. // - Logical addressing mode implies:
  23. // - Each root pointer (a pointer that exists other than by the
  24. // execution of a shader instruction) is the result of an OpVariable.
  25. //
  26. // - Instructions that result in pointers are:
  27. // OpVariable
  28. // OpAccessChain
  29. // OpInBoundsAccessChain
  30. // OpFunctionParameter
  31. // OpImageTexelPointer
  32. // OpCopyObject
  33. //
  34. // - Instructions that use a pointer are:
  35. // OpLoad
  36. // OpStore
  37. // OpAccessChain
  38. // OpInBoundsAccessChain
  39. // OpFunctionCall
  40. // OpImageTexelPointer
  41. // OpCopyMemory
  42. // OpCopyObject
  43. // all OpAtomic* instructions
  44. //
  45. // We classify pointer-users into:
  46. // - Accesses:
  47. // - OpLoad
  48. // - OpStore
  49. // - OpAtomic*
  50. // - OpCopyMemory
  51. //
  52. // - Address calculations:
  53. // - OpAccessChain
  54. // - OpInBoundsAccessChain
  55. //
  56. // - Pass-through:
  57. // - OpFunctionCall
  58. // - OpFunctionParameter
  59. // - OpCopyObject
  60. //
  61. // The strategy is:
  62. //
  63. // - Handle only logical addressing mode. In particular, don't handle a module
  64. // if it uses one of the variable-pointers capabilities.
  65. //
  66. // - Don't handle modules using capability RuntimeDescriptorArrayEXT. So the
  67. // only runtime arrays are those that are the last member in a
  68. // Block-decorated struct. This allows us to feasibly/easily compute the
  69. // length of the runtime array. See below.
  70. //
  71. // - The memory locations accessed by OpLoad, OpStore, OpCopyMemory, and
  72. // OpAtomic* are determined by their pointer parameter or parameters.
  73. // Pointers are always (correctly) typed and so the address and number of
  74. // consecutive locations are fully determined by the pointer.
  75. //
  76. // - A pointer value orginates as one of few cases:
  77. //
  78. // - OpVariable for an interface object or an array of them: image,
  79. // buffer (UBO or SSBO), sampler, sampled-image, push-constant, input
  80. // variable, output variable. The execution environment is responsible for
  81. // allocating the correct amount of storage for these, and for ensuring
  82. // each resource bound to such a variable is big enough to contain the
  83. // SPIR-V pointee type of the variable.
  84. //
  85. // - OpVariable for a non-interface object. These are variables in
  86. // Workgroup, Private, and Function storage classes. The compiler ensures
  87. // the underlying allocation is big enough to store the entire SPIR-V
  88. // pointee type of the variable.
  89. //
  90. // - An OpFunctionParameter. This always maps to a pointer parameter to an
  91. // OpFunctionCall.
  92. //
  93. // - In logical addressing mode, these are severely limited:
  94. // "Any pointer operand to an OpFunctionCall must be:
  95. // - a memory object declaration, or
  96. // - a pointer to an element in an array that is a memory object
  97. // declaration, where the element type is OpTypeSampler or OpTypeImage"
  98. //
  99. // - This has an important simplifying consequence:
  100. //
  101. // - When looking for a pointer to the structure containing a runtime
  102. // array, you begin with a pointer to the runtime array and trace
  103. // backward in the function. You never have to trace back beyond
  104. // your function call boundary. So you can't take a partial access
  105. // chain into an SSBO, then pass that pointer into a function. So
  106. // we don't resort to using fat pointers to compute array length.
  107. // We can trace back to a pointer to the containing structure,
  108. // and use that in an OpArrayLength instruction. (The structure type
  109. // gives us the member index of the runtime array.)
  110. //
  111. // - Otherwise, the pointer type fully encodes the range of valid
  112. // addresses. In particular, the type of a pointer to an aggregate
  113. // value fully encodes the range of indices when indexing into
  114. // that aggregate.
  115. //
  116. // - The pointer is the result of an access chain instruction. We clamp
  117. // indices contributing to address calculations. As noted above, the
  118. // valid ranges are either bound by the length of a runtime array, or
  119. // by the type of the base pointer. The length of a runtime array is
  120. // the result of an OpArrayLength instruction acting on the pointer of
  121. // the containing structure as noted above.
  122. //
  123. // - Access chain indices are always treated as signed, so:
  124. // - Clamp the upper bound at the signed integer maximum.
  125. // - Use SClamp for all clamping.
  126. //
  127. // - TODO(dneto): OpImageTexelPointer:
  128. // - Clamp coordinate to the image size returned by OpImageQuerySize
  129. // - If multi-sampled, clamp the sample index to the count returned by
  130. // OpImageQuerySamples.
  131. // - If not multi-sampled, set the sample index to 0.
  132. //
  133. // - Rely on the external validator to check that pointers are only
  134. // used by the instructions as above.
  135. //
  136. // - Handles OpTypeRuntimeArray
  137. // Track pointer back to original resource (pointer to struct), so we can
  138. // query the runtime array size.
  139. //
  140. #include "graphics_robust_access_pass.h"
  141. #include <algorithm>
  142. #include <cstring>
  143. #include <functional>
  144. #include <initializer_list>
  145. #include <limits>
  146. #include <utility>
  147. #include "constants.h"
  148. #include "def_use_manager.h"
  149. #include "function.h"
  150. #include "ir_context.h"
  151. #include "module.h"
  152. #include "pass.h"
  153. #include "source/diagnostic.h"
  154. #include "source/util/make_unique.h"
  155. #include "spirv-tools/libspirv.h"
  156. #include "spirv/unified1/GLSL.std.450.h"
  157. #include "spirv/unified1/spirv.h"
  158. #include "type_manager.h"
  159. #include "types.h"
  160. namespace spvtools {
  161. namespace opt {
  162. using opt::Instruction;
  163. using opt::Operand;
  164. using spvtools::MakeUnique;
  165. GraphicsRobustAccessPass::GraphicsRobustAccessPass() : module_status_() {}
  166. Pass::Status GraphicsRobustAccessPass::Process() {
  167. module_status_ = PerModuleState();
  168. ProcessCurrentModule();
  169. auto result = module_status_.failed
  170. ? Status::Failure
  171. : (module_status_.modified ? Status::SuccessWithChange
  172. : Status::SuccessWithoutChange);
  173. return result;
  174. }
  175. spvtools::DiagnosticStream GraphicsRobustAccessPass::Fail() {
  176. module_status_.failed = true;
  177. // We don't really have a position, and we'll ignore the result.
  178. return std::move(
  179. spvtools::DiagnosticStream({}, consumer(), "", SPV_ERROR_INVALID_BINARY)
  180. << name() << ": ");
  181. }
  182. spv_result_t GraphicsRobustAccessPass::IsCompatibleModule() {
  183. auto* feature_mgr = context()->get_feature_mgr();
  184. if (!feature_mgr->HasCapability(SpvCapabilityShader))
  185. return Fail() << "Can only process Shader modules";
  186. if (feature_mgr->HasCapability(SpvCapabilityVariablePointers))
  187. return Fail() << "Can't process modules with VariablePointers capability";
  188. if (feature_mgr->HasCapability(SpvCapabilityVariablePointersStorageBuffer))
  189. return Fail() << "Can't process modules with VariablePointersStorageBuffer "
  190. "capability";
  191. if (feature_mgr->HasCapability(SpvCapabilityRuntimeDescriptorArrayEXT)) {
  192. // These have a RuntimeArray outside of Block-decorated struct. There
  193. // is no way to compute the array length from within SPIR-V.
  194. return Fail() << "Can't process modules with RuntimeDescriptorArrayEXT "
  195. "capability";
  196. }
  197. {
  198. auto* inst = context()->module()->GetMemoryModel();
  199. const auto addressing_model = inst->GetSingleWordOperand(0);
  200. if (addressing_model != SpvAddressingModelLogical)
  201. return Fail() << "Addressing model must be Logical. Found "
  202. << inst->PrettyPrint();
  203. }
  204. return SPV_SUCCESS;
  205. }
  206. spv_result_t GraphicsRobustAccessPass::ProcessCurrentModule() {
  207. auto err = IsCompatibleModule();
  208. if (err != SPV_SUCCESS) return err;
  209. ProcessFunction fn = [this](opt::Function* f) { return ProcessAFunction(f); };
  210. module_status_.modified |= context()->ProcessReachableCallTree(fn);
  211. // Need something here. It's the price we pay for easier failure paths.
  212. return SPV_SUCCESS;
  213. }
  214. bool GraphicsRobustAccessPass::ProcessAFunction(opt::Function* function) {
  215. // Ensure that all pointers computed inside a function are within bounds.
  216. // Find the access chains in this block before trying to modify them.
  217. std::vector<Instruction*> access_chains;
  218. std::vector<Instruction*> image_texel_pointers;
  219. for (auto& block : *function) {
  220. for (auto& inst : block) {
  221. switch (inst.opcode()) {
  222. case SpvOpAccessChain:
  223. case SpvOpInBoundsAccessChain:
  224. access_chains.push_back(&inst);
  225. break;
  226. case SpvOpImageTexelPointer:
  227. image_texel_pointers.push_back(&inst);
  228. break;
  229. default:
  230. break;
  231. }
  232. }
  233. }
  234. for (auto* inst : access_chains) {
  235. ClampIndicesForAccessChain(inst);
  236. if (module_status_.failed) return module_status_.modified;
  237. }
  238. for (auto* inst : image_texel_pointers) {
  239. if (SPV_SUCCESS != ClampCoordinateForImageTexelPointer(inst)) break;
  240. }
  241. return module_status_.modified;
  242. }
  243. void GraphicsRobustAccessPass::ClampIndicesForAccessChain(
  244. Instruction* access_chain) {
  245. Instruction& inst = *access_chain;
  246. auto* constant_mgr = context()->get_constant_mgr();
  247. auto* def_use_mgr = context()->get_def_use_mgr();
  248. auto* type_mgr = context()->get_type_mgr();
  249. const bool have_int64_cap =
  250. context()->get_feature_mgr()->HasCapability(SpvCapabilityInt64);
  251. // Replaces one of the OpAccessChain index operands with a new value.
  252. // Updates def-use analysis.
  253. auto replace_index = [this, &inst, def_use_mgr](uint32_t operand_index,
  254. Instruction* new_value) {
  255. inst.SetOperand(operand_index, {new_value->result_id()});
  256. def_use_mgr->AnalyzeInstUse(&inst);
  257. module_status_.modified = true;
  258. return SPV_SUCCESS;
  259. };
  260. // Replaces one of the OpAccesssChain index operands with a clamped value.
  261. // Replace the operand at |operand_index| with the value computed from
  262. // signed_clamp(%old_value, %min_value, %max_value). It also analyzes
  263. // the new instruction and records that them module is modified.
  264. // Assumes %min_value is signed-less-or-equal than %max_value. (All callees
  265. // use 0 for %min_value).
  266. auto clamp_index = [&inst, type_mgr, this, &replace_index](
  267. uint32_t operand_index, Instruction* old_value,
  268. Instruction* min_value, Instruction* max_value) {
  269. auto* clamp_inst =
  270. MakeSClampInst(*type_mgr, old_value, min_value, max_value, &inst);
  271. return replace_index(operand_index, clamp_inst);
  272. };
  273. // Ensures the specified index of access chain |inst| has a value that is
  274. // at most |count| - 1. If the index is already a constant value less than
  275. // |count| then no change is made.
  276. auto clamp_to_literal_count =
  277. [&inst, this, &constant_mgr, &type_mgr, have_int64_cap, &replace_index,
  278. &clamp_index](uint32_t operand_index, uint64_t count) -> spv_result_t {
  279. Instruction* index_inst =
  280. this->GetDef(inst.GetSingleWordOperand(operand_index));
  281. const auto* index_type =
  282. type_mgr->GetType(index_inst->type_id())->AsInteger();
  283. assert(index_type);
  284. const auto index_width = index_type->width();
  285. if (count <= 1) {
  286. // Replace the index with 0.
  287. return replace_index(operand_index, GetValueForType(0, index_type));
  288. }
  289. uint64_t maxval = count - 1;
  290. // Compute the bit width of a viable type to hold |maxval|.
  291. // Look for a bit width, up to 64 bits wide, to fit maxval.
  292. uint32_t maxval_width = index_width;
  293. while ((maxval_width < 64) && (0 != (maxval >> maxval_width))) {
  294. maxval_width *= 2;
  295. }
  296. // Determine the type for |maxval|.
  297. uint32_t next_id = context()->module()->IdBound();
  298. analysis::Integer signed_type_for_query(maxval_width, true);
  299. auto* maxval_type =
  300. type_mgr->GetRegisteredType(&signed_type_for_query)->AsInteger();
  301. if (next_id != context()->module()->IdBound()) {
  302. module_status_.modified = true;
  303. }
  304. // Access chain indices are treated as signed, so limit the maximum value
  305. // of the index so it will always be positive for a signed clamp operation.
  306. maxval = std::min(maxval, ((uint64_t(1) << (maxval_width - 1)) - 1));
  307. if (index_width > 64) {
  308. return this->Fail() << "Can't handle indices wider than 64 bits, found "
  309. "constant index with "
  310. << index_width << " bits as index number "
  311. << operand_index << " of access chain "
  312. << inst.PrettyPrint();
  313. }
  314. // Split into two cases: the current index is a constant, or not.
  315. // If the index is a constant then |index_constant| will not be a null
  316. // pointer. (If index is an |OpConstantNull| then it |index_constant| will
  317. // not be a null pointer.) Since access chain indices must be scalar
  318. // integers, this can't be a spec constant.
  319. if (auto* index_constant = constant_mgr->GetConstantFromInst(index_inst)) {
  320. auto* int_index_constant = index_constant->AsIntConstant();
  321. int64_t value = 0;
  322. // OpAccessChain indices are treated as signed. So get the signed
  323. // constant value here.
  324. if (index_width <= 32) {
  325. value = int64_t(int_index_constant->GetS32BitValue());
  326. } else if (index_width <= 64) {
  327. value = int_index_constant->GetS64BitValue();
  328. }
  329. if (value < 0) {
  330. return replace_index(operand_index, GetValueForType(0, index_type));
  331. } else if (uint64_t(value) <= maxval) {
  332. // Nothing to do.
  333. return SPV_SUCCESS;
  334. } else {
  335. // Replace with maxval.
  336. assert(count > 0); // Already took care of this case above.
  337. return replace_index(operand_index,
  338. GetValueForType(maxval, maxval_type));
  339. }
  340. } else {
  341. // Generate a clamp instruction.
  342. assert(maxval >= 1);
  343. assert(index_width <= 64); // Otherwise, already returned above.
  344. if (index_width >= 64 && !have_int64_cap) {
  345. // An inconsistent module.
  346. return Fail() << "Access chain index is wider than 64 bits, but Int64 "
  347. "is not declared: "
  348. << index_inst->PrettyPrint();
  349. }
  350. // Widen the index value if necessary
  351. if (maxval_width > index_width) {
  352. // Find the wider type. We only need this case if a constant array
  353. // bound is too big.
  354. // From how we calculated maxval_width, widening won't require adding
  355. // the Int64 capability.
  356. assert(have_int64_cap || maxval_width <= 32);
  357. if (!have_int64_cap && maxval_width >= 64) {
  358. // Be defensive, but this shouldn't happen.
  359. return this->Fail()
  360. << "Clamping index would require adding Int64 capability. "
  361. << "Can't clamp 32-bit index " << operand_index
  362. << " of access chain " << inst.PrettyPrint();
  363. }
  364. index_inst = WidenInteger(index_type->IsSigned(), maxval_width,
  365. index_inst, &inst);
  366. }
  367. // Finally, clamp the index.
  368. return clamp_index(operand_index, index_inst,
  369. GetValueForType(0, maxval_type),
  370. GetValueForType(maxval, maxval_type));
  371. }
  372. return SPV_SUCCESS;
  373. };
  374. // Ensures the specified index of access chain |inst| has a value that is at
  375. // most the value of |count_inst| minus 1, where |count_inst| is treated as an
  376. // unsigned integer. This can log a failure.
  377. auto clamp_to_count = [&inst, this, &constant_mgr, &clamp_to_literal_count,
  378. &clamp_index,
  379. &type_mgr](uint32_t operand_index,
  380. Instruction* count_inst) -> spv_result_t {
  381. Instruction* index_inst =
  382. this->GetDef(inst.GetSingleWordOperand(operand_index));
  383. const auto* index_type =
  384. type_mgr->GetType(index_inst->type_id())->AsInteger();
  385. const auto* count_type =
  386. type_mgr->GetType(count_inst->type_id())->AsInteger();
  387. assert(index_type);
  388. if (const auto* count_constant =
  389. constant_mgr->GetConstantFromInst(count_inst)) {
  390. uint64_t value = 0;
  391. const auto width = count_constant->type()->AsInteger()->width();
  392. if (width <= 32) {
  393. value = count_constant->AsIntConstant()->GetU32BitValue();
  394. } else if (width <= 64) {
  395. value = count_constant->AsIntConstant()->GetU64BitValue();
  396. } else {
  397. return this->Fail() << "Can't handle indices wider than 64 bits, found "
  398. "constant index with "
  399. << index_type->width() << "bits";
  400. }
  401. return clamp_to_literal_count(operand_index, value);
  402. } else {
  403. // Widen them to the same width.
  404. const auto index_width = index_type->width();
  405. const auto count_width = count_type->width();
  406. const auto target_width = std::max(index_width, count_width);
  407. // UConvert requires the result type to have 0 signedness. So enforce
  408. // that here.
  409. auto* wider_type = index_width < count_width ? count_type : index_type;
  410. if (index_type->width() < target_width) {
  411. // Access chain indices are treated as signed integers.
  412. index_inst = WidenInteger(true, target_width, index_inst, &inst);
  413. } else if (count_type->width() < target_width) {
  414. // Assume type sizes are treated as unsigned.
  415. count_inst = WidenInteger(false, target_width, count_inst, &inst);
  416. }
  417. // Compute count - 1.
  418. // It doesn't matter if 1 is signed or unsigned.
  419. auto* one = GetValueForType(1, wider_type);
  420. auto* count_minus_1 = InsertInst(
  421. &inst, SpvOpISub, type_mgr->GetId(wider_type), TakeNextId(),
  422. {{SPV_OPERAND_TYPE_ID, {count_inst->result_id()}},
  423. {SPV_OPERAND_TYPE_ID, {one->result_id()}}});
  424. auto* zero = GetValueForType(0, wider_type);
  425. // Make sure we clamp to an upper bound that is at most the signed max
  426. // for the target type.
  427. const uint64_t max_signed_value =
  428. ((uint64_t(1) << (target_width - 1)) - 1);
  429. // Use unsigned-min to ensure that the result is always non-negative.
  430. // That ensures we satisfy the invariant for SClamp, where the "min"
  431. // argument we give it (zero), is no larger than the third argument.
  432. auto* upper_bound =
  433. MakeUMinInst(*type_mgr, count_minus_1,
  434. GetValueForType(max_signed_value, wider_type), &inst);
  435. // Now clamp the index to this upper bound.
  436. return clamp_index(operand_index, index_inst, zero, upper_bound);
  437. }
  438. return SPV_SUCCESS;
  439. };
  440. const Instruction* base_inst = GetDef(inst.GetSingleWordInOperand(0));
  441. const Instruction* base_type = GetDef(base_inst->type_id());
  442. Instruction* pointee_type = GetDef(base_type->GetSingleWordInOperand(1));
  443. // Walk the indices from earliest to latest, replacing indices with a
  444. // clamped value, and updating the pointee_type. The order matters for
  445. // the case when we have to compute the length of a runtime array. In
  446. // that the algorithm relies on the fact that that the earlier indices
  447. // have already been clamped.
  448. const uint32_t num_operands = inst.NumOperands();
  449. for (uint32_t idx = 3; !module_status_.failed && idx < num_operands; ++idx) {
  450. const uint32_t index_id = inst.GetSingleWordOperand(idx);
  451. Instruction* index_inst = GetDef(index_id);
  452. switch (pointee_type->opcode()) {
  453. case SpvOpTypeMatrix: // Use column count
  454. case SpvOpTypeVector: // Use component count
  455. {
  456. const uint32_t count = pointee_type->GetSingleWordOperand(2);
  457. clamp_to_literal_count(idx, count);
  458. pointee_type = GetDef(pointee_type->GetSingleWordOperand(1));
  459. } break;
  460. case SpvOpTypeArray: {
  461. // The array length can be a spec constant, so go through the general
  462. // case.
  463. Instruction* array_len = GetDef(pointee_type->GetSingleWordOperand(2));
  464. clamp_to_count(idx, array_len);
  465. pointee_type = GetDef(pointee_type->GetSingleWordOperand(1));
  466. } break;
  467. case SpvOpTypeStruct: {
  468. // SPIR-V requires the index to be an OpConstant.
  469. // We need to know the index literal value so we can compute the next
  470. // pointee type.
  471. if (index_inst->opcode() != SpvOpConstant ||
  472. !constant_mgr->GetConstantFromInst(index_inst)
  473. ->type()
  474. ->AsInteger()) {
  475. Fail() << "Member index into struct is not a constant integer: "
  476. << index_inst->PrettyPrint(
  477. SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES)
  478. << "\nin access chain: "
  479. << inst.PrettyPrint(SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES);
  480. return;
  481. }
  482. const auto num_members = pointee_type->NumInOperands();
  483. const auto* index_constant =
  484. constant_mgr->GetConstantFromInst(index_inst);
  485. // Get the sign-extended value, since access index is always treated as
  486. // signed.
  487. const auto index_value = index_constant->GetSignExtendedValue();
  488. if (index_value < 0 || index_value >= num_members) {
  489. Fail() << "Member index " << index_value
  490. << " is out of bounds for struct type: "
  491. << pointee_type->PrettyPrint(
  492. SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES)
  493. << "\nin access chain: "
  494. << inst.PrettyPrint(SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES);
  495. return;
  496. }
  497. pointee_type = GetDef(pointee_type->GetSingleWordInOperand(
  498. static_cast<uint32_t>(index_value)));
  499. // No need to clamp this index. We just checked that it's valid.
  500. } break;
  501. case SpvOpTypeRuntimeArray: {
  502. auto* array_len = MakeRuntimeArrayLengthInst(&inst, idx);
  503. if (!array_len) { // We've already signaled an error.
  504. return;
  505. }
  506. clamp_to_count(idx, array_len);
  507. if (module_status_.failed) return;
  508. pointee_type = GetDef(pointee_type->GetSingleWordOperand(1));
  509. } break;
  510. default:
  511. Fail() << " Unhandled pointee type for access chain "
  512. << pointee_type->PrettyPrint(
  513. SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES);
  514. }
  515. }
  516. }
  517. uint32_t GraphicsRobustAccessPass::GetGlslInsts() {
  518. if (module_status_.glsl_insts_id == 0) {
  519. // This string serves double-duty as raw data for a string and for a vector
  520. // of 32-bit words
  521. const char glsl[] = "GLSL.std.450\0\0\0\0";
  522. const size_t glsl_str_byte_len = 16;
  523. // Use an existing import if we can.
  524. for (auto& inst : context()->module()->ext_inst_imports()) {
  525. const auto& name_words = inst.GetInOperand(0).words;
  526. if (0 == std::strncmp(reinterpret_cast<const char*>(name_words.data()),
  527. glsl, glsl_str_byte_len)) {
  528. module_status_.glsl_insts_id = inst.result_id();
  529. }
  530. }
  531. if (module_status_.glsl_insts_id == 0) {
  532. // Make a new import instruction.
  533. module_status_.glsl_insts_id = TakeNextId();
  534. std::vector<uint32_t> words(glsl_str_byte_len / sizeof(uint32_t));
  535. std::memcpy(words.data(), glsl, glsl_str_byte_len);
  536. auto import_inst = MakeUnique<Instruction>(
  537. context(), SpvOpExtInstImport, 0, module_status_.glsl_insts_id,
  538. std::initializer_list<Operand>{
  539. Operand{SPV_OPERAND_TYPE_LITERAL_STRING, std::move(words)}});
  540. Instruction* inst = import_inst.get();
  541. context()->module()->AddExtInstImport(std::move(import_inst));
  542. module_status_.modified = true;
  543. context()->AnalyzeDefUse(inst);
  544. // Reanalyze the feature list, since we added an extended instruction
  545. // set improt.
  546. context()->get_feature_mgr()->Analyze(context()->module());
  547. }
  548. }
  549. return module_status_.glsl_insts_id;
  550. }
  551. opt::Instruction* opt::GraphicsRobustAccessPass::GetValueForType(
  552. uint64_t value, const analysis::Integer* type) {
  553. auto* mgr = context()->get_constant_mgr();
  554. assert(type->width() <= 64);
  555. std::vector<uint32_t> words;
  556. words.push_back(uint32_t(value));
  557. if (type->width() > 32) {
  558. words.push_back(uint32_t(value >> 32u));
  559. }
  560. const auto* constant = mgr->GetConstant(type, words);
  561. return mgr->GetDefiningInstruction(
  562. constant, context()->get_type_mgr()->GetTypeInstruction(type));
  563. }
  564. opt::Instruction* opt::GraphicsRobustAccessPass::WidenInteger(
  565. bool sign_extend, uint32_t bit_width, Instruction* value,
  566. Instruction* before_inst) {
  567. analysis::Integer unsigned_type_for_query(bit_width, false);
  568. auto* type_mgr = context()->get_type_mgr();
  569. auto* unsigned_type = type_mgr->GetRegisteredType(&unsigned_type_for_query);
  570. auto type_id = context()->get_type_mgr()->GetId(unsigned_type);
  571. auto conversion_id = TakeNextId();
  572. auto* conversion = InsertInst(
  573. before_inst, (sign_extend ? SpvOpSConvert : SpvOpUConvert), type_id,
  574. conversion_id, {{SPV_OPERAND_TYPE_ID, {value->result_id()}}});
  575. return conversion;
  576. }
  577. Instruction* GraphicsRobustAccessPass::MakeUMinInst(
  578. const analysis::TypeManager& tm, Instruction* x, Instruction* y,
  579. Instruction* where) {
  580. // Get IDs of instructions we'll be referencing. Evaluate them before calling
  581. // the function so we force a deterministic ordering in case both of them need
  582. // to take a new ID.
  583. const uint32_t glsl_insts_id = GetGlslInsts();
  584. uint32_t smin_id = TakeNextId();
  585. const auto xwidth = tm.GetType(x->type_id())->AsInteger()->width();
  586. const auto ywidth = tm.GetType(y->type_id())->AsInteger()->width();
  587. assert(xwidth == ywidth);
  588. (void)xwidth;
  589. (void)ywidth;
  590. auto* smin_inst = InsertInst(
  591. where, SpvOpExtInst, x->type_id(), smin_id,
  592. {
  593. {SPV_OPERAND_TYPE_ID, {glsl_insts_id}},
  594. {SPV_OPERAND_TYPE_EXTENSION_INSTRUCTION_NUMBER, {GLSLstd450UMin}},
  595. {SPV_OPERAND_TYPE_ID, {x->result_id()}},
  596. {SPV_OPERAND_TYPE_ID, {y->result_id()}},
  597. });
  598. return smin_inst;
  599. }
  600. Instruction* GraphicsRobustAccessPass::MakeSClampInst(
  601. const analysis::TypeManager& tm, Instruction* x, Instruction* min,
  602. Instruction* max, Instruction* where) {
  603. // Get IDs of instructions we'll be referencing. Evaluate them before calling
  604. // the function so we force a deterministic ordering in case both of them need
  605. // to take a new ID.
  606. const uint32_t glsl_insts_id = GetGlslInsts();
  607. uint32_t clamp_id = TakeNextId();
  608. const auto xwidth = tm.GetType(x->type_id())->AsInteger()->width();
  609. const auto minwidth = tm.GetType(min->type_id())->AsInteger()->width();
  610. const auto maxwidth = tm.GetType(max->type_id())->AsInteger()->width();
  611. assert(xwidth == minwidth);
  612. assert(xwidth == maxwidth);
  613. (void)xwidth;
  614. (void)minwidth;
  615. (void)maxwidth;
  616. auto* clamp_inst = InsertInst(
  617. where, SpvOpExtInst, x->type_id(), clamp_id,
  618. {
  619. {SPV_OPERAND_TYPE_ID, {glsl_insts_id}},
  620. {SPV_OPERAND_TYPE_EXTENSION_INSTRUCTION_NUMBER, {GLSLstd450SClamp}},
  621. {SPV_OPERAND_TYPE_ID, {x->result_id()}},
  622. {SPV_OPERAND_TYPE_ID, {min->result_id()}},
  623. {SPV_OPERAND_TYPE_ID, {max->result_id()}},
  624. });
  625. return clamp_inst;
  626. }
  627. Instruction* GraphicsRobustAccessPass::MakeRuntimeArrayLengthInst(
  628. Instruction* access_chain, uint32_t operand_index) {
  629. // The Index parameter to the access chain at |operand_index| is indexing
  630. // *into* the runtime-array. To get the number of elements in the runtime
  631. // array we need a pointer to the Block-decorated struct that contains the
  632. // runtime array. So conceptually we have to go 2 steps backward in the
  633. // access chain. The two steps backward might forces us to traverse backward
  634. // across multiple dominating instructions.
  635. auto* type_mgr = context()->get_type_mgr();
  636. // How many access chain indices do we have to unwind to find the pointer
  637. // to the struct containing the runtime array?
  638. uint32_t steps_remaining = 2;
  639. // Find or create an instruction computing the pointer to the structure
  640. // containing the runtime array.
  641. // Walk backward through pointer address calculations until we either get
  642. // to exactly the right base pointer, or to an access chain instruction
  643. // that we can replicate but truncate to compute the address of the right
  644. // struct.
  645. Instruction* current_access_chain = access_chain;
  646. Instruction* pointer_to_containing_struct = nullptr;
  647. while (steps_remaining > 0) {
  648. switch (current_access_chain->opcode()) {
  649. case SpvOpCopyObject:
  650. // Whoops. Walk right through this one.
  651. current_access_chain =
  652. GetDef(current_access_chain->GetSingleWordInOperand(0));
  653. break;
  654. case SpvOpAccessChain:
  655. case SpvOpInBoundsAccessChain: {
  656. const int first_index_operand = 3;
  657. // How many indices in this access chain contribute to getting us
  658. // to an element in the runtime array?
  659. const auto num_contributing_indices =
  660. current_access_chain == access_chain
  661. ? operand_index - (first_index_operand - 1)
  662. : current_access_chain->NumInOperands() - 1 /* skip the base */;
  663. Instruction* base =
  664. GetDef(current_access_chain->GetSingleWordInOperand(0));
  665. if (num_contributing_indices == steps_remaining) {
  666. // The base pointer points to the structure.
  667. pointer_to_containing_struct = base;
  668. steps_remaining = 0;
  669. break;
  670. } else if (num_contributing_indices < steps_remaining) {
  671. // Peel off the index and keep going backward.
  672. steps_remaining -= num_contributing_indices;
  673. current_access_chain = base;
  674. } else {
  675. // This access chain has more indices than needed. Generate a new
  676. // access chain instruction, but truncating the list of indices.
  677. const int base_operand = 2;
  678. // We'll use the base pointer and the indices up to but not including
  679. // the one indexing into the runtime array.
  680. Instruction::OperandList ops;
  681. // Use the base pointer
  682. ops.push_back(current_access_chain->GetOperand(base_operand));
  683. const uint32_t num_indices_to_keep =
  684. num_contributing_indices - steps_remaining - 1;
  685. for (uint32_t i = 0; i <= num_indices_to_keep; i++) {
  686. ops.push_back(
  687. current_access_chain->GetOperand(first_index_operand + i));
  688. }
  689. // Compute the type of the result of the new access chain. Start at
  690. // the base and walk the indices in a forward direction.
  691. auto* constant_mgr = context()->get_constant_mgr();
  692. std::vector<uint32_t> indices_for_type;
  693. for (uint32_t i = 0; i < ops.size() - 1; i++) {
  694. uint32_t index_for_type_calculation = 0;
  695. Instruction* index =
  696. GetDef(current_access_chain->GetSingleWordOperand(
  697. first_index_operand + i));
  698. if (auto* index_constant =
  699. constant_mgr->GetConstantFromInst(index)) {
  700. // We only need 32 bits. For the type calculation, it's sufficient
  701. // to take the zero-extended value. It only matters for the struct
  702. // case, and struct member indices are unsigned.
  703. index_for_type_calculation =
  704. uint32_t(index_constant->GetZeroExtendedValue());
  705. } else {
  706. // Indexing into a variably-sized thing like an array. Use 0.
  707. index_for_type_calculation = 0;
  708. }
  709. indices_for_type.push_back(index_for_type_calculation);
  710. }
  711. auto* base_ptr_type = type_mgr->GetType(base->type_id())->AsPointer();
  712. auto* base_pointee_type = base_ptr_type->pointee_type();
  713. auto* new_access_chain_result_pointee_type =
  714. type_mgr->GetMemberType(base_pointee_type, indices_for_type);
  715. const uint32_t new_access_chain_type_id = type_mgr->FindPointerToType(
  716. type_mgr->GetId(new_access_chain_result_pointee_type),
  717. base_ptr_type->storage_class());
  718. // Create the instruction and insert it.
  719. const auto new_access_chain_id = TakeNextId();
  720. auto* new_access_chain =
  721. InsertInst(current_access_chain, current_access_chain->opcode(),
  722. new_access_chain_type_id, new_access_chain_id, ops);
  723. pointer_to_containing_struct = new_access_chain;
  724. steps_remaining = 0;
  725. break;
  726. }
  727. } break;
  728. default:
  729. Fail() << "Unhandled access chain in logical addressing mode passes "
  730. "through "
  731. << current_access_chain->PrettyPrint(
  732. SPV_BINARY_TO_TEXT_OPTION_SHOW_BYTE_OFFSET |
  733. SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES);
  734. return nullptr;
  735. }
  736. }
  737. assert(pointer_to_containing_struct);
  738. auto* pointee_type =
  739. type_mgr->GetType(pointer_to_containing_struct->type_id())
  740. ->AsPointer()
  741. ->pointee_type();
  742. auto* struct_type = pointee_type->AsStruct();
  743. const uint32_t member_index_of_runtime_array =
  744. uint32_t(struct_type->element_types().size() - 1);
  745. // Create the length-of-array instruction before the original access chain,
  746. // but after the generation of the pointer to the struct.
  747. const auto array_len_id = TakeNextId();
  748. analysis::Integer uint_type_for_query(32, false);
  749. auto* uint_type = type_mgr->GetRegisteredType(&uint_type_for_query);
  750. auto* array_len = InsertInst(
  751. access_chain, SpvOpArrayLength, type_mgr->GetId(uint_type), array_len_id,
  752. {{SPV_OPERAND_TYPE_ID, {pointer_to_containing_struct->result_id()}},
  753. {SPV_OPERAND_TYPE_LITERAL_INTEGER, {member_index_of_runtime_array}}});
  754. return array_len;
  755. }
  756. spv_result_t GraphicsRobustAccessPass::ClampCoordinateForImageTexelPointer(
  757. opt::Instruction* image_texel_pointer) {
  758. // TODO(dneto): Write tests for this code.
  759. // TODO(dneto): Use signed-clamp
  760. (void)(image_texel_pointer);
  761. return SPV_SUCCESS;
  762. // Do not compile this code until it is ready to be used.
  763. #if 0
  764. // Example:
  765. // %texel_ptr = OpImageTexelPointer %texel_ptr_type %image_ptr %coord
  766. // %sample
  767. //
  768. // We want to clamp %coord components between vector-0 and the result
  769. // of OpImageQuerySize acting on the underlying image. So insert:
  770. // %image = OpLoad %image_type %image_ptr
  771. // %query_size = OpImageQuerySize %query_size_type %image
  772. //
  773. // For a multi-sampled image, %sample is the sample index, and we need
  774. // to clamp it between zero and the number of samples in the image.
  775. // %sample_count = OpImageQuerySamples %uint %image
  776. // %max_sample_index = OpISub %uint %sample_count %uint_1
  777. // For non-multi-sampled images, the sample index must be constant zero.
  778. auto* def_use_mgr = context()->get_def_use_mgr();
  779. auto* type_mgr = context()->get_type_mgr();
  780. auto* constant_mgr = context()->get_constant_mgr();
  781. auto* image_ptr = GetDef(image_texel_pointer->GetSingleWordInOperand(0));
  782. auto* image_ptr_type = GetDef(image_ptr->type_id());
  783. auto image_type_id = image_ptr_type->GetSingleWordInOperand(1);
  784. auto* image_type = GetDef(image_type_id);
  785. auto* coord = GetDef(image_texel_pointer->GetSingleWordInOperand(1));
  786. auto* samples = GetDef(image_texel_pointer->GetSingleWordInOperand(2));
  787. // We will modify the module, at least by adding image query instructions.
  788. module_status_.modified = true;
  789. // Declare the ImageQuery capability if the module doesn't already have it.
  790. auto* feature_mgr = context()->get_feature_mgr();
  791. if (!feature_mgr->HasCapability(SpvCapabilityImageQuery)) {
  792. auto cap = MakeUnique<Instruction>(
  793. context(), SpvOpCapability, 0, 0,
  794. std::initializer_list<Operand>{
  795. {SPV_OPERAND_TYPE_CAPABILITY, {SpvCapabilityImageQuery}}});
  796. def_use_mgr->AnalyzeInstDefUse(cap.get());
  797. context()->AddCapability(std::move(cap));
  798. feature_mgr->Analyze(context()->module());
  799. }
  800. // OpImageTexelPointer is used to translate a coordinate and sample index
  801. // into an address for use with an atomic operation. That is, it may only
  802. // used with what Vulkan calls a "storage image"
  803. // (OpTypeImage parameter Sampled=2).
  804. // Note: A storage image never has a level-of-detail associated with it.
  805. // Constraints on the sample id:
  806. // - Only 2D images can be multi-sampled: OpTypeImage parameter MS=1
  807. // only if Dim=2D.
  808. // - Non-multi-sampled images (OpTypeImage parameter MS=0) must use
  809. // sample ID to a constant 0.
  810. // The coordinate is treated as unsigned, and should be clamped against the
  811. // image "size", returned by OpImageQuerySize. (Note: OpImageQuerySizeLod
  812. // is only usable with a sampled image, i.e. its image type has Sampled=1).
  813. // Determine the result type for the OpImageQuerySize.
  814. // For non-arrayed images:
  815. // non-Cube:
  816. // - Always the same as the coordinate type
  817. // Cube:
  818. // - Use all but the last component of the coordinate (which is the face
  819. // index from 0 to 5).
  820. // For arrayed images (in Vulkan the Dim is 1D, 2D, or Cube):
  821. // non-Cube:
  822. // - A vector with the components in the coordinate, and one more for
  823. // the layer index.
  824. // Cube:
  825. // - The same as the coordinate type: 3-element integer vector.
  826. // - The third component from the size query is the layer count.
  827. // - The third component in the texel pointer calculation is
  828. // 6 * layer + face, where 0 <= face < 6.
  829. // Cube: Use all but the last component of the coordinate (which is the face
  830. // index from 0 to 5).
  831. const auto dim = SpvDim(image_type->GetSingleWordInOperand(1));
  832. const bool arrayed = image_type->GetSingleWordInOperand(3) == 1;
  833. const bool multisampled = image_type->GetSingleWordInOperand(4) != 0;
  834. const auto query_num_components = [dim, arrayed, this]() -> int {
  835. const int arrayness_bonus = arrayed ? 1 : 0;
  836. int num_coords = 0;
  837. switch (dim) {
  838. case SpvDimBuffer:
  839. case SpvDim1D:
  840. num_coords = 1;
  841. break;
  842. case SpvDimCube:
  843. // For cube, we need bounds for x, y, but not face.
  844. case SpvDimRect:
  845. case SpvDim2D:
  846. num_coords = 2;
  847. break;
  848. case SpvDim3D:
  849. num_coords = 3;
  850. break;
  851. case SpvDimSubpassData:
  852. case SpvDimMax:
  853. return Fail() << "Invalid image dimension for OpImageTexelPointer: "
  854. << int(dim);
  855. break;
  856. }
  857. return num_coords + arrayness_bonus;
  858. }();
  859. const auto* coord_component_type = [type_mgr, coord]() {
  860. const analysis::Type* coord_type = type_mgr->GetType(coord->type_id());
  861. if (auto* vector_type = coord_type->AsVector()) {
  862. return vector_type->element_type()->AsInteger();
  863. }
  864. return coord_type->AsInteger();
  865. }();
  866. // For now, only handle 32-bit case for coordinates.
  867. if (!coord_component_type) {
  868. return Fail() << " Coordinates for OpImageTexelPointer are not integral: "
  869. << image_texel_pointer->PrettyPrint(
  870. SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES);
  871. }
  872. if (coord_component_type->width() != 32) {
  873. return Fail() << " Expected OpImageTexelPointer coordinate components to "
  874. "be 32-bits wide. They are "
  875. << coord_component_type->width() << " bits. "
  876. << image_texel_pointer->PrettyPrint(
  877. SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES);
  878. }
  879. const auto* query_size_type =
  880. [type_mgr, coord_component_type,
  881. query_num_components]() -> const analysis::Type* {
  882. if (query_num_components == 1) return coord_component_type;
  883. analysis::Vector proposed(coord_component_type, query_num_components);
  884. return type_mgr->GetRegisteredType(&proposed);
  885. }();
  886. const uint32_t image_id = TakeNextId();
  887. auto* image =
  888. InsertInst(image_texel_pointer, SpvOpLoad, image_type_id, image_id,
  889. {{SPV_OPERAND_TYPE_ID, {image_ptr->result_id()}}});
  890. const uint32_t query_size_id = TakeNextId();
  891. auto* query_size =
  892. InsertInst(image_texel_pointer, SpvOpImageQuerySize,
  893. type_mgr->GetTypeInstruction(query_size_type), query_size_id,
  894. {{SPV_OPERAND_TYPE_ID, {image->result_id()}}});
  895. auto* component_1 = constant_mgr->GetConstant(coord_component_type, {1});
  896. const uint32_t component_1_id =
  897. constant_mgr->GetDefiningInstruction(component_1)->result_id();
  898. auto* component_0 = constant_mgr->GetConstant(coord_component_type, {0});
  899. const uint32_t component_0_id =
  900. constant_mgr->GetDefiningInstruction(component_0)->result_id();
  901. // If the image is a cube array, then the last component of the queried
  902. // size is the layer count. In the query, we have to accomodate folding
  903. // in the face index ranging from 0 through 5. The inclusive upper bound
  904. // on the third coordinate therefore is multiplied by 6.
  905. auto* query_size_including_faces = query_size;
  906. if (arrayed && (dim == SpvDimCube)) {
  907. // Multiply the last coordinate by 6.
  908. auto* component_6 = constant_mgr->GetConstant(coord_component_type, {6});
  909. const uint32_t component_6_id =
  910. constant_mgr->GetDefiningInstruction(component_6)->result_id();
  911. assert(query_num_components == 3);
  912. auto* multiplicand = constant_mgr->GetConstant(
  913. query_size_type, {component_1_id, component_1_id, component_6_id});
  914. auto* multiplicand_inst =
  915. constant_mgr->GetDefiningInstruction(multiplicand);
  916. const auto query_size_including_faces_id = TakeNextId();
  917. query_size_including_faces = InsertInst(
  918. image_texel_pointer, SpvOpIMul,
  919. type_mgr->GetTypeInstruction(query_size_type),
  920. query_size_including_faces_id,
  921. {{SPV_OPERAND_TYPE_ID, {query_size_including_faces->result_id()}},
  922. {SPV_OPERAND_TYPE_ID, {multiplicand_inst->result_id()}}});
  923. }
  924. // Make a coordinate-type with all 1 components.
  925. auto* coordinate_1 =
  926. query_num_components == 1
  927. ? component_1
  928. : constant_mgr->GetConstant(
  929. query_size_type,
  930. std::vector<uint32_t>(query_num_components, component_1_id));
  931. // Make a coordinate-type with all 1 components.
  932. auto* coordinate_0 =
  933. query_num_components == 0
  934. ? component_0
  935. : constant_mgr->GetConstant(
  936. query_size_type,
  937. std::vector<uint32_t>(query_num_components, component_0_id));
  938. const uint32_t query_max_including_faces_id = TakeNextId();
  939. auto* query_max_including_faces = InsertInst(
  940. image_texel_pointer, SpvOpISub,
  941. type_mgr->GetTypeInstruction(query_size_type),
  942. query_max_including_faces_id,
  943. {{SPV_OPERAND_TYPE_ID, {query_size_including_faces->result_id()}},
  944. {SPV_OPERAND_TYPE_ID,
  945. {constant_mgr->GetDefiningInstruction(coordinate_1)->result_id()}}});
  946. // Clamp the coordinate
  947. auto* clamp_coord = MakeSClampInst(
  948. *type_mgr, coord, constant_mgr->GetDefiningInstruction(coordinate_0),
  949. query_max_including_faces, image_texel_pointer);
  950. image_texel_pointer->SetInOperand(1, {clamp_coord->result_id()});
  951. // Clamp the sample index
  952. if (multisampled) {
  953. // Get the sample count via OpImageQuerySamples
  954. const auto query_samples_id = TakeNextId();
  955. auto* query_samples = InsertInst(
  956. image_texel_pointer, SpvOpImageQuerySamples,
  957. constant_mgr->GetDefiningInstruction(component_0)->type_id(),
  958. query_samples_id, {{SPV_OPERAND_TYPE_ID, {image->result_id()}}});
  959. const auto max_samples_id = TakeNextId();
  960. auto* max_samples = InsertInst(image_texel_pointer, SpvOpImageQuerySamples,
  961. query_samples->type_id(), max_samples_id,
  962. {{SPV_OPERAND_TYPE_ID, {query_samples_id}},
  963. {SPV_OPERAND_TYPE_ID, {component_1_id}}});
  964. auto* clamp_samples = MakeSClampInst(
  965. *type_mgr, samples, constant_mgr->GetDefiningInstruction(coordinate_0),
  966. max_samples, image_texel_pointer);
  967. image_texel_pointer->SetInOperand(2, {clamp_samples->result_id()});
  968. } else {
  969. // Just replace it with 0. Don't even check what was there before.
  970. image_texel_pointer->SetInOperand(2, {component_0_id});
  971. }
  972. def_use_mgr->AnalyzeInstUse(image_texel_pointer);
  973. return SPV_SUCCESS;
  974. #endif
  975. }
  976. opt::Instruction* GraphicsRobustAccessPass::InsertInst(
  977. opt::Instruction* where_inst, SpvOp opcode, uint32_t type_id,
  978. uint32_t result_id, const Instruction::OperandList& operands) {
  979. module_status_.modified = true;
  980. auto* result = where_inst->InsertBefore(
  981. MakeUnique<Instruction>(context(), opcode, type_id, result_id, operands));
  982. context()->get_def_use_mgr()->AnalyzeInstDefUse(result);
  983. auto* basic_block = context()->get_instr_block(where_inst);
  984. context()->set_instr_block(result, basic_block);
  985. return result;
  986. }
  987. } // namespace opt
  988. } // namespace spvtools