shader.cpp 6.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269
  1. /*
  2. * Copyright 2011-2021 Branimir Karadzic. All rights reserved.
  3. * License: https://github.com/bkaradzic/bgfx#license-bsd-2-clause
  4. */
  5. #include "bgfx_p.h"
  6. #include "shader_dxbc.h"
  7. #include "shader_dx9bc.h"
  8. #include "shader_spirv.h"
  9. namespace bgfx
  10. {
  11. struct DescriptorTypeToId
  12. {
  13. DescriptorType::Enum type;
  14. uint16_t id;
  15. };
  16. static DescriptorTypeToId s_descriptorTypeToId[] =
  17. {
  18. // NOTICE:
  19. // DescriptorType must be in order how it appears in DescriptorType::Enum! id is
  20. // unique and should not be changed if new DescriptorTypes are added.
  21. { DescriptorType::StorageBuffer, 0x0007 },
  22. { DescriptorType::StorageImage, 0x0003 },
  23. };
  24. BX_STATIC_ASSERT(BX_COUNTOF(s_descriptorTypeToId) == DescriptorType::Count);
  25. DescriptorType::Enum idToDescriptorType(uint16_t _id)
  26. {
  27. for (uint32_t ii = 0; ii < BX_COUNTOF(s_descriptorTypeToId); ++ii)
  28. {
  29. if (s_descriptorTypeToId[ii].id == _id)
  30. {
  31. return s_descriptorTypeToId[ii].type;
  32. }
  33. }
  34. return DescriptorType::Count;
  35. }
  36. uint16_t descriptorTypeToId(DescriptorType::Enum _type)
  37. {
  38. return s_descriptorTypeToId[_type].id;
  39. }
  40. struct TextureComponentTypeToId
  41. {
  42. TextureComponentType::Enum type;
  43. uint8_t id;
  44. };
  45. static TextureComponentTypeToId s_textureComponentTypeToId[] =
  46. {
  47. // see comment in s_descriptorTypeToId
  48. { TextureComponentType::Float, 0x00 },
  49. { TextureComponentType::Int, 0x01 },
  50. { TextureComponentType::Uint, 0x02 },
  51. { TextureComponentType::Depth, 0x03 },
  52. { TextureComponentType::UnfilterableFloat, 0x04 },
  53. };
  54. BX_STATIC_ASSERT(BX_COUNTOF(s_textureComponentTypeToId) == TextureComponentType::Count);
  55. TextureComponentType::Enum idToTextureComponentType(uint8_t _id)
  56. {
  57. for (uint32_t ii = 0; ii < BX_COUNTOF(s_textureComponentTypeToId); ++ii)
  58. {
  59. if (s_textureComponentTypeToId[ii].id == _id)
  60. {
  61. return s_textureComponentTypeToId[ii].type;
  62. }
  63. }
  64. return TextureComponentType::Count;
  65. }
  66. uint8_t textureComponentTypeToId(TextureComponentType::Enum _type)
  67. {
  68. return s_textureComponentTypeToId[_type].id;
  69. }
  70. struct TextureDimensionToId
  71. {
  72. TextureDimension::Enum dimension;
  73. uint8_t id;
  74. };
  75. static TextureDimensionToId s_textureDimensionToId[] =
  76. {
  77. // see comment in s_descriptorTypeToId
  78. { TextureDimension::Dimension1D, 0x01 },
  79. { TextureDimension::Dimension2D, 0x02 },
  80. { TextureDimension::Dimension2DArray, 0x03 },
  81. { TextureDimension::DimensionCube, 0x04 },
  82. { TextureDimension::DimensionCubeArray, 0x05 },
  83. { TextureDimension::Dimension3D, 0x06 },
  84. };
  85. BX_STATIC_ASSERT(BX_COUNTOF(s_textureDimensionToId) == TextureDimension::Count);
  86. TextureDimension::Enum idToTextureDimension(uint8_t _id)
  87. {
  88. for (uint32_t ii = 0; ii < BX_COUNTOF(s_textureDimensionToId); ++ii)
  89. {
  90. if (s_textureDimensionToId[ii].id == _id)
  91. {
  92. return s_textureDimensionToId[ii].dimension;
  93. }
  94. }
  95. return TextureDimension::Count;
  96. }
  97. uint8_t textureDimensionToId(TextureDimension::Enum _dim)
  98. {
  99. return s_textureDimensionToId[_dim].id;
  100. }
  101. static bool printAsm(uint32_t _offset, const DxbcInstruction& _instruction, void* _userData)
  102. {
  103. BX_UNUSED(_offset);
  104. bx::WriterI* writer = reinterpret_cast<bx::WriterI*>(_userData);
  105. char temp[512];
  106. toString(temp, sizeof(temp), _instruction);
  107. bx::write(writer, temp, (int32_t)bx::strLen(temp) );
  108. bx::write(writer, '\n');
  109. return true;
  110. }
  111. static bool printAsm(uint32_t _offset, const Dx9bcInstruction& _instruction, void* _userData)
  112. {
  113. BX_UNUSED(_offset);
  114. bx::WriterI* writer = reinterpret_cast<bx::WriterI*>(_userData);
  115. char temp[512];
  116. toString(temp, sizeof(temp), _instruction);
  117. bx::write(writer, temp, (int32_t)bx::strLen(temp) );
  118. bx::write(writer, '\n');
  119. return true;
  120. }
  121. static bool printAsm(uint32_t _offset, const SpvInstruction& _instruction, void* _userData)
  122. {
  123. BX_UNUSED(_offset);
  124. bx::WriterI* writer = reinterpret_cast<bx::WriterI*>(_userData);
  125. char temp[512];
  126. toString(temp, sizeof(temp), _instruction);
  127. bx::write(writer, temp, (int32_t)bx::strLen(temp) );
  128. bx::write(writer, '\n');
  129. return true;
  130. }
  131. void disassembleByteCode(bx::WriterI* _writer, bx::ReaderSeekerI* _reader, bx::Error* _err)
  132. {
  133. uint32_t magic;
  134. bx::peek(_reader, magic);
  135. if (magic == SPV_CHUNK_HEADER)
  136. {
  137. SpirV spirv;
  138. read(_reader, spirv, _err);
  139. parse(spirv.shader, printAsm, _writer, _err);
  140. }
  141. else if (magic == DXBC_CHUNK_HEADER)
  142. {
  143. DxbcContext dxbc;
  144. read(_reader, dxbc, _err);
  145. parse(dxbc.shader, printAsm, _writer, _err);
  146. }
  147. else
  148. {
  149. Dx9bc dx9bc;
  150. read(_reader, dx9bc, _err);
  151. parse(dx9bc.shader, printAsm, _writer, _err);
  152. }
  153. }
  154. void disassemble(bx::WriterI* _writer, bx::ReaderSeekerI* _reader, bx::Error* _err)
  155. {
  156. BX_ERROR_SCOPE(_err);
  157. uint32_t magic;
  158. bx::peek(_reader, magic);
  159. if (isShaderBin(magic) )
  160. {
  161. bx::read(_reader, magic);
  162. uint32_t hashIn;
  163. bx::read(_reader, hashIn);
  164. uint32_t hashOut;
  165. if (isShaderVerLess(magic, 6) )
  166. {
  167. hashOut = hashIn;
  168. }
  169. else
  170. {
  171. bx::read(_reader, hashOut);
  172. }
  173. uint16_t count;
  174. bx::read(_reader, count, _err);
  175. if (!_err->isOk() ) { return; }
  176. for (uint32_t ii = 0; ii < count; ++ii)
  177. {
  178. uint8_t nameSize = 0;
  179. bx::read(_reader, nameSize, _err);
  180. if (!_err->isOk() ) { return; }
  181. char name[256];
  182. bx::read(_reader, &name, nameSize, _err);
  183. name[nameSize] = '\0';
  184. uint8_t type;
  185. bx::read(_reader, type, _err);
  186. uint8_t num;
  187. bx::read(_reader, num, _err);
  188. uint16_t regIndex;
  189. bx::read(_reader, regIndex, _err);
  190. uint16_t regCount;
  191. bx::read(_reader, regCount, _err);
  192. if (!isShaderVerLess(magic, 8) )
  193. {
  194. uint16_t texInfo;
  195. bx::read(_reader, texInfo, _err);
  196. }
  197. if (!isShaderVerLess(magic, 10) )
  198. {
  199. uint16_t texFormat = 0;
  200. bx::read(_reader, texFormat, _err);
  201. }
  202. }
  203. uint32_t shaderSize;
  204. bx::read(_reader, shaderSize, _err);
  205. if (!_err->isOk() ) { return; }
  206. uint8_t* shaderCode = (uint8_t*)BX_ALLOC(g_allocator, shaderSize);
  207. bx::read(_reader, shaderCode, shaderSize, _err);
  208. bx::MemoryReader reader(shaderCode, shaderSize);
  209. disassembleByteCode(_writer, &reader, _err);
  210. bx::write(_writer, '\0', _err);
  211. BX_FREE(g_allocator, shaderCode);
  212. }
  213. else
  214. {
  215. disassembleByteCode(_writer, _reader, _err);
  216. }
  217. }
  218. void disassemble(bx::WriterI* _writer, const void* _data, uint32_t _size, bx::Error* _err)
  219. {
  220. bx::MemoryReader reader(_data, _size);
  221. disassemble(_writer, &reader, _err);
  222. }
  223. } // namespace bgfx