particle_system.cpp 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751
  1. /*
  2. * Copyright 2011-2021 Branimir Karadzic. All rights reserved.
  3. * License: https://github.com/bkaradzic/bgfx#license-bsd-2-clause
  4. */
  5. #include <bgfx/bgfx.h>
  6. #include <bgfx/embedded_shader.h>
  7. #include "particle_system.h"
  8. #include "../bgfx_utils.h"
  9. #include "../packrect.h"
  10. #include <bx/easing.h>
  11. #include <bx/handlealloc.h>
  12. #include "vs_particle.bin.h"
  13. #include "fs_particle.bin.h"
  14. static const bgfx::EmbeddedShader s_embeddedShaders[] =
  15. {
  16. BGFX_EMBEDDED_SHADER(vs_particle),
  17. BGFX_EMBEDDED_SHADER(fs_particle),
  18. BGFX_EMBEDDED_SHADER_END()
  19. };
  20. struct PosColorTexCoord0Vertex
  21. {
  22. float m_x;
  23. float m_y;
  24. float m_z;
  25. uint32_t m_abgr;
  26. float m_u;
  27. float m_v;
  28. float m_blend;
  29. float m_angle;
  30. static void init()
  31. {
  32. ms_layout
  33. .begin()
  34. .add(bgfx::Attrib::Position, 3, bgfx::AttribType::Float)
  35. .add(bgfx::Attrib::Color0, 4, bgfx::AttribType::Uint8, true)
  36. .add(bgfx::Attrib::TexCoord0, 4, bgfx::AttribType::Float)
  37. .end();
  38. }
  39. static bgfx::VertexLayout ms_layout;
  40. };
  41. bgfx::VertexLayout PosColorTexCoord0Vertex::ms_layout;
  42. void EmitterUniforms::reset()
  43. {
  44. m_position[0] = 0.0f;
  45. m_position[1] = 0.0f;
  46. m_position[2] = 0.0f;
  47. m_angle[0] = 0.0f;
  48. m_angle[1] = 0.0f;
  49. m_angle[2] = 0.0f;
  50. m_particlesPerSecond = 0;
  51. m_offsetStart[0] = 0.0f;
  52. m_offsetStart[1] = 1.0f;
  53. m_offsetEnd[0] = 2.0f;
  54. m_offsetEnd[1] = 3.0f;
  55. m_rgba[0] = 0x00ffffff;
  56. m_rgba[1] = UINT32_MAX;
  57. m_rgba[2] = UINT32_MAX;
  58. m_rgba[3] = UINT32_MAX;
  59. m_rgba[4] = 0x00ffffff;
  60. m_blendStart[0] = 0.8f;
  61. m_blendStart[1] = 1.0f;
  62. m_blendEnd[0] = 0.0f;
  63. m_blendEnd[1] = 0.2f;
  64. m_scaleStart[0] = 0.1f;
  65. m_scaleStart[1] = 0.2f;
  66. m_scaleEnd[0] = 0.3f;
  67. m_scaleEnd[1] = 0.4f;
  68. m_lifeSpan[0] = 1.0f;
  69. m_lifeSpan[1] = 2.0f;
  70. m_gravityScale = 0.0f;
  71. m_easePos = bx::Easing::Linear;
  72. m_easeRgba = bx::Easing::Linear;
  73. m_easeBlend = bx::Easing::Linear;
  74. m_easeScale = bx::Easing::Linear;
  75. }
  76. namespace ps
  77. {
  78. struct Particle
  79. {
  80. bx::Vec3 start;
  81. bx::Vec3 end[2];
  82. float blendStart;
  83. float blendEnd;
  84. float scaleStart;
  85. float scaleEnd;
  86. uint32_t rgba[5];
  87. float life;
  88. float lifeSpan;
  89. };
  90. struct ParticleSort
  91. {
  92. float dist;
  93. uint32_t idx;
  94. };
  95. inline uint32_t toAbgr(const float* _rgba)
  96. {
  97. return 0
  98. | (uint8_t(_rgba[0]*255.0f)<< 0)
  99. | (uint8_t(_rgba[1]*255.0f)<< 8)
  100. | (uint8_t(_rgba[2]*255.0f)<<16)
  101. | (uint8_t(_rgba[3]*255.0f)<<24)
  102. ;
  103. }
  104. inline uint32_t toAbgr(float _rr, float _gg, float _bb, float _aa)
  105. {
  106. return 0
  107. | (uint8_t(_rr*255.0f)<< 0)
  108. | (uint8_t(_gg*255.0f)<< 8)
  109. | (uint8_t(_bb*255.0f)<<16)
  110. | (uint8_t(_aa*255.0f)<<24)
  111. ;
  112. }
  113. #define SPRITE_TEXTURE_SIZE 1024
  114. template<uint16_t MaxHandlesT = 256, uint16_t TextureSizeT = 1024>
  115. struct SpriteT
  116. {
  117. SpriteT()
  118. : m_ra(TextureSizeT, TextureSizeT)
  119. {
  120. }
  121. EmitterSpriteHandle create(uint16_t _width, uint16_t _height)
  122. {
  123. EmitterSpriteHandle handle = { bx::kInvalidHandle };
  124. if (m_handleAlloc.getNumHandles() < m_handleAlloc.getMaxHandles() )
  125. {
  126. Pack2D pack;
  127. if (m_ra.find(_width, _height, pack) )
  128. {
  129. handle.idx = m_handleAlloc.alloc();
  130. m_pack[handle.idx] = pack;
  131. }
  132. }
  133. return handle;
  134. }
  135. void destroy(EmitterSpriteHandle _sprite)
  136. {
  137. const Pack2D& pack = m_pack[_sprite.idx];
  138. m_ra.clear(pack);
  139. m_handleAlloc.free(_sprite.idx);
  140. }
  141. const Pack2D& get(EmitterSpriteHandle _sprite) const
  142. {
  143. return m_pack[_sprite.idx];
  144. }
  145. bx::HandleAllocT<MaxHandlesT> m_handleAlloc;
  146. Pack2D m_pack[MaxHandlesT];
  147. RectPack2DT<256> m_ra;
  148. };
  149. struct Emitter
  150. {
  151. void create(EmitterShape::Enum _shape, EmitterDirection::Enum _direction, uint32_t _maxParticles);
  152. void destroy();
  153. void reset()
  154. {
  155. m_dt = 0.0f;
  156. m_uniforms.reset();
  157. m_num = 0;
  158. bx::memSet(&m_aabb, 0, sizeof(bx::Aabb) );
  159. m_rng.reset();
  160. }
  161. void update(float _dt)
  162. {
  163. uint32_t num = m_num;
  164. for (uint32_t ii = 0; ii < num; ++ii)
  165. {
  166. Particle& particle = m_particles[ii];
  167. particle.life += _dt * 1.0f/particle.lifeSpan;
  168. if (particle.life > 1.0f)
  169. {
  170. if (ii != num-1)
  171. {
  172. bx::memCopy(&particle, &m_particles[num-1], sizeof(Particle) );
  173. --ii;
  174. }
  175. --num;
  176. }
  177. }
  178. m_num = num;
  179. if (0 < m_uniforms.m_particlesPerSecond)
  180. {
  181. spawn(_dt);
  182. }
  183. }
  184. void spawn(float _dt)
  185. {
  186. float mtx[16];
  187. bx::mtxSRT(mtx
  188. , 1.0f, 1.0f, 1.0f
  189. , m_uniforms.m_angle[0], m_uniforms.m_angle[1], m_uniforms.m_angle[2]
  190. , m_uniforms.m_position[0], m_uniforms.m_position[1], m_uniforms.m_position[2]
  191. );
  192. const float timePerParticle = 1.0f/m_uniforms.m_particlesPerSecond;
  193. m_dt += _dt;
  194. const uint32_t numParticles = uint32_t(m_dt / timePerParticle);
  195. m_dt -= numParticles * timePerParticle;
  196. constexpr bx::Vec3 up = { 0.0f, 1.0f, 0.0f };
  197. float time = 0.0f;
  198. for (uint32_t ii = 0
  199. ; ii < numParticles && m_num < m_max
  200. ; ++ii
  201. )
  202. {
  203. Particle& particle = m_particles[m_num];
  204. m_num++;
  205. bx::Vec3 pos(bx::init::None);
  206. switch (m_shape)
  207. {
  208. default:
  209. case EmitterShape::Sphere:
  210. pos = bx::randUnitSphere(&m_rng);
  211. break;
  212. case EmitterShape::Hemisphere:
  213. pos = bx::randUnitHemisphere(&m_rng, up);
  214. break;
  215. case EmitterShape::Circle:
  216. pos = bx::randUnitCircle(&m_rng);
  217. break;
  218. case EmitterShape::Disc:
  219. {
  220. const bx::Vec3 tmp = bx::randUnitCircle(&m_rng);
  221. pos = bx::mul(tmp, bx::frnd(&m_rng) );
  222. }
  223. break;
  224. case EmitterShape::Rect:
  225. pos =
  226. {
  227. bx::frndh(&m_rng),
  228. 0.0f,
  229. bx::frndh(&m_rng),
  230. };
  231. break;
  232. }
  233. bx::Vec3 dir(bx::init::None);
  234. switch (m_direction)
  235. {
  236. default:
  237. case EmitterDirection::Up:
  238. dir = up;
  239. break;
  240. case EmitterDirection::Outward:
  241. dir = bx::normalize(pos);
  242. break;
  243. }
  244. const float startOffset = bx::lerp(m_uniforms.m_offsetStart[0], m_uniforms.m_offsetStart[1], bx::frnd(&m_rng) );
  245. const bx::Vec3 start = bx::mul(pos, startOffset);
  246. const float endOffset = bx::lerp(m_uniforms.m_offsetEnd[0], m_uniforms.m_offsetEnd[1], bx::frnd(&m_rng) );
  247. const bx::Vec3 tmp1 = bx::mul(dir, endOffset);
  248. const bx::Vec3 end = bx::add(tmp1, start);
  249. particle.life = time;
  250. particle.lifeSpan = bx::lerp(m_uniforms.m_lifeSpan[0], m_uniforms.m_lifeSpan[1], bx::frnd(&m_rng) );
  251. const bx::Vec3 gravity = { 0.0f, -9.81f * m_uniforms.m_gravityScale * bx::square(particle.lifeSpan), 0.0f };
  252. particle.start = bx::mul(start, mtx);
  253. particle.end[0] = bx::mul(end, mtx);
  254. particle.end[1] = bx::add(particle.end[0], gravity);
  255. bx::memCopy(particle.rgba, m_uniforms.m_rgba, BX_COUNTOF(m_uniforms.m_rgba)*sizeof(uint32_t) );
  256. particle.blendStart = bx::lerp(m_uniforms.m_blendStart[0], m_uniforms.m_blendStart[1], bx::frnd(&m_rng) );
  257. particle.blendEnd = bx::lerp(m_uniforms.m_blendEnd[0], m_uniforms.m_blendEnd[1], bx::frnd(&m_rng) );
  258. particle.scaleStart = bx::lerp(m_uniforms.m_scaleStart[0], m_uniforms.m_scaleStart[1], bx::frnd(&m_rng) );
  259. particle.scaleEnd = bx::lerp(m_uniforms.m_scaleEnd[0], m_uniforms.m_scaleEnd[1], bx::frnd(&m_rng) );
  260. time += timePerParticle;
  261. }
  262. }
  263. uint32_t render(const float _uv[4], const float* _mtxView, const bx::Vec3& _eye, uint32_t _first, uint32_t _max, ParticleSort* _outSort, PosColorTexCoord0Vertex* _outVertices)
  264. {
  265. bx::EaseFn easeRgba = bx::getEaseFunc(m_uniforms.m_easeRgba);
  266. bx::EaseFn easePos = bx::getEaseFunc(m_uniforms.m_easePos);
  267. bx::EaseFn easeBlend = bx::getEaseFunc(m_uniforms.m_easeBlend);
  268. bx::EaseFn easeScale = bx::getEaseFunc(m_uniforms.m_easeScale);
  269. bx::Aabb aabb =
  270. {
  271. { bx::kInfinity, bx::kInfinity, bx::kInfinity },
  272. { -bx::kInfinity, -bx::kInfinity, -bx::kInfinity },
  273. };
  274. for (uint32_t jj = 0, num = m_num, current = _first
  275. ; jj < num && current < _max
  276. ; ++jj, ++current
  277. )
  278. {
  279. const Particle& particle = m_particles[jj];
  280. const float ttPos = easePos(particle.life);
  281. const float ttScale = easeScale(particle.life);
  282. const float ttBlend = bx::clamp(easeBlend(particle.life), 0.0f, 1.0f);
  283. const float ttRgba = bx::clamp(easeRgba(particle.life), 0.0f, 1.0f);
  284. const bx::Vec3 p0 = bx::lerp(particle.start, particle.end[0], ttPos);
  285. const bx::Vec3 p1 = bx::lerp(particle.end[0], particle.end[1], ttPos);
  286. const bx::Vec3 pos = bx::lerp(p0, p1, ttPos);
  287. ParticleSort& sort = _outSort[current];
  288. const bx::Vec3 tmp0 = bx::sub(_eye, pos);
  289. sort.dist = bx::length(tmp0);
  290. sort.idx = current;
  291. uint32_t idx = uint32_t(ttRgba*4);
  292. float ttmod = bx::mod(ttRgba, 0.25f)/0.25f;
  293. uint32_t rgbaStart = particle.rgba[idx];
  294. uint32_t rgbaEnd = particle.rgba[idx+1];
  295. float rr = bx::lerp( ( (uint8_t*)&rgbaStart)[0], ( (uint8_t*)&rgbaEnd)[0], ttmod)/255.0f;
  296. float gg = bx::lerp( ( (uint8_t*)&rgbaStart)[1], ( (uint8_t*)&rgbaEnd)[1], ttmod)/255.0f;
  297. float bb = bx::lerp( ( (uint8_t*)&rgbaStart)[2], ( (uint8_t*)&rgbaEnd)[2], ttmod)/255.0f;
  298. float aa = bx::lerp( ( (uint8_t*)&rgbaStart)[3], ( (uint8_t*)&rgbaEnd)[3], ttmod)/255.0f;
  299. float blend = bx::lerp(particle.blendStart, particle.blendEnd, ttBlend);
  300. float scale = bx::lerp(particle.scaleStart, particle.scaleEnd, ttScale);
  301. uint32_t abgr = toAbgr(rr, gg, bb, aa);
  302. const bx::Vec3 udir = { _mtxView[0]*scale, _mtxView[4]*scale, _mtxView[8]*scale };
  303. const bx::Vec3 vdir = { _mtxView[1]*scale, _mtxView[5]*scale, _mtxView[9]*scale };
  304. PosColorTexCoord0Vertex* vertex = &_outVertices[current*4];
  305. const bx::Vec3 ul = bx::sub(bx::sub(pos, udir), vdir);
  306. bx::store(&vertex->m_x, ul);
  307. aabbExpand(aabb, ul);
  308. vertex->m_abgr = abgr;
  309. vertex->m_u = _uv[0];
  310. vertex->m_v = _uv[1];
  311. vertex->m_blend = blend;
  312. ++vertex;
  313. const bx::Vec3 ur = bx::sub(bx::add(pos, udir), vdir);
  314. bx::store(&vertex->m_x, ur);
  315. aabbExpand(aabb, ur);
  316. vertex->m_abgr = abgr;
  317. vertex->m_u = _uv[2];
  318. vertex->m_v = _uv[1];
  319. vertex->m_blend = blend;
  320. ++vertex;
  321. const bx::Vec3 br = bx::add(bx::add(pos, udir), vdir);
  322. bx::store(&vertex->m_x, br);
  323. aabbExpand(aabb, br);
  324. vertex->m_abgr = abgr;
  325. vertex->m_u = _uv[2];
  326. vertex->m_v = _uv[3];
  327. vertex->m_blend = blend;
  328. ++vertex;
  329. const bx::Vec3 bl = bx::add(bx::sub(pos, udir), vdir);
  330. bx::store(&vertex->m_x, bl);
  331. aabbExpand(aabb, bl);
  332. vertex->m_abgr = abgr;
  333. vertex->m_u = _uv[0];
  334. vertex->m_v = _uv[3];
  335. vertex->m_blend = blend;
  336. ++vertex;
  337. }
  338. m_aabb = aabb;
  339. return m_num;
  340. }
  341. EmitterShape::Enum m_shape;
  342. EmitterDirection::Enum m_direction;
  343. float m_dt;
  344. bx::RngMwc m_rng;
  345. EmitterUniforms m_uniforms;
  346. bx::Aabb m_aabb;
  347. Particle* m_particles;
  348. uint32_t m_num;
  349. uint32_t m_max;
  350. };
  351. static int32_t particleSortFn(const void* _lhs, const void* _rhs)
  352. {
  353. const ParticleSort& lhs = *(const ParticleSort*)_lhs;
  354. const ParticleSort& rhs = *(const ParticleSort*)_rhs;
  355. return lhs.dist > rhs.dist ? -1 : 1;
  356. }
  357. struct ParticleSystem
  358. {
  359. void init(uint16_t _maxEmitters, bx::AllocatorI* _allocator)
  360. {
  361. m_allocator = _allocator;
  362. if (NULL == _allocator)
  363. {
  364. static bx::DefaultAllocator allocator;
  365. m_allocator = &allocator;
  366. }
  367. m_emitterAlloc = bx::createHandleAlloc(m_allocator, _maxEmitters);
  368. m_emitter = (Emitter*)BX_ALLOC(m_allocator, sizeof(Emitter)*_maxEmitters);
  369. PosColorTexCoord0Vertex::init();
  370. m_num = 0;
  371. s_texColor = bgfx::createUniform("s_texColor", bgfx::UniformType::Sampler);
  372. m_texture = bgfx::createTexture2D(
  373. SPRITE_TEXTURE_SIZE
  374. , SPRITE_TEXTURE_SIZE
  375. , false
  376. , 1
  377. , bgfx::TextureFormat::BGRA8
  378. );
  379. bgfx::RendererType::Enum type = bgfx::getRendererType();
  380. m_particleProgram = bgfx::createProgram(
  381. bgfx::createEmbeddedShader(s_embeddedShaders, type, "vs_particle")
  382. , bgfx::createEmbeddedShader(s_embeddedShaders, type, "fs_particle")
  383. , true
  384. );
  385. }
  386. void shutdown()
  387. {
  388. bgfx::destroy(m_particleProgram);
  389. bgfx::destroy(m_texture);
  390. bgfx::destroy(s_texColor);
  391. bx::destroyHandleAlloc(m_allocator, m_emitterAlloc);
  392. BX_FREE(m_allocator, m_emitter);
  393. m_allocator = NULL;
  394. }
  395. EmitterSpriteHandle createSprite(uint16_t _width, uint16_t _height, const void* _data)
  396. {
  397. EmitterSpriteHandle handle = m_sprite.create(_width, _height);
  398. if (isValid(handle) )
  399. {
  400. const Pack2D& pack = m_sprite.get(handle);
  401. bgfx::updateTexture2D(
  402. m_texture
  403. , 0
  404. , 0
  405. , pack.m_x
  406. , pack.m_y
  407. , pack.m_width
  408. , pack.m_height
  409. , bgfx::copy(_data, pack.m_width*pack.m_height*4)
  410. );
  411. }
  412. return handle;
  413. }
  414. void destroy(EmitterSpriteHandle _handle)
  415. {
  416. m_sprite.destroy(_handle);
  417. }
  418. void update(float _dt)
  419. {
  420. uint32_t numParticles = 0;
  421. for (uint16_t ii = 0, num = m_emitterAlloc->getNumHandles(); ii < num; ++ii)
  422. {
  423. const uint16_t idx = m_emitterAlloc->getHandleAt(ii);
  424. Emitter& emitter = m_emitter[idx];
  425. emitter.update(_dt);
  426. numParticles += emitter.m_num;
  427. }
  428. m_num = numParticles;
  429. }
  430. void render(uint8_t _view, const float* _mtxView, const bx::Vec3& _eye)
  431. {
  432. if (0 != m_num)
  433. {
  434. bgfx::TransientVertexBuffer tvb;
  435. bgfx::TransientIndexBuffer tib;
  436. const uint32_t numVertices = bgfx::getAvailTransientVertexBuffer(m_num*4, PosColorTexCoord0Vertex::ms_layout);
  437. const uint32_t numIndices = bgfx::getAvailTransientIndexBuffer(m_num*6);
  438. const uint32_t max = bx::uint32_min(numVertices/4, numIndices/6);
  439. BX_WARN(m_num == max
  440. , "Truncating transient buffer for particles to maximum available (requested %d, available %d)."
  441. , m_num
  442. , max
  443. );
  444. if (0 < max)
  445. {
  446. bgfx::allocTransientBuffers(&tvb
  447. , PosColorTexCoord0Vertex::ms_layout
  448. , max*4
  449. , &tib
  450. , max*6
  451. );
  452. PosColorTexCoord0Vertex* vertices = (PosColorTexCoord0Vertex*)tvb.data;
  453. ParticleSort* particleSort = (ParticleSort*)BX_ALLOC(m_allocator, max*sizeof(ParticleSort) );
  454. uint32_t pos = 0;
  455. for (uint16_t ii = 0, numEmitters = m_emitterAlloc->getNumHandles(); ii < numEmitters; ++ii)
  456. {
  457. const uint16_t idx = m_emitterAlloc->getHandleAt(ii);
  458. Emitter& emitter = m_emitter[idx];
  459. const Pack2D& pack = m_sprite.get(emitter.m_uniforms.m_handle);
  460. const float invTextureSize = 1.0f/SPRITE_TEXTURE_SIZE;
  461. const float uv[4] =
  462. {
  463. pack.m_x * invTextureSize,
  464. pack.m_y * invTextureSize,
  465. (pack.m_x + pack.m_width ) * invTextureSize,
  466. (pack.m_y + pack.m_height) * invTextureSize,
  467. };
  468. pos += emitter.render(uv, _mtxView, _eye, pos, max, particleSort, vertices);
  469. }
  470. qsort(particleSort
  471. , max
  472. , sizeof(ParticleSort)
  473. , particleSortFn
  474. );
  475. uint16_t* indices = (uint16_t*)tib.data;
  476. for (uint32_t ii = 0; ii < max; ++ii)
  477. {
  478. const ParticleSort& sort = particleSort[ii];
  479. uint16_t* index = &indices[ii*6];
  480. uint16_t idx = (uint16_t)sort.idx;
  481. index[0] = idx*4+0;
  482. index[1] = idx*4+1;
  483. index[2] = idx*4+2;
  484. index[3] = idx*4+2;
  485. index[4] = idx*4+3;
  486. index[5] = idx*4+0;
  487. }
  488. BX_FREE(m_allocator, particleSort);
  489. bgfx::setState(0
  490. | BGFX_STATE_WRITE_RGB
  491. | BGFX_STATE_WRITE_A
  492. | BGFX_STATE_DEPTH_TEST_LESS
  493. | BGFX_STATE_CULL_CW
  494. | BGFX_STATE_BLEND_NORMAL
  495. );
  496. bgfx::setVertexBuffer(0, &tvb);
  497. bgfx::setIndexBuffer(&tib);
  498. bgfx::setTexture(0, s_texColor, m_texture);
  499. bgfx::submit(_view, m_particleProgram);
  500. }
  501. }
  502. }
  503. EmitterHandle createEmitter(EmitterShape::Enum _shape, EmitterDirection::Enum _direction, uint32_t _maxParticles)
  504. {
  505. EmitterHandle handle = { m_emitterAlloc->alloc() };
  506. if (UINT16_MAX != handle.idx)
  507. {
  508. m_emitter[handle.idx].create(_shape, _direction, _maxParticles);
  509. }
  510. return handle;
  511. }
  512. void updateEmitter(EmitterHandle _handle, const EmitterUniforms* _uniforms)
  513. {
  514. BX_ASSERT(isValid(_handle)
  515. , "destroyEmitter handle %d is not valid."
  516. , _handle.idx
  517. );
  518. Emitter& emitter = m_emitter[_handle.idx];
  519. if (NULL == _uniforms)
  520. {
  521. emitter.reset();
  522. }
  523. else
  524. {
  525. bx::memCopy(&emitter.m_uniforms, _uniforms, sizeof(EmitterUniforms) );
  526. }
  527. }
  528. void getAabb(EmitterHandle _handle, bx::Aabb& _outAabb)
  529. {
  530. BX_ASSERT(isValid(_handle)
  531. , "getAabb handle %d is not valid."
  532. , _handle.idx
  533. );
  534. _outAabb = m_emitter[_handle.idx].m_aabb;
  535. }
  536. void destroyEmitter(EmitterHandle _handle)
  537. {
  538. BX_ASSERT(isValid(_handle)
  539. , "destroyEmitter handle %d is not valid."
  540. , _handle.idx
  541. );
  542. m_emitter[_handle.idx].destroy();
  543. m_emitterAlloc->free(_handle.idx);
  544. }
  545. bx::AllocatorI* m_allocator;
  546. bx::HandleAlloc* m_emitterAlloc;
  547. Emitter* m_emitter;
  548. typedef SpriteT<256, SPRITE_TEXTURE_SIZE> Sprite;
  549. Sprite m_sprite;
  550. bgfx::UniformHandle s_texColor;
  551. bgfx::TextureHandle m_texture;
  552. bgfx::ProgramHandle m_particleProgram;
  553. uint32_t m_num;
  554. };
  555. static ParticleSystem s_ctx;
  556. void Emitter::create(EmitterShape::Enum _shape, EmitterDirection::Enum _direction, uint32_t _maxParticles)
  557. {
  558. reset();
  559. m_shape = _shape;
  560. m_direction = _direction;
  561. m_max = _maxParticles;
  562. m_particles = (Particle*)BX_ALLOC(s_ctx.m_allocator, m_max*sizeof(Particle) );
  563. }
  564. void Emitter::destroy()
  565. {
  566. BX_FREE(s_ctx.m_allocator, m_particles);
  567. m_particles = NULL;
  568. }
  569. } // namespace ps
  570. using namespace ps;
  571. void psInit(uint16_t _maxEmitters, bx::AllocatorI* _allocator)
  572. {
  573. s_ctx.init(_maxEmitters, _allocator);
  574. }
  575. void psShutdown()
  576. {
  577. s_ctx.shutdown();
  578. }
  579. EmitterSpriteHandle psCreateSprite(uint16_t _width, uint16_t _height, const void* _data)
  580. {
  581. return s_ctx.createSprite(_width, _height, _data);
  582. }
  583. void psDestroy(EmitterSpriteHandle _handle)
  584. {
  585. s_ctx.destroy(_handle);
  586. }
  587. EmitterHandle psCreateEmitter(EmitterShape::Enum _shape, EmitterDirection::Enum _direction, uint32_t _maxParticles)
  588. {
  589. return s_ctx.createEmitter(_shape, _direction, _maxParticles);
  590. }
  591. void psUpdateEmitter(EmitterHandle _handle, const EmitterUniforms* _uniforms)
  592. {
  593. s_ctx.updateEmitter(_handle, _uniforms);
  594. }
  595. void psGetAabb(EmitterHandle _handle, bx::Aabb& _outAabb)
  596. {
  597. s_ctx.getAabb(_handle, _outAabb);
  598. }
  599. void psDestroyEmitter(EmitterHandle _handle)
  600. {
  601. s_ctx.destroyEmitter(_handle);
  602. }
  603. void psUpdate(float _dt)
  604. {
  605. s_ctx.update(_dt);
  606. }
  607. void psRender(uint8_t _view, const float* _mtxView, const bx::Vec3& _eye)
  608. {
  609. s_ctx.render(_view, _mtxView, _eye);
  610. }