graphics_robust_access_pass.cpp 45 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058
  1. // Copyright (c) 2019 Google LLC
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. // This pass injects code in a graphics shader to implement guarantees
  15. // satisfying Vulkan's robustBufferAccess rules. Robust access rules permit
  16. // an out-of-bounds access to be redirected to an access of the same type
  17. // (load, store, etc.) but within the same root object.
  18. //
  19. // We assume baseline functionality in Vulkan, i.e. the module uses
  20. // logical addressing mode, without VK_KHR_variable_pointers.
  21. //
  22. // - Logical addressing mode implies:
  23. // - Each root pointer (a pointer that exists other than by the
  24. // execution of a shader instruction) is the result of an OpVariable.
  25. //
  26. // - Instructions that result in pointers are:
  27. // OpVariable
  28. // OpAccessChain
  29. // OpInBoundsAccessChain
  30. // OpFunctionParameter
  31. // OpImageTexelPointer
  32. // OpCopyObject
  33. //
  34. // - Instructions that use a pointer are:
  35. // OpLoad
  36. // OpStore
  37. // OpAccessChain
  38. // OpInBoundsAccessChain
  39. // OpFunctionCall
  40. // OpImageTexelPointer
  41. // OpCopyMemory
  42. // OpCopyObject
  43. // all OpAtomic* instructions
  44. //
  45. // We classify pointer-users into:
  46. // - Accesses:
  47. // - OpLoad
  48. // - OpStore
  49. // - OpAtomic*
  50. // - OpCopyMemory
  51. //
  52. // - Address calculations:
  53. // - OpAccessChain
  54. // - OpInBoundsAccessChain
  55. //
  56. // - Pass-through:
  57. // - OpFunctionCall
  58. // - OpFunctionParameter
  59. // - OpCopyObject
  60. //
  61. // The strategy is:
  62. //
  63. // - Handle only logical addressing mode. In particular, don't handle a module
  64. // if it uses one of the variable-pointers capabilities.
  65. //
  66. // - Don't handle modules using capability RuntimeDescriptorArrayEXT. So the
  67. // only runtime arrays are those that are the last member in a
  68. // Block-decorated struct. This allows us to feasibly/easily compute the
  69. // length of the runtime array. See below.
  70. //
  71. // - The memory locations accessed by OpLoad, OpStore, OpCopyMemory, and
  72. // OpAtomic* are determined by their pointer parameter or parameters.
  73. // Pointers are always (correctly) typed and so the address and number of
  74. // consecutive locations are fully determined by the pointer.
  75. //
  76. // - A pointer value originates as one of few cases:
  77. //
  78. // - OpVariable for an interface object or an array of them: image,
  79. // buffer (UBO or SSBO), sampler, sampled-image, push-constant, input
  80. // variable, output variable. The execution environment is responsible for
  81. // allocating the correct amount of storage for these, and for ensuring
  82. // each resource bound to such a variable is big enough to contain the
  83. // SPIR-V pointee type of the variable.
  84. //
  85. // - OpVariable for a non-interface object. These are variables in
  86. // Workgroup, Private, and Function storage classes. The compiler ensures
  87. // the underlying allocation is big enough to store the entire SPIR-V
  88. // pointee type of the variable.
  89. //
  90. // - An OpFunctionParameter. This always maps to a pointer parameter to an
  91. // OpFunctionCall.
  92. //
  93. // - In logical addressing mode, these are severely limited:
  94. // "Any pointer operand to an OpFunctionCall must be:
  95. // - a memory object declaration, or
  96. // - a pointer to an element in an array that is a memory object
  97. // declaration, where the element type is OpTypeSampler or OpTypeImage"
  98. //
  99. // - This has an important simplifying consequence:
  100. //
  101. // - When looking for a pointer to the structure containing a runtime
  102. // array, you begin with a pointer to the runtime array and trace
  103. // backward in the function. You never have to trace back beyond
  104. // your function call boundary. So you can't take a partial access
  105. // chain into an SSBO, then pass that pointer into a function. So
  106. // we don't resort to using fat pointers to compute array length.
  107. // We can trace back to a pointer to the containing structure,
  108. // and use that in an OpArrayLength instruction. (The structure type
  109. // gives us the member index of the runtime array.)
  110. //
  111. // - Otherwise, the pointer type fully encodes the range of valid
  112. // addresses. In particular, the type of a pointer to an aggregate
  113. // value fully encodes the range of indices when indexing into
  114. // that aggregate.
  115. //
  116. // - The pointer is the result of an access chain instruction. We clamp
  117. // indices contributing to address calculations. As noted above, the
  118. // valid ranges are either bound by the length of a runtime array, or
  119. // by the type of the base pointer. The length of a runtime array is
  120. // the result of an OpArrayLength instruction acting on the pointer of
  121. // the containing structure as noted above.
  122. //
  123. // - Access chain indices are always treated as signed, so:
  124. // - Clamp the upper bound at the signed integer maximum.
  125. // - Use SClamp for all clamping.
  126. //
  127. // - TODO(dneto): OpImageTexelPointer:
  128. // - Clamp coordinate to the image size returned by OpImageQuerySize
  129. // - If multi-sampled, clamp the sample index to the count returned by
  130. // OpImageQuerySamples.
  131. // - If not multi-sampled, set the sample index to 0.
  132. //
  133. // - Rely on the external validator to check that pointers are only
  134. // used by the instructions as above.
  135. //
  136. // - Handles OpTypeRuntimeArray
  137. // Track pointer back to original resource (pointer to struct), so we can
  138. // query the runtime array size.
  139. //
  140. #include "graphics_robust_access_pass.h"
  141. #include <algorithm>
  142. #include <cstring>
  143. #include <functional>
  144. #include <initializer_list>
  145. #include <limits>
  146. #include <utility>
  147. #include "constants.h"
  148. #include "def_use_manager.h"
  149. #include "function.h"
  150. #include "ir_context.h"
  151. #include "module.h"
  152. #include "pass.h"
  153. #include "source/diagnostic.h"
  154. #include "source/util/make_unique.h"
  155. #include "spirv-tools/libspirv.h"
  156. #include "spirv/unified1/GLSL.std.450.h"
  157. #include "spirv/unified1/spirv.h"
  158. #include "type_manager.h"
  159. #include "types.h"
  160. namespace spvtools {
  161. namespace opt {
  162. using opt::Instruction;
  163. using opt::Operand;
  164. using spvtools::MakeUnique;
  165. GraphicsRobustAccessPass::GraphicsRobustAccessPass() : module_status_() {}
  166. Pass::Status GraphicsRobustAccessPass::Process() {
  167. module_status_ = PerModuleState();
  168. ProcessCurrentModule();
  169. auto result = module_status_.failed
  170. ? Status::Failure
  171. : (module_status_.modified ? Status::SuccessWithChange
  172. : Status::SuccessWithoutChange);
  173. return result;
  174. }
  175. spvtools::DiagnosticStream GraphicsRobustAccessPass::Fail() {
  176. module_status_.failed = true;
  177. // We don't really have a position, and we'll ignore the result.
  178. return std::move(
  179. spvtools::DiagnosticStream({}, consumer(), "", SPV_ERROR_INVALID_BINARY)
  180. << name() << ": ");
  181. }
  182. spv_result_t GraphicsRobustAccessPass::IsCompatibleModule() {
  183. auto* feature_mgr = context()->get_feature_mgr();
  184. if (!feature_mgr->HasCapability(SpvCapabilityShader))
  185. return Fail() << "Can only process Shader modules";
  186. if (feature_mgr->HasCapability(SpvCapabilityVariablePointers))
  187. return Fail() << "Can't process modules with VariablePointers capability";
  188. if (feature_mgr->HasCapability(SpvCapabilityVariablePointersStorageBuffer))
  189. return Fail() << "Can't process modules with VariablePointersStorageBuffer "
  190. "capability";
  191. if (feature_mgr->HasCapability(SpvCapabilityRuntimeDescriptorArrayEXT)) {
  192. // These have a RuntimeArray outside of Block-decorated struct. There
  193. // is no way to compute the array length from within SPIR-V.
  194. return Fail() << "Can't process modules with RuntimeDescriptorArrayEXT "
  195. "capability";
  196. }
  197. {
  198. auto* inst = context()->module()->GetMemoryModel();
  199. const auto addressing_model = inst->GetSingleWordOperand(0);
  200. if (addressing_model != SpvAddressingModelLogical)
  201. return Fail() << "Addressing model must be Logical. Found "
  202. << inst->PrettyPrint();
  203. }
  204. return SPV_SUCCESS;
  205. }
  206. spv_result_t GraphicsRobustAccessPass::ProcessCurrentModule() {
  207. auto err = IsCompatibleModule();
  208. if (err != SPV_SUCCESS) return err;
  209. ProcessFunction fn = [this](opt::Function* f) { return ProcessAFunction(f); };
  210. module_status_.modified |= context()->ProcessReachableCallTree(fn);
  211. // Need something here. It's the price we pay for easier failure paths.
  212. return SPV_SUCCESS;
  213. }
  214. bool GraphicsRobustAccessPass::ProcessAFunction(opt::Function* function) {
  215. // Ensure that all pointers computed inside a function are within bounds.
  216. // Find the access chains in this block before trying to modify them.
  217. std::vector<Instruction*> access_chains;
  218. std::vector<Instruction*> image_texel_pointers;
  219. for (auto& block : *function) {
  220. for (auto& inst : block) {
  221. switch (inst.opcode()) {
  222. case SpvOpAccessChain:
  223. case SpvOpInBoundsAccessChain:
  224. access_chains.push_back(&inst);
  225. break;
  226. case SpvOpImageTexelPointer:
  227. image_texel_pointers.push_back(&inst);
  228. break;
  229. default:
  230. break;
  231. }
  232. }
  233. }
  234. for (auto* inst : access_chains) {
  235. ClampIndicesForAccessChain(inst);
  236. if (module_status_.failed) return module_status_.modified;
  237. }
  238. for (auto* inst : image_texel_pointers) {
  239. if (SPV_SUCCESS != ClampCoordinateForImageTexelPointer(inst)) break;
  240. }
  241. return module_status_.modified;
  242. }
  243. void GraphicsRobustAccessPass::ClampIndicesForAccessChain(
  244. Instruction* access_chain) {
  245. Instruction& inst = *access_chain;
  246. auto* constant_mgr = context()->get_constant_mgr();
  247. auto* def_use_mgr = context()->get_def_use_mgr();
  248. auto* type_mgr = context()->get_type_mgr();
  249. const bool have_int64_cap =
  250. context()->get_feature_mgr()->HasCapability(SpvCapabilityInt64);
  251. // Replaces one of the OpAccessChain index operands with a new value.
  252. // Updates def-use analysis.
  253. auto replace_index = [this, &inst, def_use_mgr](uint32_t operand_index,
  254. Instruction* new_value) {
  255. inst.SetOperand(operand_index, {new_value->result_id()});
  256. def_use_mgr->AnalyzeInstUse(&inst);
  257. module_status_.modified = true;
  258. return SPV_SUCCESS;
  259. };
  260. // Replaces one of the OpAccesssChain index operands with a clamped value.
  261. // Replace the operand at |operand_index| with the value computed from
  262. // signed_clamp(%old_value, %min_value, %max_value). It also analyzes
  263. // the new instruction and records that them module is modified.
  264. // Assumes %min_value is signed-less-or-equal than %max_value. (All callees
  265. // use 0 for %min_value).
  266. auto clamp_index = [&inst, type_mgr, this, &replace_index](
  267. uint32_t operand_index, Instruction* old_value,
  268. Instruction* min_value, Instruction* max_value) {
  269. auto* clamp_inst =
  270. MakeSClampInst(*type_mgr, old_value, min_value, max_value, &inst);
  271. return replace_index(operand_index, clamp_inst);
  272. };
  273. // Ensures the specified index of access chain |inst| has a value that is
  274. // at most |count| - 1. If the index is already a constant value less than
  275. // |count| then no change is made.
  276. auto clamp_to_literal_count =
  277. [&inst, this, &constant_mgr, &type_mgr, have_int64_cap, &replace_index,
  278. &clamp_index](uint32_t operand_index, uint64_t count) -> spv_result_t {
  279. Instruction* index_inst =
  280. this->GetDef(inst.GetSingleWordOperand(operand_index));
  281. const auto* index_type =
  282. type_mgr->GetType(index_inst->type_id())->AsInteger();
  283. assert(index_type);
  284. const auto index_width = index_type->width();
  285. if (count <= 1) {
  286. // Replace the index with 0.
  287. return replace_index(operand_index, GetValueForType(0, index_type));
  288. }
  289. uint64_t maxval = count - 1;
  290. // Compute the bit width of a viable type to hold |maxval|.
  291. // Look for a bit width, up to 64 bits wide, to fit maxval.
  292. uint32_t maxval_width = index_width;
  293. while ((maxval_width < 64) && (0 != (maxval >> maxval_width))) {
  294. maxval_width *= 2;
  295. }
  296. // Determine the type for |maxval|.
  297. uint32_t next_id = context()->module()->IdBound();
  298. analysis::Integer signed_type_for_query(maxval_width, true);
  299. auto* maxval_type =
  300. type_mgr->GetRegisteredType(&signed_type_for_query)->AsInteger();
  301. if (next_id != context()->module()->IdBound()) {
  302. module_status_.modified = true;
  303. }
  304. // Access chain indices are treated as signed, so limit the maximum value
  305. // of the index so it will always be positive for a signed clamp operation.
  306. maxval = std::min(maxval, ((uint64_t(1) << (maxval_width - 1)) - 1));
  307. if (index_width > 64) {
  308. return this->Fail() << "Can't handle indices wider than 64 bits, found "
  309. "constant index with "
  310. << index_width << " bits as index number "
  311. << operand_index << " of access chain "
  312. << inst.PrettyPrint();
  313. }
  314. // Split into two cases: the current index is a constant, or not.
  315. // If the index is a constant then |index_constant| will not be a null
  316. // pointer. (If index is an |OpConstantNull| then it |index_constant| will
  317. // not be a null pointer.) Since access chain indices must be scalar
  318. // integers, this can't be a spec constant.
  319. if (auto* index_constant = constant_mgr->GetConstantFromInst(index_inst)) {
  320. auto* int_index_constant = index_constant->AsIntConstant();
  321. int64_t value = 0;
  322. // OpAccessChain indices are treated as signed. So get the signed
  323. // constant value here.
  324. if (index_width <= 32) {
  325. value = int64_t(int_index_constant->GetS32BitValue());
  326. } else if (index_width <= 64) {
  327. value = int_index_constant->GetS64BitValue();
  328. }
  329. if (value < 0) {
  330. return replace_index(operand_index, GetValueForType(0, index_type));
  331. } else if (uint64_t(value) <= maxval) {
  332. // Nothing to do.
  333. return SPV_SUCCESS;
  334. } else {
  335. // Replace with maxval.
  336. assert(count > 0); // Already took care of this case above.
  337. return replace_index(operand_index,
  338. GetValueForType(maxval, maxval_type));
  339. }
  340. } else {
  341. // Generate a clamp instruction.
  342. assert(maxval >= 1);
  343. assert(index_width <= 64); // Otherwise, already returned above.
  344. if (index_width >= 64 && !have_int64_cap) {
  345. // An inconsistent module.
  346. return Fail() << "Access chain index is wider than 64 bits, but Int64 "
  347. "is not declared: "
  348. << index_inst->PrettyPrint();
  349. }
  350. // Widen the index value if necessary
  351. if (maxval_width > index_width) {
  352. // Find the wider type. We only need this case if a constant array
  353. // bound is too big.
  354. // From how we calculated maxval_width, widening won't require adding
  355. // the Int64 capability.
  356. assert(have_int64_cap || maxval_width <= 32);
  357. if (!have_int64_cap && maxval_width >= 64) {
  358. // Be defensive, but this shouldn't happen.
  359. return this->Fail()
  360. << "Clamping index would require adding Int64 capability. "
  361. << "Can't clamp 32-bit index " << operand_index
  362. << " of access chain " << inst.PrettyPrint();
  363. }
  364. index_inst = WidenInteger(index_type->IsSigned(), maxval_width,
  365. index_inst, &inst);
  366. }
  367. // Finally, clamp the index.
  368. return clamp_index(operand_index, index_inst,
  369. GetValueForType(0, maxval_type),
  370. GetValueForType(maxval, maxval_type));
  371. }
  372. return SPV_SUCCESS;
  373. };
  374. // Ensures the specified index of access chain |inst| has a value that is at
  375. // most the value of |count_inst| minus 1, where |count_inst| is treated as an
  376. // unsigned integer. This can log a failure.
  377. auto clamp_to_count = [&inst, this, &constant_mgr, &clamp_to_literal_count,
  378. &clamp_index,
  379. &type_mgr](uint32_t operand_index,
  380. Instruction* count_inst) -> spv_result_t {
  381. Instruction* index_inst =
  382. this->GetDef(inst.GetSingleWordOperand(operand_index));
  383. const auto* index_type =
  384. type_mgr->GetType(index_inst->type_id())->AsInteger();
  385. const auto* count_type =
  386. type_mgr->GetType(count_inst->type_id())->AsInteger();
  387. assert(index_type);
  388. if (const auto* count_constant =
  389. constant_mgr->GetConstantFromInst(count_inst)) {
  390. uint64_t value = 0;
  391. const auto width = count_constant->type()->AsInteger()->width();
  392. if (width <= 32) {
  393. value = count_constant->AsIntConstant()->GetU32BitValue();
  394. } else if (width <= 64) {
  395. value = count_constant->AsIntConstant()->GetU64BitValue();
  396. } else {
  397. return this->Fail() << "Can't handle indices wider than 64 bits, found "
  398. "constant index with "
  399. << index_type->width() << "bits";
  400. }
  401. return clamp_to_literal_count(operand_index, value);
  402. } else {
  403. // Widen them to the same width.
  404. const auto index_width = index_type->width();
  405. const auto count_width = count_type->width();
  406. const auto target_width = std::max(index_width, count_width);
  407. // UConvert requires the result type to have 0 signedness. So enforce
  408. // that here.
  409. auto* wider_type = index_width < count_width ? count_type : index_type;
  410. if (index_type->width() < target_width) {
  411. // Access chain indices are treated as signed integers.
  412. index_inst = WidenInteger(true, target_width, index_inst, &inst);
  413. } else if (count_type->width() < target_width) {
  414. // Assume type sizes are treated as unsigned.
  415. count_inst = WidenInteger(false, target_width, count_inst, &inst);
  416. }
  417. // Compute count - 1.
  418. // It doesn't matter if 1 is signed or unsigned.
  419. auto* one = GetValueForType(1, wider_type);
  420. auto* count_minus_1 = InsertInst(
  421. &inst, SpvOpISub, type_mgr->GetId(wider_type), TakeNextId(),
  422. {{SPV_OPERAND_TYPE_ID, {count_inst->result_id()}},
  423. {SPV_OPERAND_TYPE_ID, {one->result_id()}}});
  424. auto* zero = GetValueForType(0, wider_type);
  425. // Make sure we clamp to an upper bound that is at most the signed max
  426. // for the target type.
  427. const uint64_t max_signed_value =
  428. ((uint64_t(1) << (target_width - 1)) - 1);
  429. // Use unsigned-min to ensure that the result is always non-negative.
  430. // That ensures we satisfy the invariant for SClamp, where the "min"
  431. // argument we give it (zero), is no larger than the third argument.
  432. auto* upper_bound =
  433. MakeUMinInst(*type_mgr, count_minus_1,
  434. GetValueForType(max_signed_value, wider_type), &inst);
  435. // Now clamp the index to this upper bound.
  436. return clamp_index(operand_index, index_inst, zero, upper_bound);
  437. }
  438. return SPV_SUCCESS;
  439. };
  440. const Instruction* base_inst = GetDef(inst.GetSingleWordInOperand(0));
  441. const Instruction* base_type = GetDef(base_inst->type_id());
  442. Instruction* pointee_type = GetDef(base_type->GetSingleWordInOperand(1));
  443. // Walk the indices from earliest to latest, replacing indices with a
  444. // clamped value, and updating the pointee_type. The order matters for
  445. // the case when we have to compute the length of a runtime array. In
  446. // that the algorithm relies on the fact that that the earlier indices
  447. // have already been clamped.
  448. const uint32_t num_operands = inst.NumOperands();
  449. for (uint32_t idx = 3; !module_status_.failed && idx < num_operands; ++idx) {
  450. const uint32_t index_id = inst.GetSingleWordOperand(idx);
  451. Instruction* index_inst = GetDef(index_id);
  452. switch (pointee_type->opcode()) {
  453. case SpvOpTypeMatrix: // Use column count
  454. case SpvOpTypeVector: // Use component count
  455. {
  456. const uint32_t count = pointee_type->GetSingleWordOperand(2);
  457. clamp_to_literal_count(idx, count);
  458. pointee_type = GetDef(pointee_type->GetSingleWordOperand(1));
  459. } break;
  460. case SpvOpTypeArray: {
  461. // The array length can be a spec constant, so go through the general
  462. // case.
  463. Instruction* array_len = GetDef(pointee_type->GetSingleWordOperand(2));
  464. clamp_to_count(idx, array_len);
  465. pointee_type = GetDef(pointee_type->GetSingleWordOperand(1));
  466. } break;
  467. case SpvOpTypeStruct: {
  468. // SPIR-V requires the index to be an OpConstant.
  469. // We need to know the index literal value so we can compute the next
  470. // pointee type.
  471. if (index_inst->opcode() != SpvOpConstant ||
  472. !constant_mgr->GetConstantFromInst(index_inst)
  473. ->type()
  474. ->AsInteger()) {
  475. Fail() << "Member index into struct is not a constant integer: "
  476. << index_inst->PrettyPrint(
  477. SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES)
  478. << "\nin access chain: "
  479. << inst.PrettyPrint(SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES);
  480. return;
  481. }
  482. const auto num_members = pointee_type->NumInOperands();
  483. const auto* index_constant =
  484. constant_mgr->GetConstantFromInst(index_inst);
  485. // Get the sign-extended value, since access index is always treated as
  486. // signed.
  487. const auto index_value = index_constant->GetSignExtendedValue();
  488. if (index_value < 0 || index_value >= num_members) {
  489. Fail() << "Member index " << index_value
  490. << " is out of bounds for struct type: "
  491. << pointee_type->PrettyPrint(
  492. SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES)
  493. << "\nin access chain: "
  494. << inst.PrettyPrint(SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES);
  495. return;
  496. }
  497. pointee_type = GetDef(pointee_type->GetSingleWordInOperand(
  498. static_cast<uint32_t>(index_value)));
  499. // No need to clamp this index. We just checked that it's valid.
  500. } break;
  501. case SpvOpTypeRuntimeArray: {
  502. auto* array_len = MakeRuntimeArrayLengthInst(&inst, idx);
  503. if (!array_len) { // We've already signaled an error.
  504. return;
  505. }
  506. clamp_to_count(idx, array_len);
  507. if (module_status_.failed) return;
  508. pointee_type = GetDef(pointee_type->GetSingleWordOperand(1));
  509. } break;
  510. default:
  511. Fail() << " Unhandled pointee type for access chain "
  512. << pointee_type->PrettyPrint(
  513. SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES);
  514. }
  515. }
  516. }
  517. uint32_t GraphicsRobustAccessPass::GetGlslInsts() {
  518. if (module_status_.glsl_insts_id == 0) {
  519. // This string serves double-duty as raw data for a string and for a vector
  520. // of 32-bit words
  521. const char glsl[] = "GLSL.std.450";
  522. // Use an existing import if we can.
  523. for (auto& inst : context()->module()->ext_inst_imports()) {
  524. if (inst.GetInOperand(0).AsString() == glsl) {
  525. module_status_.glsl_insts_id = inst.result_id();
  526. }
  527. }
  528. if (module_status_.glsl_insts_id == 0) {
  529. // Make a new import instruction.
  530. module_status_.glsl_insts_id = TakeNextId();
  531. std::vector<uint32_t> words = spvtools::utils::MakeVector(glsl);
  532. auto import_inst = MakeUnique<Instruction>(
  533. context(), SpvOpExtInstImport, 0, module_status_.glsl_insts_id,
  534. std::initializer_list<Operand>{
  535. Operand{SPV_OPERAND_TYPE_LITERAL_STRING, std::move(words)}});
  536. Instruction* inst = import_inst.get();
  537. context()->module()->AddExtInstImport(std::move(import_inst));
  538. module_status_.modified = true;
  539. context()->AnalyzeDefUse(inst);
  540. // Reanalyze the feature list, since we added an extended instruction
  541. // set improt.
  542. context()->get_feature_mgr()->Analyze(context()->module());
  543. }
  544. }
  545. return module_status_.glsl_insts_id;
  546. }
  547. opt::Instruction* opt::GraphicsRobustAccessPass::GetValueForType(
  548. uint64_t value, const analysis::Integer* type) {
  549. auto* mgr = context()->get_constant_mgr();
  550. assert(type->width() <= 64);
  551. std::vector<uint32_t> words;
  552. words.push_back(uint32_t(value));
  553. if (type->width() > 32) {
  554. words.push_back(uint32_t(value >> 32u));
  555. }
  556. const auto* constant = mgr->GetConstant(type, words);
  557. return mgr->GetDefiningInstruction(
  558. constant, context()->get_type_mgr()->GetTypeInstruction(type));
  559. }
  560. opt::Instruction* opt::GraphicsRobustAccessPass::WidenInteger(
  561. bool sign_extend, uint32_t bit_width, Instruction* value,
  562. Instruction* before_inst) {
  563. analysis::Integer unsigned_type_for_query(bit_width, false);
  564. auto* type_mgr = context()->get_type_mgr();
  565. auto* unsigned_type = type_mgr->GetRegisteredType(&unsigned_type_for_query);
  566. auto type_id = context()->get_type_mgr()->GetId(unsigned_type);
  567. auto conversion_id = TakeNextId();
  568. auto* conversion = InsertInst(
  569. before_inst, (sign_extend ? SpvOpSConvert : SpvOpUConvert), type_id,
  570. conversion_id, {{SPV_OPERAND_TYPE_ID, {value->result_id()}}});
  571. return conversion;
  572. }
  573. Instruction* GraphicsRobustAccessPass::MakeUMinInst(
  574. const analysis::TypeManager& tm, Instruction* x, Instruction* y,
  575. Instruction* where) {
  576. // Get IDs of instructions we'll be referencing. Evaluate them before calling
  577. // the function so we force a deterministic ordering in case both of them need
  578. // to take a new ID.
  579. const uint32_t glsl_insts_id = GetGlslInsts();
  580. uint32_t smin_id = TakeNextId();
  581. const auto xwidth = tm.GetType(x->type_id())->AsInteger()->width();
  582. const auto ywidth = tm.GetType(y->type_id())->AsInteger()->width();
  583. assert(xwidth == ywidth);
  584. (void)xwidth;
  585. (void)ywidth;
  586. auto* smin_inst = InsertInst(
  587. where, SpvOpExtInst, x->type_id(), smin_id,
  588. {
  589. {SPV_OPERAND_TYPE_ID, {glsl_insts_id}},
  590. {SPV_OPERAND_TYPE_EXTENSION_INSTRUCTION_NUMBER, {GLSLstd450UMin}},
  591. {SPV_OPERAND_TYPE_ID, {x->result_id()}},
  592. {SPV_OPERAND_TYPE_ID, {y->result_id()}},
  593. });
  594. return smin_inst;
  595. }
  596. Instruction* GraphicsRobustAccessPass::MakeSClampInst(
  597. const analysis::TypeManager& tm, Instruction* x, Instruction* min,
  598. Instruction* max, Instruction* where) {
  599. // Get IDs of instructions we'll be referencing. Evaluate them before calling
  600. // the function so we force a deterministic ordering in case both of them need
  601. // to take a new ID.
  602. const uint32_t glsl_insts_id = GetGlslInsts();
  603. uint32_t clamp_id = TakeNextId();
  604. const auto xwidth = tm.GetType(x->type_id())->AsInteger()->width();
  605. const auto minwidth = tm.GetType(min->type_id())->AsInteger()->width();
  606. const auto maxwidth = tm.GetType(max->type_id())->AsInteger()->width();
  607. assert(xwidth == minwidth);
  608. assert(xwidth == maxwidth);
  609. (void)xwidth;
  610. (void)minwidth;
  611. (void)maxwidth;
  612. auto* clamp_inst = InsertInst(
  613. where, SpvOpExtInst, x->type_id(), clamp_id,
  614. {
  615. {SPV_OPERAND_TYPE_ID, {glsl_insts_id}},
  616. {SPV_OPERAND_TYPE_EXTENSION_INSTRUCTION_NUMBER, {GLSLstd450SClamp}},
  617. {SPV_OPERAND_TYPE_ID, {x->result_id()}},
  618. {SPV_OPERAND_TYPE_ID, {min->result_id()}},
  619. {SPV_OPERAND_TYPE_ID, {max->result_id()}},
  620. });
  621. return clamp_inst;
  622. }
  623. Instruction* GraphicsRobustAccessPass::MakeRuntimeArrayLengthInst(
  624. Instruction* access_chain, uint32_t operand_index) {
  625. // The Index parameter to the access chain at |operand_index| is indexing
  626. // *into* the runtime-array. To get the number of elements in the runtime
  627. // array we need a pointer to the Block-decorated struct that contains the
  628. // runtime array. So conceptually we have to go 2 steps backward in the
  629. // access chain. The two steps backward might forces us to traverse backward
  630. // across multiple dominating instructions.
  631. auto* type_mgr = context()->get_type_mgr();
  632. // How many access chain indices do we have to unwind to find the pointer
  633. // to the struct containing the runtime array?
  634. uint32_t steps_remaining = 2;
  635. // Find or create an instruction computing the pointer to the structure
  636. // containing the runtime array.
  637. // Walk backward through pointer address calculations until we either get
  638. // to exactly the right base pointer, or to an access chain instruction
  639. // that we can replicate but truncate to compute the address of the right
  640. // struct.
  641. Instruction* current_access_chain = access_chain;
  642. Instruction* pointer_to_containing_struct = nullptr;
  643. while (steps_remaining > 0) {
  644. switch (current_access_chain->opcode()) {
  645. case SpvOpCopyObject:
  646. // Whoops. Walk right through this one.
  647. current_access_chain =
  648. GetDef(current_access_chain->GetSingleWordInOperand(0));
  649. break;
  650. case SpvOpAccessChain:
  651. case SpvOpInBoundsAccessChain: {
  652. const int first_index_operand = 3;
  653. // How many indices in this access chain contribute to getting us
  654. // to an element in the runtime array?
  655. const auto num_contributing_indices =
  656. current_access_chain == access_chain
  657. ? operand_index - (first_index_operand - 1)
  658. : current_access_chain->NumInOperands() - 1 /* skip the base */;
  659. Instruction* base =
  660. GetDef(current_access_chain->GetSingleWordInOperand(0));
  661. if (num_contributing_indices == steps_remaining) {
  662. // The base pointer points to the structure.
  663. pointer_to_containing_struct = base;
  664. steps_remaining = 0;
  665. break;
  666. } else if (num_contributing_indices < steps_remaining) {
  667. // Peel off the index and keep going backward.
  668. steps_remaining -= num_contributing_indices;
  669. current_access_chain = base;
  670. } else {
  671. // This access chain has more indices than needed. Generate a new
  672. // access chain instruction, but truncating the list of indices.
  673. const int base_operand = 2;
  674. // We'll use the base pointer and the indices up to but not including
  675. // the one indexing into the runtime array.
  676. Instruction::OperandList ops;
  677. // Use the base pointer
  678. ops.push_back(current_access_chain->GetOperand(base_operand));
  679. const uint32_t num_indices_to_keep =
  680. num_contributing_indices - steps_remaining - 1;
  681. for (uint32_t i = 0; i <= num_indices_to_keep; i++) {
  682. ops.push_back(
  683. current_access_chain->GetOperand(first_index_operand + i));
  684. }
  685. // Compute the type of the result of the new access chain. Start at
  686. // the base and walk the indices in a forward direction.
  687. auto* constant_mgr = context()->get_constant_mgr();
  688. std::vector<uint32_t> indices_for_type;
  689. for (uint32_t i = 0; i < ops.size() - 1; i++) {
  690. uint32_t index_for_type_calculation = 0;
  691. Instruction* index =
  692. GetDef(current_access_chain->GetSingleWordOperand(
  693. first_index_operand + i));
  694. if (auto* index_constant =
  695. constant_mgr->GetConstantFromInst(index)) {
  696. // We only need 32 bits. For the type calculation, it's sufficient
  697. // to take the zero-extended value. It only matters for the struct
  698. // case, and struct member indices are unsigned.
  699. index_for_type_calculation =
  700. uint32_t(index_constant->GetZeroExtendedValue());
  701. } else {
  702. // Indexing into a variably-sized thing like an array. Use 0.
  703. index_for_type_calculation = 0;
  704. }
  705. indices_for_type.push_back(index_for_type_calculation);
  706. }
  707. auto* base_ptr_type = type_mgr->GetType(base->type_id())->AsPointer();
  708. auto* base_pointee_type = base_ptr_type->pointee_type();
  709. auto* new_access_chain_result_pointee_type =
  710. type_mgr->GetMemberType(base_pointee_type, indices_for_type);
  711. const uint32_t new_access_chain_type_id = type_mgr->FindPointerToType(
  712. type_mgr->GetId(new_access_chain_result_pointee_type),
  713. base_ptr_type->storage_class());
  714. // Create the instruction and insert it.
  715. const auto new_access_chain_id = TakeNextId();
  716. auto* new_access_chain =
  717. InsertInst(current_access_chain, current_access_chain->opcode(),
  718. new_access_chain_type_id, new_access_chain_id, ops);
  719. pointer_to_containing_struct = new_access_chain;
  720. steps_remaining = 0;
  721. break;
  722. }
  723. } break;
  724. default:
  725. Fail() << "Unhandled access chain in logical addressing mode passes "
  726. "through "
  727. << current_access_chain->PrettyPrint(
  728. SPV_BINARY_TO_TEXT_OPTION_SHOW_BYTE_OFFSET |
  729. SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES);
  730. return nullptr;
  731. }
  732. }
  733. assert(pointer_to_containing_struct);
  734. auto* pointee_type =
  735. type_mgr->GetType(pointer_to_containing_struct->type_id())
  736. ->AsPointer()
  737. ->pointee_type();
  738. auto* struct_type = pointee_type->AsStruct();
  739. const uint32_t member_index_of_runtime_array =
  740. uint32_t(struct_type->element_types().size() - 1);
  741. // Create the length-of-array instruction before the original access chain,
  742. // but after the generation of the pointer to the struct.
  743. const auto array_len_id = TakeNextId();
  744. analysis::Integer uint_type_for_query(32, false);
  745. auto* uint_type = type_mgr->GetRegisteredType(&uint_type_for_query);
  746. auto* array_len = InsertInst(
  747. access_chain, SpvOpArrayLength, type_mgr->GetId(uint_type), array_len_id,
  748. {{SPV_OPERAND_TYPE_ID, {pointer_to_containing_struct->result_id()}},
  749. {SPV_OPERAND_TYPE_LITERAL_INTEGER, {member_index_of_runtime_array}}});
  750. return array_len;
  751. }
  752. spv_result_t GraphicsRobustAccessPass::ClampCoordinateForImageTexelPointer(
  753. opt::Instruction* image_texel_pointer) {
  754. // TODO(dneto): Write tests for this code.
  755. // TODO(dneto): Use signed-clamp
  756. (void)(image_texel_pointer);
  757. return SPV_SUCCESS;
  758. // Do not compile this code until it is ready to be used.
  759. #if 0
  760. // Example:
  761. // %texel_ptr = OpImageTexelPointer %texel_ptr_type %image_ptr %coord
  762. // %sample
  763. //
  764. // We want to clamp %coord components between vector-0 and the result
  765. // of OpImageQuerySize acting on the underlying image. So insert:
  766. // %image = OpLoad %image_type %image_ptr
  767. // %query_size = OpImageQuerySize %query_size_type %image
  768. //
  769. // For a multi-sampled image, %sample is the sample index, and we need
  770. // to clamp it between zero and the number of samples in the image.
  771. // %sample_count = OpImageQuerySamples %uint %image
  772. // %max_sample_index = OpISub %uint %sample_count %uint_1
  773. // For non-multi-sampled images, the sample index must be constant zero.
  774. auto* def_use_mgr = context()->get_def_use_mgr();
  775. auto* type_mgr = context()->get_type_mgr();
  776. auto* constant_mgr = context()->get_constant_mgr();
  777. auto* image_ptr = GetDef(image_texel_pointer->GetSingleWordInOperand(0));
  778. auto* image_ptr_type = GetDef(image_ptr->type_id());
  779. auto image_type_id = image_ptr_type->GetSingleWordInOperand(1);
  780. auto* image_type = GetDef(image_type_id);
  781. auto* coord = GetDef(image_texel_pointer->GetSingleWordInOperand(1));
  782. auto* samples = GetDef(image_texel_pointer->GetSingleWordInOperand(2));
  783. // We will modify the module, at least by adding image query instructions.
  784. module_status_.modified = true;
  785. // Declare the ImageQuery capability if the module doesn't already have it.
  786. auto* feature_mgr = context()->get_feature_mgr();
  787. if (!feature_mgr->HasCapability(SpvCapabilityImageQuery)) {
  788. auto cap = MakeUnique<Instruction>(
  789. context(), SpvOpCapability, 0, 0,
  790. std::initializer_list<Operand>{
  791. {SPV_OPERAND_TYPE_CAPABILITY, {SpvCapabilityImageQuery}}});
  792. def_use_mgr->AnalyzeInstDefUse(cap.get());
  793. context()->AddCapability(std::move(cap));
  794. feature_mgr->Analyze(context()->module());
  795. }
  796. // OpImageTexelPointer is used to translate a coordinate and sample index
  797. // into an address for use with an atomic operation. That is, it may only
  798. // used with what Vulkan calls a "storage image"
  799. // (OpTypeImage parameter Sampled=2).
  800. // Note: A storage image never has a level-of-detail associated with it.
  801. // Constraints on the sample id:
  802. // - Only 2D images can be multi-sampled: OpTypeImage parameter MS=1
  803. // only if Dim=2D.
  804. // - Non-multi-sampled images (OpTypeImage parameter MS=0) must use
  805. // sample ID to a constant 0.
  806. // The coordinate is treated as unsigned, and should be clamped against the
  807. // image "size", returned by OpImageQuerySize. (Note: OpImageQuerySizeLod
  808. // is only usable with a sampled image, i.e. its image type has Sampled=1).
  809. // Determine the result type for the OpImageQuerySize.
  810. // For non-arrayed images:
  811. // non-Cube:
  812. // - Always the same as the coordinate type
  813. // Cube:
  814. // - Use all but the last component of the coordinate (which is the face
  815. // index from 0 to 5).
  816. // For arrayed images (in Vulkan the Dim is 1D, 2D, or Cube):
  817. // non-Cube:
  818. // - A vector with the components in the coordinate, and one more for
  819. // the layer index.
  820. // Cube:
  821. // - The same as the coordinate type: 3-element integer vector.
  822. // - The third component from the size query is the layer count.
  823. // - The third component in the texel pointer calculation is
  824. // 6 * layer + face, where 0 <= face < 6.
  825. // Cube: Use all but the last component of the coordinate (which is the face
  826. // index from 0 to 5).
  827. const auto dim = SpvDim(image_type->GetSingleWordInOperand(1));
  828. const bool arrayed = image_type->GetSingleWordInOperand(3) == 1;
  829. const bool multisampled = image_type->GetSingleWordInOperand(4) != 0;
  830. const auto query_num_components = [dim, arrayed, this]() -> int {
  831. const int arrayness_bonus = arrayed ? 1 : 0;
  832. int num_coords = 0;
  833. switch (dim) {
  834. case SpvDimBuffer:
  835. case SpvDim1D:
  836. num_coords = 1;
  837. break;
  838. case SpvDimCube:
  839. // For cube, we need bounds for x, y, but not face.
  840. case SpvDimRect:
  841. case SpvDim2D:
  842. num_coords = 2;
  843. break;
  844. case SpvDim3D:
  845. num_coords = 3;
  846. break;
  847. case SpvDimSubpassData:
  848. case SpvDimMax:
  849. return Fail() << "Invalid image dimension for OpImageTexelPointer: "
  850. << int(dim);
  851. break;
  852. }
  853. return num_coords + arrayness_bonus;
  854. }();
  855. const auto* coord_component_type = [type_mgr, coord]() {
  856. const analysis::Type* coord_type = type_mgr->GetType(coord->type_id());
  857. if (auto* vector_type = coord_type->AsVector()) {
  858. return vector_type->element_type()->AsInteger();
  859. }
  860. return coord_type->AsInteger();
  861. }();
  862. // For now, only handle 32-bit case for coordinates.
  863. if (!coord_component_type) {
  864. return Fail() << " Coordinates for OpImageTexelPointer are not integral: "
  865. << image_texel_pointer->PrettyPrint(
  866. SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES);
  867. }
  868. if (coord_component_type->width() != 32) {
  869. return Fail() << " Expected OpImageTexelPointer coordinate components to "
  870. "be 32-bits wide. They are "
  871. << coord_component_type->width() << " bits. "
  872. << image_texel_pointer->PrettyPrint(
  873. SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES);
  874. }
  875. const auto* query_size_type =
  876. [type_mgr, coord_component_type,
  877. query_num_components]() -> const analysis::Type* {
  878. if (query_num_components == 1) return coord_component_type;
  879. analysis::Vector proposed(coord_component_type, query_num_components);
  880. return type_mgr->GetRegisteredType(&proposed);
  881. }();
  882. const uint32_t image_id = TakeNextId();
  883. auto* image =
  884. InsertInst(image_texel_pointer, SpvOpLoad, image_type_id, image_id,
  885. {{SPV_OPERAND_TYPE_ID, {image_ptr->result_id()}}});
  886. const uint32_t query_size_id = TakeNextId();
  887. auto* query_size =
  888. InsertInst(image_texel_pointer, SpvOpImageQuerySize,
  889. type_mgr->GetTypeInstruction(query_size_type), query_size_id,
  890. {{SPV_OPERAND_TYPE_ID, {image->result_id()}}});
  891. auto* component_1 = constant_mgr->GetConstant(coord_component_type, {1});
  892. const uint32_t component_1_id =
  893. constant_mgr->GetDefiningInstruction(component_1)->result_id();
  894. auto* component_0 = constant_mgr->GetConstant(coord_component_type, {0});
  895. const uint32_t component_0_id =
  896. constant_mgr->GetDefiningInstruction(component_0)->result_id();
  897. // If the image is a cube array, then the last component of the queried
  898. // size is the layer count. In the query, we have to accommodate folding
  899. // in the face index ranging from 0 through 5. The inclusive upper bound
  900. // on the third coordinate therefore is multiplied by 6.
  901. auto* query_size_including_faces = query_size;
  902. if (arrayed && (dim == SpvDimCube)) {
  903. // Multiply the last coordinate by 6.
  904. auto* component_6 = constant_mgr->GetConstant(coord_component_type, {6});
  905. const uint32_t component_6_id =
  906. constant_mgr->GetDefiningInstruction(component_6)->result_id();
  907. assert(query_num_components == 3);
  908. auto* multiplicand = constant_mgr->GetConstant(
  909. query_size_type, {component_1_id, component_1_id, component_6_id});
  910. auto* multiplicand_inst =
  911. constant_mgr->GetDefiningInstruction(multiplicand);
  912. const auto query_size_including_faces_id = TakeNextId();
  913. query_size_including_faces = InsertInst(
  914. image_texel_pointer, SpvOpIMul,
  915. type_mgr->GetTypeInstruction(query_size_type),
  916. query_size_including_faces_id,
  917. {{SPV_OPERAND_TYPE_ID, {query_size_including_faces->result_id()}},
  918. {SPV_OPERAND_TYPE_ID, {multiplicand_inst->result_id()}}});
  919. }
  920. // Make a coordinate-type with all 1 components.
  921. auto* coordinate_1 =
  922. query_num_components == 1
  923. ? component_1
  924. : constant_mgr->GetConstant(
  925. query_size_type,
  926. std::vector<uint32_t>(query_num_components, component_1_id));
  927. // Make a coordinate-type with all 1 components.
  928. auto* coordinate_0 =
  929. query_num_components == 0
  930. ? component_0
  931. : constant_mgr->GetConstant(
  932. query_size_type,
  933. std::vector<uint32_t>(query_num_components, component_0_id));
  934. const uint32_t query_max_including_faces_id = TakeNextId();
  935. auto* query_max_including_faces = InsertInst(
  936. image_texel_pointer, SpvOpISub,
  937. type_mgr->GetTypeInstruction(query_size_type),
  938. query_max_including_faces_id,
  939. {{SPV_OPERAND_TYPE_ID, {query_size_including_faces->result_id()}},
  940. {SPV_OPERAND_TYPE_ID,
  941. {constant_mgr->GetDefiningInstruction(coordinate_1)->result_id()}}});
  942. // Clamp the coordinate
  943. auto* clamp_coord = MakeSClampInst(
  944. *type_mgr, coord, constant_mgr->GetDefiningInstruction(coordinate_0),
  945. query_max_including_faces, image_texel_pointer);
  946. image_texel_pointer->SetInOperand(1, {clamp_coord->result_id()});
  947. // Clamp the sample index
  948. if (multisampled) {
  949. // Get the sample count via OpImageQuerySamples
  950. const auto query_samples_id = TakeNextId();
  951. auto* query_samples = InsertInst(
  952. image_texel_pointer, SpvOpImageQuerySamples,
  953. constant_mgr->GetDefiningInstruction(component_0)->type_id(),
  954. query_samples_id, {{SPV_OPERAND_TYPE_ID, {image->result_id()}}});
  955. const auto max_samples_id = TakeNextId();
  956. auto* max_samples = InsertInst(image_texel_pointer, SpvOpImageQuerySamples,
  957. query_samples->type_id(), max_samples_id,
  958. {{SPV_OPERAND_TYPE_ID, {query_samples_id}},
  959. {SPV_OPERAND_TYPE_ID, {component_1_id}}});
  960. auto* clamp_samples = MakeSClampInst(
  961. *type_mgr, samples, constant_mgr->GetDefiningInstruction(coordinate_0),
  962. max_samples, image_texel_pointer);
  963. image_texel_pointer->SetInOperand(2, {clamp_samples->result_id()});
  964. } else {
  965. // Just replace it with 0. Don't even check what was there before.
  966. image_texel_pointer->SetInOperand(2, {component_0_id});
  967. }
  968. def_use_mgr->AnalyzeInstUse(image_texel_pointer);
  969. return SPV_SUCCESS;
  970. #endif
  971. }
  972. opt::Instruction* GraphicsRobustAccessPass::InsertInst(
  973. opt::Instruction* where_inst, SpvOp opcode, uint32_t type_id,
  974. uint32_t result_id, const Instruction::OperandList& operands) {
  975. module_status_.modified = true;
  976. auto* result = where_inst->InsertBefore(
  977. MakeUnique<Instruction>(context(), opcode, type_id, result_id, operands));
  978. context()->get_def_use_mgr()->AnalyzeInstDefUse(result);
  979. auto* basic_block = context()->get_instr_block(where_inst);
  980. context()->set_instr_block(result, basic_block);
  981. return result;
  982. }
  983. } // namespace opt
  984. } // namespace spvtools