vertexcodec.cpp 55 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891
  1. // This file is part of meshoptimizer library; see meshoptimizer.h for version/license details
  2. #include "meshoptimizer.h"
  3. #include <assert.h>
  4. #include <string.h>
  5. // The block below auto-detects SIMD ISA that can be used on the target platform
  6. #ifndef MESHOPTIMIZER_NO_SIMD
  7. // The SIMD implementation requires SSSE3, which can be enabled unconditionally through compiler settings
  8. #if defined(__AVX__) || defined(__SSSE3__)
  9. #define SIMD_SSE
  10. #endif
  11. // An experimental implementation using AVX512 instructions; it's only enabled when AVX512 is enabled through compiler settings
  12. #if defined(__AVX512VBMI2__) && defined(__AVX512VBMI__) && defined(__AVX512VL__) && defined(__POPCNT__)
  13. #undef SIMD_SSE
  14. #define SIMD_AVX
  15. #endif
  16. // MSVC supports compiling SSSE3 code regardless of compile options; we use a cpuid-based scalar fallback
  17. #if !defined(SIMD_SSE) && !defined(SIMD_AVX) && defined(_MSC_VER) && !defined(__clang__) && (defined(_M_IX86) || defined(_M_X64))
  18. #define SIMD_SSE
  19. #define SIMD_FALLBACK
  20. #endif
  21. // GCC 4.9+ and clang 3.8+ support targeting SIMD ISA from individual functions; we use a cpuid-based scalar fallback
  22. #if !defined(SIMD_SSE) && !defined(SIMD_AVX) && ((defined(__clang__) && __clang_major__ * 100 + __clang_minor__ >= 308) || (defined(__GNUC__) && __GNUC__ * 100 + __GNUC_MINOR__ >= 409)) && (defined(__i386__) || defined(__x86_64__))
  23. #define SIMD_SSE
  24. #define SIMD_FALLBACK
  25. #define SIMD_TARGET __attribute__((target("ssse3")))
  26. #endif
  27. // GCC/clang define these when NEON support is available
  28. #if defined(__ARM_NEON__) || defined(__ARM_NEON)
  29. #define SIMD_NEON
  30. #endif
  31. // On MSVC, we assume that ARM builds always target NEON-capable devices
  32. #if !defined(SIMD_NEON) && defined(_MSC_VER) && (defined(_M_ARM) || defined(_M_ARM64))
  33. #define SIMD_NEON
  34. #endif
  35. // When targeting Wasm SIMD we can't use runtime cpuid checks so we unconditionally enable SIMD
  36. #if defined(__wasm_simd128__)
  37. #define SIMD_WASM
  38. // Prevent compiling other variant when wasm simd compilation is active
  39. #undef SIMD_NEON
  40. #undef SIMD_SSE
  41. #undef SIMD_AVX
  42. #endif
  43. #ifndef SIMD_TARGET
  44. #define SIMD_TARGET
  45. #endif
  46. // When targeting AArch64/x64, optimize for latency to allow decoding of individual 16-byte groups to overlap
  47. // We don't do this for 32-bit systems because we need 64-bit math for this and this will hurt in-order CPUs
  48. #if defined(__x86_64__) || defined(_M_X64) || defined(__aarch64__) || defined(_M_ARM64)
  49. #define SIMD_LATENCYOPT
  50. #endif
  51. // In switch dispatch, marking default case as unreachable allows to remove redundant bounds checks
  52. #if defined(__GNUC__)
  53. #define SIMD_UNREACHABLE() __builtin_unreachable()
  54. #elif defined(_MSC_VER)
  55. #define SIMD_UNREACHABLE() __assume(false)
  56. #else
  57. #define SIMD_UNREACHABLE() assert(!"Unreachable")
  58. #endif
  59. #endif // !MESHOPTIMIZER_NO_SIMD
  60. #ifdef SIMD_SSE
  61. #include <tmmintrin.h>
  62. #endif
  63. #if defined(SIMD_SSE) && defined(SIMD_FALLBACK)
  64. #ifdef _MSC_VER
  65. #include <intrin.h> // __cpuid
  66. #else
  67. #include <cpuid.h> // __cpuid
  68. #endif
  69. #endif
  70. #ifdef SIMD_AVX
  71. #include <immintrin.h>
  72. #endif
  73. #ifdef SIMD_NEON
  74. #if defined(_MSC_VER) && defined(_M_ARM64)
  75. #include <arm64_neon.h>
  76. #else
  77. #include <arm_neon.h>
  78. #endif
  79. #endif
  80. #ifdef SIMD_WASM
  81. #include <wasm_simd128.h>
  82. #endif
  83. #ifndef TRACE
  84. #define TRACE 0
  85. #endif
  86. #if TRACE
  87. #include <stdio.h>
  88. #endif
  89. #ifdef SIMD_WASM
  90. #define wasmx_splat_v32x4(v, i) wasm_i32x4_shuffle(v, v, i, i, i, i)
  91. #define wasmx_unpacklo_v8x16(a, b) wasm_i8x16_shuffle(a, b, 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23)
  92. #define wasmx_unpackhi_v8x16(a, b) wasm_i8x16_shuffle(a, b, 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31)
  93. #define wasmx_unpacklo_v16x8(a, b) wasm_i16x8_shuffle(a, b, 0, 8, 1, 9, 2, 10, 3, 11)
  94. #define wasmx_unpackhi_v16x8(a, b) wasm_i16x8_shuffle(a, b, 4, 12, 5, 13, 6, 14, 7, 15)
  95. #define wasmx_unpacklo_v64x2(a, b) wasm_i64x2_shuffle(a, b, 0, 2)
  96. #define wasmx_unpackhi_v64x2(a, b) wasm_i64x2_shuffle(a, b, 1, 3)
  97. #endif
  98. namespace meshopt
  99. {
  100. const unsigned char kVertexHeader = 0xa0;
  101. static int gEncodeVertexVersion = 0;
  102. const size_t kVertexBlockSizeBytes = 8192;
  103. const size_t kVertexBlockMaxSize = 256;
  104. const size_t kByteGroupSize = 16;
  105. const size_t kByteGroupDecodeLimit = 24;
  106. const size_t kTailMinSizeV0 = 32;
  107. const size_t kTailMinSizeV1 = 24;
  108. static const int kBitsV0[4] = {0, 2, 4, 8};
  109. static const int kBitsV1[5] = {0, 1, 2, 4, 8};
  110. const int kEncodeDefaultLevel = 2;
  111. static size_t getVertexBlockSize(size_t vertex_size)
  112. {
  113. // make sure the entire block fits into the scratch buffer and is aligned to byte group size
  114. // note: the block size is implicitly part of the format, so we can't change it without breaking compatibility
  115. size_t result = (kVertexBlockSizeBytes / vertex_size) & ~(kByteGroupSize - 1);
  116. return (result < kVertexBlockMaxSize) ? result : kVertexBlockMaxSize;
  117. }
  118. inline unsigned int rotate(unsigned int v, int r)
  119. {
  120. return (v << r) | (v >> ((32 - r) & 31));
  121. }
  122. template <typename T>
  123. inline T zigzag(T v)
  124. {
  125. return (0 - (v >> (sizeof(T) * 8 - 1))) ^ (v << 1);
  126. }
  127. template <typename T>
  128. inline T unzigzag(T v)
  129. {
  130. return (0 - (v & 1)) ^ (v >> 1);
  131. }
  132. #if TRACE
  133. struct Stats
  134. {
  135. size_t size;
  136. size_t header; // bytes for header
  137. size_t bitg[9]; // bytes for bit groups
  138. size_t bitc[8]; // bit consistency: how many bits are shared between all bytes in a group
  139. size_t ctrl[4]; // number of control groups
  140. };
  141. static Stats* bytestats = NULL;
  142. static Stats vertexstats[256];
  143. #endif
  144. static bool encodeBytesGroupZero(const unsigned char* buffer)
  145. {
  146. assert(kByteGroupSize == sizeof(unsigned long long) * 2);
  147. unsigned long long v[2];
  148. memcpy(v, buffer, sizeof(v));
  149. return (v[0] | v[1]) == 0;
  150. }
  151. static size_t encodeBytesGroupMeasure(const unsigned char* buffer, int bits)
  152. {
  153. assert(bits >= 0 && bits <= 8);
  154. if (bits == 0)
  155. return encodeBytesGroupZero(buffer) ? 0 : size_t(-1);
  156. if (bits == 8)
  157. return kByteGroupSize;
  158. size_t result = kByteGroupSize * bits / 8;
  159. unsigned char sentinel = (1 << bits) - 1;
  160. for (size_t i = 0; i < kByteGroupSize; ++i)
  161. result += buffer[i] >= sentinel;
  162. return result;
  163. }
  164. static unsigned char* encodeBytesGroup(unsigned char* data, const unsigned char* buffer, int bits)
  165. {
  166. assert(bits >= 0 && bits <= 8);
  167. assert(kByteGroupSize % 8 == 0);
  168. if (bits == 0)
  169. return data;
  170. if (bits == 8)
  171. {
  172. memcpy(data, buffer, kByteGroupSize);
  173. return data + kByteGroupSize;
  174. }
  175. size_t byte_size = 8 / bits;
  176. assert(kByteGroupSize % byte_size == 0);
  177. // fixed portion: bits bits for each value
  178. // variable portion: full byte for each out-of-range value (using 1...1 as sentinel)
  179. unsigned char sentinel = (1 << bits) - 1;
  180. for (size_t i = 0; i < kByteGroupSize; i += byte_size)
  181. {
  182. unsigned char byte = 0;
  183. for (size_t k = 0; k < byte_size; ++k)
  184. {
  185. unsigned char enc = (buffer[i + k] >= sentinel) ? sentinel : buffer[i + k];
  186. byte <<= bits;
  187. byte |= enc;
  188. }
  189. // encode 1-bit groups in reverse bit order
  190. // this makes them faster to decode alongside other groups
  191. if (bits == 1)
  192. byte = (unsigned char)(((byte * 0x80200802ull) & 0x0884422110ull) * 0x0101010101ull >> 32);
  193. *data++ = byte;
  194. }
  195. for (size_t i = 0; i < kByteGroupSize; ++i)
  196. {
  197. unsigned char v = buffer[i];
  198. // branchless append of out-of-range values
  199. *data = v;
  200. data += v >= sentinel;
  201. }
  202. return data;
  203. }
  204. static unsigned char* encodeBytes(unsigned char* data, unsigned char* data_end, const unsigned char* buffer, size_t buffer_size, const int bits[4])
  205. {
  206. assert(buffer_size % kByteGroupSize == 0);
  207. unsigned char* header = data;
  208. // round number of groups to 4 to get number of header bytes
  209. size_t header_size = (buffer_size / kByteGroupSize + 3) / 4;
  210. if (size_t(data_end - data) < header_size)
  211. return NULL;
  212. data += header_size;
  213. memset(header, 0, header_size);
  214. int last_bits = -1;
  215. for (size_t i = 0; i < buffer_size; i += kByteGroupSize)
  216. {
  217. if (size_t(data_end - data) < kByteGroupDecodeLimit)
  218. return NULL;
  219. int best_bitk = 3;
  220. size_t best_size = encodeBytesGroupMeasure(buffer + i, bits[best_bitk]);
  221. for (int bitk = 0; bitk < 3; ++bitk)
  222. {
  223. size_t size = encodeBytesGroupMeasure(buffer + i, bits[bitk]);
  224. // favor consistent bit selection across groups, but never replace literals
  225. if (size < best_size || (size == best_size && bits[bitk] == last_bits && bits[best_bitk] != 8))
  226. {
  227. best_bitk = bitk;
  228. best_size = size;
  229. }
  230. }
  231. size_t header_offset = i / kByteGroupSize;
  232. header[header_offset / 4] |= best_bitk << ((header_offset % 4) * 2);
  233. int best_bits = bits[best_bitk];
  234. unsigned char* next = encodeBytesGroup(data, buffer + i, best_bits);
  235. assert(data + best_size == next);
  236. data = next;
  237. last_bits = best_bits;
  238. #if TRACE
  239. bytestats->bitg[best_bits] += best_size;
  240. #endif
  241. }
  242. #if TRACE
  243. bytestats->header += header_size;
  244. #endif
  245. return data;
  246. }
  247. template <typename T, bool Xor>
  248. static void encodeDeltas1(unsigned char* buffer, const unsigned char* vertex_data, size_t vertex_count, size_t vertex_size, const unsigned char last_vertex[256], size_t k, int rot)
  249. {
  250. size_t k0 = k & ~(sizeof(T) - 1);
  251. int ks = (k & (sizeof(T) - 1)) * 8;
  252. T p = last_vertex[k0];
  253. for (size_t j = 1; j < sizeof(T); ++j)
  254. p |= T(last_vertex[k0 + j]) << (j * 8);
  255. const unsigned char* vertex = vertex_data + k0;
  256. for (size_t i = 0; i < vertex_count; ++i)
  257. {
  258. T v = vertex[0];
  259. for (size_t j = 1; j < sizeof(T); ++j)
  260. v |= vertex[j] << (j * 8);
  261. T d = Xor ? T(rotate(v ^ p, rot)) : zigzag(T(v - p));
  262. buffer[i] = (unsigned char)(d >> ks);
  263. p = v;
  264. vertex += vertex_size;
  265. }
  266. }
  267. static void encodeDeltas(unsigned char* buffer, const unsigned char* vertex_data, size_t vertex_count, size_t vertex_size, const unsigned char last_vertex[256], size_t k, int channel)
  268. {
  269. switch (channel & 3)
  270. {
  271. case 0:
  272. return encodeDeltas1<unsigned char, false>(buffer, vertex_data, vertex_count, vertex_size, last_vertex, k, 0);
  273. case 1:
  274. return encodeDeltas1<unsigned short, false>(buffer, vertex_data, vertex_count, vertex_size, last_vertex, k, 0);
  275. case 2:
  276. return encodeDeltas1<unsigned int, true>(buffer, vertex_data, vertex_count, vertex_size, last_vertex, k, channel >> 4);
  277. default:
  278. assert(!"Unsupported channel encoding"); // unreachable
  279. }
  280. }
  281. static int estimateBits(unsigned char v)
  282. {
  283. return v <= 15 ? (v <= 3 ? (v == 0 ? 0 : 2) : 4) : 8;
  284. }
  285. static int estimateRotate(const unsigned char* vertex_data, size_t vertex_count, size_t vertex_size, size_t k, size_t group_size)
  286. {
  287. size_t sizes[8] = {};
  288. const unsigned char* vertex = vertex_data + k;
  289. unsigned int last = vertex[0] | (vertex[1] << 8) | (vertex[2] << 16) | (vertex[3] << 24);
  290. for (size_t i = 0; i < vertex_count; i += group_size)
  291. {
  292. unsigned int bitg = 0;
  293. // calculate bit consistency mask for the group
  294. for (size_t j = 0; j < group_size && i + j < vertex_count; ++j)
  295. {
  296. unsigned int v = vertex[0] | (vertex[1] << 8) | (vertex[2] << 16) | (vertex[3] << 24);
  297. unsigned int d = v ^ last;
  298. bitg |= d;
  299. last = v;
  300. vertex += vertex_size;
  301. }
  302. #if TRACE
  303. for (int j = 0; j < 32; ++j)
  304. vertexstats[k + (j / 8)].bitc[j % 8] += (i + group_size < vertex_count ? group_size : vertex_count - i) * (1 - ((bitg >> j) & 1));
  305. #endif
  306. for (int j = 0; j < 8; ++j)
  307. {
  308. unsigned int bitr = rotate(bitg, j);
  309. sizes[j] += estimateBits((unsigned char)(bitr >> 0)) + estimateBits((unsigned char)(bitr >> 8));
  310. sizes[j] += estimateBits((unsigned char)(bitr >> 16)) + estimateBits((unsigned char)(bitr >> 24));
  311. }
  312. }
  313. int best_rot = 0;
  314. for (int rot = 1; rot < 8; ++rot)
  315. best_rot = (sizes[rot] < sizes[best_rot]) ? rot : best_rot;
  316. return best_rot;
  317. }
  318. static int estimateChannel(const unsigned char* vertex_data, size_t vertex_count, size_t vertex_size, size_t k, size_t vertex_block_size, size_t block_skip, int max_channel, int xor_rot)
  319. {
  320. unsigned char block[kVertexBlockMaxSize];
  321. assert(vertex_block_size <= kVertexBlockMaxSize);
  322. unsigned char last_vertex[256] = {};
  323. size_t sizes[3] = {};
  324. assert(max_channel <= 3);
  325. for (size_t i = 0; i < vertex_count; i += vertex_block_size * block_skip)
  326. {
  327. size_t block_size = i + vertex_block_size < vertex_count ? vertex_block_size : vertex_count - i;
  328. size_t block_size_aligned = (block_size + kByteGroupSize - 1) & ~(kByteGroupSize - 1);
  329. memcpy(last_vertex, vertex_data + (i == 0 ? 0 : i - 1) * vertex_size, vertex_size);
  330. // we sometimes encode elements we didn't fill when rounding to kByteGroupSize
  331. if (block_size < block_size_aligned)
  332. memset(block + block_size, 0, block_size_aligned - block_size);
  333. for (int channel = 0; channel < max_channel; ++channel)
  334. for (size_t j = 0; j < 4; ++j)
  335. {
  336. encodeDeltas(block, vertex_data + i * vertex_size, block_size, vertex_size, last_vertex, k + j, channel | (xor_rot << 4));
  337. for (size_t ig = 0; ig < block_size; ig += kByteGroupSize)
  338. {
  339. // to maximize encoding performance we only evaluate 1/2/4/8 bit groups
  340. size_t size1 = encodeBytesGroupMeasure(block + ig, 1);
  341. size_t size2 = encodeBytesGroupMeasure(block + ig, 2);
  342. size_t size4 = encodeBytesGroupMeasure(block + ig, 4);
  343. size_t size8 = encodeBytesGroupMeasure(block + ig, 8);
  344. size_t best_size = size1 < size2 ? size1 : size2;
  345. best_size = best_size < size4 ? best_size : size4;
  346. best_size = best_size < size8 ? best_size : size8;
  347. sizes[channel] += best_size;
  348. }
  349. }
  350. }
  351. int best_channel = 0;
  352. for (int channel = 1; channel < max_channel; ++channel)
  353. best_channel = (sizes[channel] < sizes[best_channel]) ? channel : best_channel;
  354. return best_channel == 2 ? best_channel | (xor_rot << 4) : best_channel;
  355. }
  356. static bool estimateControlZero(const unsigned char* buffer, size_t vertex_count_aligned)
  357. {
  358. for (size_t i = 0; i < vertex_count_aligned; i += kByteGroupSize)
  359. if (!encodeBytesGroupZero(buffer + i))
  360. return false;
  361. return true;
  362. }
  363. static int estimateControl(const unsigned char* buffer, size_t vertex_count, size_t vertex_count_aligned, int level)
  364. {
  365. if (estimateControlZero(buffer, vertex_count_aligned))
  366. return 2; // zero encoding
  367. if (level == 0)
  368. return 1; // 1248 encoding in level 0 for encoding speed
  369. // round number of groups to 4 to get number of header bytes
  370. size_t header_size = (vertex_count_aligned / kByteGroupSize + 3) / 4;
  371. size_t est_bytes0 = header_size, est_bytes1 = header_size;
  372. for (size_t i = 0; i < vertex_count_aligned; i += kByteGroupSize)
  373. {
  374. // assumes kBitsV1[] = {0, 1, 2, 4, 8} for performance
  375. size_t size0 = encodeBytesGroupMeasure(buffer + i, 0);
  376. size_t size1 = encodeBytesGroupMeasure(buffer + i, 1);
  377. size_t size2 = encodeBytesGroupMeasure(buffer + i, 2);
  378. size_t size4 = encodeBytesGroupMeasure(buffer + i, 4);
  379. size_t size8 = encodeBytesGroupMeasure(buffer + i, 8);
  380. // both control modes have access to 1/2/4 bit encoding
  381. size_t size12 = size1 < size2 ? size1 : size2;
  382. size_t size124 = size12 < size4 ? size12 : size4;
  383. // each control mode has access to 0/8 bit encoding respectively
  384. est_bytes0 += size124 < size0 ? size124 : size0;
  385. est_bytes1 += size124 < size8 ? size124 : size8;
  386. }
  387. // pick shortest control entry but prefer literal encoding
  388. if (est_bytes0 < vertex_count || est_bytes1 < vertex_count)
  389. return est_bytes0 < est_bytes1 ? 0 : 1;
  390. else
  391. return 3; // literal encoding
  392. }
  393. static unsigned char* encodeVertexBlock(unsigned char* data, unsigned char* data_end, const unsigned char* vertex_data, size_t vertex_count, size_t vertex_size, unsigned char last_vertex[256], const unsigned char* channels, int version, int level)
  394. {
  395. assert(vertex_count > 0 && vertex_count <= kVertexBlockMaxSize);
  396. assert(vertex_size % 4 == 0);
  397. unsigned char buffer[kVertexBlockMaxSize];
  398. assert(sizeof(buffer) % kByteGroupSize == 0);
  399. size_t vertex_count_aligned = (vertex_count + kByteGroupSize - 1) & ~(kByteGroupSize - 1);
  400. // we sometimes encode elements we didn't fill when rounding to kByteGroupSize
  401. memset(buffer, 0, sizeof(buffer));
  402. size_t control_size = version == 0 ? 0 : vertex_size / 4;
  403. if (size_t(data_end - data) < control_size)
  404. return NULL;
  405. unsigned char* control = data;
  406. data += control_size;
  407. memset(control, 0, control_size);
  408. for (size_t k = 0; k < vertex_size; ++k)
  409. {
  410. encodeDeltas(buffer, vertex_data, vertex_count, vertex_size, last_vertex, k, version == 0 ? 0 : channels[k / 4]);
  411. #if TRACE
  412. const unsigned char* olddata = data;
  413. bytestats = &vertexstats[k];
  414. #endif
  415. int ctrl = 0;
  416. if (version != 0)
  417. {
  418. ctrl = estimateControl(buffer, vertex_count, vertex_count_aligned, level);
  419. assert(unsigned(ctrl) < 4);
  420. control[k / 4] |= ctrl << ((k % 4) * 2);
  421. #if TRACE
  422. vertexstats[k].ctrl[ctrl]++;
  423. #endif
  424. }
  425. if (ctrl == 3)
  426. {
  427. // literal encoding
  428. if (size_t(data_end - data) < vertex_count)
  429. return NULL;
  430. memcpy(data, buffer, vertex_count);
  431. data += vertex_count;
  432. }
  433. else if (ctrl != 2) // non-zero encoding
  434. {
  435. data = encodeBytes(data, data_end, buffer, vertex_count_aligned, version == 0 ? kBitsV0 : kBitsV1 + ctrl);
  436. if (!data)
  437. return NULL;
  438. }
  439. #if TRACE
  440. bytestats = NULL;
  441. vertexstats[k].size += data - olddata;
  442. #endif
  443. }
  444. memcpy(last_vertex, &vertex_data[vertex_size * (vertex_count - 1)], vertex_size);
  445. return data;
  446. }
  447. #if defined(SIMD_FALLBACK) || (!defined(SIMD_SSE) && !defined(SIMD_NEON) && !defined(SIMD_AVX) && !defined(SIMD_WASM))
  448. static const unsigned char* decodeBytesGroup(const unsigned char* data, unsigned char* buffer, int bits)
  449. {
  450. #define READ() byte = *data++
  451. #define NEXT(bits) enc = byte >> (8 - bits), byte <<= bits, encv = *data_var, *buffer++ = (enc == (1 << bits) - 1) ? encv : enc, data_var += (enc == (1 << bits) - 1)
  452. unsigned char byte, enc, encv;
  453. const unsigned char* data_var;
  454. switch (bits)
  455. {
  456. case 0:
  457. memset(buffer, 0, kByteGroupSize);
  458. return data;
  459. case 1:
  460. data_var = data + 2;
  461. // 2 groups with 8 1-bit values in each byte (reversed from the order in other groups)
  462. READ();
  463. byte = (unsigned char)(((byte * 0x80200802ull) & 0x0884422110ull) * 0x0101010101ull >> 32);
  464. NEXT(1), NEXT(1), NEXT(1), NEXT(1), NEXT(1), NEXT(1), NEXT(1), NEXT(1);
  465. READ();
  466. byte = (unsigned char)(((byte * 0x80200802ull) & 0x0884422110ull) * 0x0101010101ull >> 32);
  467. NEXT(1), NEXT(1), NEXT(1), NEXT(1), NEXT(1), NEXT(1), NEXT(1), NEXT(1);
  468. return data_var;
  469. case 2:
  470. data_var = data + 4;
  471. // 4 groups with 4 2-bit values in each byte
  472. READ(), NEXT(2), NEXT(2), NEXT(2), NEXT(2);
  473. READ(), NEXT(2), NEXT(2), NEXT(2), NEXT(2);
  474. READ(), NEXT(2), NEXT(2), NEXT(2), NEXT(2);
  475. READ(), NEXT(2), NEXT(2), NEXT(2), NEXT(2);
  476. return data_var;
  477. case 4:
  478. data_var = data + 8;
  479. // 8 groups with 2 4-bit values in each byte
  480. READ(), NEXT(4), NEXT(4);
  481. READ(), NEXT(4), NEXT(4);
  482. READ(), NEXT(4), NEXT(4);
  483. READ(), NEXT(4), NEXT(4);
  484. READ(), NEXT(4), NEXT(4);
  485. READ(), NEXT(4), NEXT(4);
  486. READ(), NEXT(4), NEXT(4);
  487. READ(), NEXT(4), NEXT(4);
  488. return data_var;
  489. case 8:
  490. memcpy(buffer, data, kByteGroupSize);
  491. return data + kByteGroupSize;
  492. default:
  493. assert(!"Unexpected bit length"); // unreachable
  494. return data;
  495. }
  496. #undef READ
  497. #undef NEXT
  498. }
  499. static const unsigned char* decodeBytes(const unsigned char* data, const unsigned char* data_end, unsigned char* buffer, size_t buffer_size, const int* bits)
  500. {
  501. assert(buffer_size % kByteGroupSize == 0);
  502. // round number of groups to 4 to get number of header bytes
  503. size_t header_size = (buffer_size / kByteGroupSize + 3) / 4;
  504. if (size_t(data_end - data) < header_size)
  505. return NULL;
  506. const unsigned char* header = data;
  507. data += header_size;
  508. for (size_t i = 0; i < buffer_size; i += kByteGroupSize)
  509. {
  510. if (size_t(data_end - data) < kByteGroupDecodeLimit)
  511. return NULL;
  512. size_t header_offset = i / kByteGroupSize;
  513. int bitsk = (header[header_offset / 4] >> ((header_offset % 4) * 2)) & 3;
  514. data = decodeBytesGroup(data, buffer + i, bits[bitsk]);
  515. }
  516. return data;
  517. }
  518. template <typename T, bool Xor>
  519. static void decodeDeltas1(const unsigned char* buffer, unsigned char* transposed, size_t vertex_count, size_t vertex_size, const unsigned char* last_vertex, int rot)
  520. {
  521. for (size_t k = 0; k < 4; k += sizeof(T))
  522. {
  523. size_t vertex_offset = k;
  524. T p = last_vertex[0];
  525. for (size_t j = 1; j < sizeof(T); ++j)
  526. p |= last_vertex[j] << (8 * j);
  527. for (size_t i = 0; i < vertex_count; ++i)
  528. {
  529. T v = buffer[i];
  530. for (size_t j = 1; j < sizeof(T); ++j)
  531. v |= buffer[i + vertex_count * j] << (8 * j);
  532. v = Xor ? T(rotate(v, rot)) ^ p : unzigzag(v) + p;
  533. for (size_t j = 0; j < sizeof(T); ++j)
  534. transposed[vertex_offset + j] = (unsigned char)(v >> (j * 8));
  535. p = v;
  536. vertex_offset += vertex_size;
  537. }
  538. buffer += vertex_count * sizeof(T);
  539. last_vertex += sizeof(T);
  540. }
  541. }
  542. static const unsigned char* decodeVertexBlock(const unsigned char* data, const unsigned char* data_end, unsigned char* vertex_data, size_t vertex_count, size_t vertex_size, unsigned char last_vertex[256], const unsigned char* channels, int version)
  543. {
  544. assert(vertex_count > 0 && vertex_count <= kVertexBlockMaxSize);
  545. unsigned char buffer[kVertexBlockMaxSize * 4];
  546. unsigned char transposed[kVertexBlockSizeBytes];
  547. size_t vertex_count_aligned = (vertex_count + kByteGroupSize - 1) & ~(kByteGroupSize - 1);
  548. assert(vertex_count <= vertex_count_aligned);
  549. size_t control_size = version == 0 ? 0 : vertex_size / 4;
  550. if (size_t(data_end - data) < control_size)
  551. return NULL;
  552. const unsigned char* control = data;
  553. data += control_size;
  554. for (size_t k = 0; k < vertex_size; k += 4)
  555. {
  556. unsigned char ctrl_byte = version == 0 ? 0 : control[k / 4];
  557. for (size_t j = 0; j < 4; ++j)
  558. {
  559. int ctrl = (ctrl_byte >> (j * 2)) & 3;
  560. if (ctrl == 3)
  561. {
  562. // literal encoding
  563. if (size_t(data_end - data) < vertex_count)
  564. return NULL;
  565. memcpy(buffer + j * vertex_count, data, vertex_count);
  566. data += vertex_count;
  567. }
  568. else if (ctrl == 2)
  569. {
  570. // zero encoding
  571. memset(buffer + j * vertex_count, 0, vertex_count);
  572. }
  573. else
  574. {
  575. data = decodeBytes(data, data_end, buffer + j * vertex_count, vertex_count_aligned, version == 0 ? kBitsV0 : kBitsV1 + ctrl);
  576. if (!data)
  577. return NULL;
  578. }
  579. }
  580. int channel = version == 0 ? 0 : channels[k / 4];
  581. switch (channel & 3)
  582. {
  583. case 0:
  584. decodeDeltas1<unsigned char, false>(buffer, transposed + k, vertex_count, vertex_size, last_vertex + k, 0);
  585. break;
  586. case 1:
  587. decodeDeltas1<unsigned short, false>(buffer, transposed + k, vertex_count, vertex_size, last_vertex + k, 0);
  588. break;
  589. case 2:
  590. decodeDeltas1<unsigned int, true>(buffer, transposed + k, vertex_count, vertex_size, last_vertex + k, (32 - (channel >> 4)) & 31);
  591. break;
  592. default:
  593. return NULL; // invalid channel type
  594. }
  595. }
  596. memcpy(vertex_data, transposed, vertex_count * vertex_size);
  597. memcpy(last_vertex, &transposed[vertex_size * (vertex_count - 1)], vertex_size);
  598. return data;
  599. }
  600. #endif
  601. #if defined(SIMD_SSE) || defined(SIMD_NEON) || defined(SIMD_WASM)
  602. static unsigned char kDecodeBytesGroupShuffle[256][8];
  603. static unsigned char kDecodeBytesGroupCount[256];
  604. #ifdef __wasm__
  605. __attribute__((cold)) // this saves 500 bytes in the output binary - we don't need to vectorize this loop!
  606. #endif
  607. static bool
  608. decodeBytesGroupBuildTables()
  609. {
  610. for (int mask = 0; mask < 256; ++mask)
  611. {
  612. unsigned char shuffle[8];
  613. unsigned char count = 0;
  614. for (int i = 0; i < 8; ++i)
  615. {
  616. int maski = (mask >> i) & 1;
  617. shuffle[i] = maski ? count : 0x80;
  618. count += (unsigned char)(maski);
  619. }
  620. memcpy(kDecodeBytesGroupShuffle[mask], shuffle, 8);
  621. kDecodeBytesGroupCount[mask] = count;
  622. }
  623. return true;
  624. }
  625. static bool gDecodeBytesGroupInitialized = decodeBytesGroupBuildTables();
  626. #endif
  627. #ifdef SIMD_SSE
  628. SIMD_TARGET
  629. inline __m128i decodeShuffleMask(unsigned char mask0, unsigned char mask1)
  630. {
  631. __m128i sm0 = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(&kDecodeBytesGroupShuffle[mask0]));
  632. __m128i sm1 = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(&kDecodeBytesGroupShuffle[mask1]));
  633. __m128i sm1off = _mm_set1_epi8(kDecodeBytesGroupCount[mask0]);
  634. __m128i sm1r = _mm_add_epi8(sm1, sm1off);
  635. return _mm_unpacklo_epi64(sm0, sm1r);
  636. }
  637. SIMD_TARGET
  638. inline const unsigned char* decodeBytesGroupSimd(const unsigned char* data, unsigned char* buffer, int hbits)
  639. {
  640. switch (hbits)
  641. {
  642. case 0:
  643. case 4:
  644. {
  645. __m128i result = _mm_setzero_si128();
  646. _mm_storeu_si128(reinterpret_cast<__m128i*>(buffer), result);
  647. return data;
  648. }
  649. case 1:
  650. case 6:
  651. {
  652. #ifdef __GNUC__
  653. typedef int __attribute__((aligned(1))) unaligned_int;
  654. #else
  655. typedef int unaligned_int;
  656. #endif
  657. #ifdef SIMD_LATENCYOPT
  658. unsigned int data32;
  659. memcpy(&data32, data, 4);
  660. data32 &= data32 >> 1;
  661. // arrange bits such that low bits of nibbles of data64 contain all 2-bit elements of data32
  662. unsigned long long data64 = ((unsigned long long)data32 << 30) | (data32 & 0x3fffffff);
  663. // adds all 1-bit nibbles together; the sum fits in 4 bits because datacnt=16 would have used mode 3
  664. int datacnt = int(((data64 & 0x1111111111111111ull) * 0x1111111111111111ull) >> 60);
  665. #endif
  666. __m128i sel2 = _mm_cvtsi32_si128(*reinterpret_cast<const unaligned_int*>(data));
  667. __m128i rest = _mm_loadu_si128(reinterpret_cast<const __m128i*>(data + 4));
  668. __m128i sel22 = _mm_unpacklo_epi8(_mm_srli_epi16(sel2, 4), sel2);
  669. __m128i sel2222 = _mm_unpacklo_epi8(_mm_srli_epi16(sel22, 2), sel22);
  670. __m128i sel = _mm_and_si128(sel2222, _mm_set1_epi8(3));
  671. __m128i mask = _mm_cmpeq_epi8(sel, _mm_set1_epi8(3));
  672. int mask16 = _mm_movemask_epi8(mask);
  673. unsigned char mask0 = (unsigned char)(mask16 & 255);
  674. unsigned char mask1 = (unsigned char)(mask16 >> 8);
  675. __m128i shuf = decodeShuffleMask(mask0, mask1);
  676. __m128i result = _mm_or_si128(_mm_shuffle_epi8(rest, shuf), _mm_andnot_si128(mask, sel));
  677. _mm_storeu_si128(reinterpret_cast<__m128i*>(buffer), result);
  678. #ifdef SIMD_LATENCYOPT
  679. return data + 4 + datacnt;
  680. #else
  681. return data + 4 + kDecodeBytesGroupCount[mask0] + kDecodeBytesGroupCount[mask1];
  682. #endif
  683. }
  684. case 2:
  685. case 7:
  686. {
  687. #ifdef SIMD_LATENCYOPT
  688. unsigned long long data64;
  689. memcpy(&data64, data, 8);
  690. data64 &= data64 >> 1;
  691. data64 &= data64 >> 2;
  692. // adds all 1-bit nibbles together; the sum fits in 4 bits because datacnt=16 would have used mode 3
  693. int datacnt = int(((data64 & 0x1111111111111111ull) * 0x1111111111111111ull) >> 60);
  694. #endif
  695. __m128i sel4 = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(data));
  696. __m128i rest = _mm_loadu_si128(reinterpret_cast<const __m128i*>(data + 8));
  697. __m128i sel44 = _mm_unpacklo_epi8(_mm_srli_epi16(sel4, 4), sel4);
  698. __m128i sel = _mm_and_si128(sel44, _mm_set1_epi8(15));
  699. __m128i mask = _mm_cmpeq_epi8(sel, _mm_set1_epi8(15));
  700. int mask16 = _mm_movemask_epi8(mask);
  701. unsigned char mask0 = (unsigned char)(mask16 & 255);
  702. unsigned char mask1 = (unsigned char)(mask16 >> 8);
  703. __m128i shuf = decodeShuffleMask(mask0, mask1);
  704. __m128i result = _mm_or_si128(_mm_shuffle_epi8(rest, shuf), _mm_andnot_si128(mask, sel));
  705. _mm_storeu_si128(reinterpret_cast<__m128i*>(buffer), result);
  706. #ifdef SIMD_LATENCYOPT
  707. return data + 8 + datacnt;
  708. #else
  709. return data + 8 + kDecodeBytesGroupCount[mask0] + kDecodeBytesGroupCount[mask1];
  710. #endif
  711. }
  712. case 3:
  713. case 8:
  714. {
  715. __m128i result = _mm_loadu_si128(reinterpret_cast<const __m128i*>(data));
  716. _mm_storeu_si128(reinterpret_cast<__m128i*>(buffer), result);
  717. return data + 16;
  718. }
  719. case 5:
  720. {
  721. __m128i rest = _mm_loadu_si128(reinterpret_cast<const __m128i*>(data + 2));
  722. unsigned char mask0 = data[0];
  723. unsigned char mask1 = data[1];
  724. __m128i shuf = decodeShuffleMask(mask0, mask1);
  725. __m128i result = _mm_shuffle_epi8(rest, shuf);
  726. _mm_storeu_si128(reinterpret_cast<__m128i*>(buffer), result);
  727. return data + 2 + kDecodeBytesGroupCount[mask0] + kDecodeBytesGroupCount[mask1];
  728. }
  729. default:
  730. SIMD_UNREACHABLE(); // unreachable
  731. }
  732. }
  733. #endif
  734. #ifdef SIMD_AVX
  735. static const __m128i kDecodeBytesGroupConfig[8][2] = {
  736. {_mm_setzero_si128(), _mm_setzero_si128()},
  737. {_mm_set1_epi8(3), _mm_setr_epi8(6, 4, 2, 0, 14, 12, 10, 8, 22, 20, 18, 16, 30, 28, 26, 24)},
  738. {_mm_set1_epi8(15), _mm_setr_epi8(4, 0, 12, 8, 20, 16, 28, 24, 36, 32, 44, 40, 52, 48, 60, 56)},
  739. {_mm_setzero_si128(), _mm_setzero_si128()},
  740. {_mm_setzero_si128(), _mm_setzero_si128()},
  741. {_mm_set1_epi8(1), _mm_setr_epi8(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)},
  742. {_mm_set1_epi8(3), _mm_setr_epi8(6, 4, 2, 0, 14, 12, 10, 8, 22, 20, 18, 16, 30, 28, 26, 24)},
  743. {_mm_set1_epi8(15), _mm_setr_epi8(4, 0, 12, 8, 20, 16, 28, 24, 36, 32, 44, 40, 52, 48, 60, 56)},
  744. };
  745. SIMD_TARGET
  746. inline const unsigned char* decodeBytesGroupSimd(const unsigned char* data, unsigned char* buffer, int hbits)
  747. {
  748. switch (hbits)
  749. {
  750. case 0:
  751. case 4:
  752. {
  753. __m128i result = _mm_setzero_si128();
  754. _mm_storeu_si128(reinterpret_cast<__m128i*>(buffer), result);
  755. return data;
  756. }
  757. case 5: // 1-bit
  758. case 1: // 2-bit
  759. case 6:
  760. case 2: // 4-bit
  761. case 7:
  762. {
  763. const unsigned char* skip = data + (2 << (hbits < 3 ? hbits : hbits - 5));
  764. __m128i selb = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(data));
  765. __m128i rest = _mm_loadu_si128(reinterpret_cast<const __m128i*>(skip));
  766. __m128i sent = kDecodeBytesGroupConfig[hbits][0];
  767. __m128i ctrl = kDecodeBytesGroupConfig[hbits][1];
  768. __m128i selw = _mm_shuffle_epi32(selb, 0x44);
  769. __m128i sel = _mm_and_si128(sent, _mm_multishift_epi64_epi8(ctrl, selw));
  770. __mmask16 mask16 = _mm_cmp_epi8_mask(sel, sent, _MM_CMPINT_EQ);
  771. __m128i result = _mm_mask_expand_epi8(sel, mask16, rest);
  772. _mm_storeu_si128(reinterpret_cast<__m128i*>(buffer), result);
  773. return skip + _mm_popcnt_u32(mask16);
  774. }
  775. case 3:
  776. case 8:
  777. {
  778. __m128i result = _mm_loadu_si128(reinterpret_cast<const __m128i*>(data));
  779. _mm_storeu_si128(reinterpret_cast<__m128i*>(buffer), result);
  780. return data + 16;
  781. }
  782. default:
  783. SIMD_UNREACHABLE(); // unreachable
  784. }
  785. }
  786. #endif
  787. #ifdef SIMD_NEON
  788. SIMD_TARGET
  789. inline uint8x16_t shuffleBytes(unsigned char mask0, unsigned char mask1, uint8x8_t rest0, uint8x8_t rest1)
  790. {
  791. uint8x8_t sm0 = vld1_u8(kDecodeBytesGroupShuffle[mask0]);
  792. uint8x8_t sm1 = vld1_u8(kDecodeBytesGroupShuffle[mask1]);
  793. uint8x8_t r0 = vtbl1_u8(rest0, sm0);
  794. uint8x8_t r1 = vtbl1_u8(rest1, sm1);
  795. return vcombine_u8(r0, r1);
  796. }
  797. SIMD_TARGET
  798. inline void neonMoveMask(uint8x16_t mask, unsigned char& mask0, unsigned char& mask1)
  799. {
  800. // magic constant found using z3 SMT assuming mask has 8 groups of 0xff or 0x00
  801. const uint64_t magic = 0x000103070f1f3f80ull;
  802. uint64x2_t mask2 = vreinterpretq_u64_u8(mask);
  803. mask0 = uint8_t((vgetq_lane_u64(mask2, 0) * magic) >> 56);
  804. mask1 = uint8_t((vgetq_lane_u64(mask2, 1) * magic) >> 56);
  805. }
  806. SIMD_TARGET
  807. inline const unsigned char* decodeBytesGroupSimd(const unsigned char* data, unsigned char* buffer, int hbits)
  808. {
  809. switch (hbits)
  810. {
  811. case 0:
  812. case 4:
  813. {
  814. uint8x16_t result = vdupq_n_u8(0);
  815. vst1q_u8(buffer, result);
  816. return data;
  817. }
  818. case 1:
  819. case 6:
  820. {
  821. #ifdef SIMD_LATENCYOPT
  822. unsigned int data32;
  823. memcpy(&data32, data, 4);
  824. data32 &= data32 >> 1;
  825. // arrange bits such that low bits of nibbles of data64 contain all 2-bit elements of data32
  826. unsigned long long data64 = ((unsigned long long)data32 << 30) | (data32 & 0x3fffffff);
  827. // adds all 1-bit nibbles together; the sum fits in 4 bits because datacnt=16 would have used mode 3
  828. int datacnt = int(((data64 & 0x1111111111111111ull) * 0x1111111111111111ull) >> 60);
  829. #endif
  830. uint8x8_t sel2 = vld1_u8(data);
  831. uint8x8_t sel22 = vzip_u8(vshr_n_u8(sel2, 4), sel2).val[0];
  832. uint8x8x2_t sel2222 = vzip_u8(vshr_n_u8(sel22, 2), sel22);
  833. uint8x16_t sel = vandq_u8(vcombine_u8(sel2222.val[0], sel2222.val[1]), vdupq_n_u8(3));
  834. uint8x16_t mask = vceqq_u8(sel, vdupq_n_u8(3));
  835. unsigned char mask0, mask1;
  836. neonMoveMask(mask, mask0, mask1);
  837. uint8x8_t rest0 = vld1_u8(data + 4);
  838. uint8x8_t rest1 = vld1_u8(data + 4 + kDecodeBytesGroupCount[mask0]);
  839. uint8x16_t result = vbslq_u8(mask, shuffleBytes(mask0, mask1, rest0, rest1), sel);
  840. vst1q_u8(buffer, result);
  841. #ifdef SIMD_LATENCYOPT
  842. return data + 4 + datacnt;
  843. #else
  844. return data + 4 + kDecodeBytesGroupCount[mask0] + kDecodeBytesGroupCount[mask1];
  845. #endif
  846. }
  847. case 2:
  848. case 7:
  849. {
  850. #ifdef SIMD_LATENCYOPT
  851. unsigned long long data64;
  852. memcpy(&data64, data, 8);
  853. data64 &= data64 >> 1;
  854. data64 &= data64 >> 2;
  855. // adds all 1-bit nibbles together; the sum fits in 4 bits because datacnt=16 would have used mode 3
  856. int datacnt = int(((data64 & 0x1111111111111111ull) * 0x1111111111111111ull) >> 60);
  857. #endif
  858. uint8x8_t sel4 = vld1_u8(data);
  859. uint8x8x2_t sel44 = vzip_u8(vshr_n_u8(sel4, 4), vand_u8(sel4, vdup_n_u8(15)));
  860. uint8x16_t sel = vcombine_u8(sel44.val[0], sel44.val[1]);
  861. uint8x16_t mask = vceqq_u8(sel, vdupq_n_u8(15));
  862. unsigned char mask0, mask1;
  863. neonMoveMask(mask, mask0, mask1);
  864. uint8x8_t rest0 = vld1_u8(data + 8);
  865. uint8x8_t rest1 = vld1_u8(data + 8 + kDecodeBytesGroupCount[mask0]);
  866. uint8x16_t result = vbslq_u8(mask, shuffleBytes(mask0, mask1, rest0, rest1), sel);
  867. vst1q_u8(buffer, result);
  868. #ifdef SIMD_LATENCYOPT
  869. return data + 8 + datacnt;
  870. #else
  871. return data + 8 + kDecodeBytesGroupCount[mask0] + kDecodeBytesGroupCount[mask1];
  872. #endif
  873. }
  874. case 3:
  875. case 8:
  876. {
  877. uint8x16_t result = vld1q_u8(data);
  878. vst1q_u8(buffer, result);
  879. return data + 16;
  880. }
  881. case 5:
  882. {
  883. unsigned char mask0 = data[0];
  884. unsigned char mask1 = data[1];
  885. uint8x8_t rest0 = vld1_u8(data + 2);
  886. uint8x8_t rest1 = vld1_u8(data + 2 + kDecodeBytesGroupCount[mask0]);
  887. uint8x16_t result = shuffleBytes(mask0, mask1, rest0, rest1);
  888. vst1q_u8(buffer, result);
  889. return data + 2 + kDecodeBytesGroupCount[mask0] + kDecodeBytesGroupCount[mask1];
  890. }
  891. default:
  892. SIMD_UNREACHABLE(); // unreachable
  893. }
  894. }
  895. #endif
  896. #ifdef SIMD_WASM
  897. SIMD_TARGET
  898. inline v128_t decodeShuffleMask(unsigned char mask0, unsigned char mask1)
  899. {
  900. v128_t sm0 = wasm_v128_load(&kDecodeBytesGroupShuffle[mask0]);
  901. v128_t sm1 = wasm_v128_load(&kDecodeBytesGroupShuffle[mask1]);
  902. v128_t sm1off = wasm_v128_load8_splat(&kDecodeBytesGroupCount[mask0]);
  903. v128_t sm1r = wasm_i8x16_add(sm1, sm1off);
  904. return wasmx_unpacklo_v64x2(sm0, sm1r);
  905. }
  906. SIMD_TARGET
  907. inline void wasmMoveMask(v128_t mask, unsigned char& mask0, unsigned char& mask1)
  908. {
  909. // magic constant found using z3 SMT assuming mask has 8 groups of 0xff or 0x00
  910. const uint64_t magic = 0x000103070f1f3f80ull;
  911. mask0 = uint8_t((wasm_i64x2_extract_lane(mask, 0) * magic) >> 56);
  912. mask1 = uint8_t((wasm_i64x2_extract_lane(mask, 1) * magic) >> 56);
  913. }
  914. SIMD_TARGET
  915. inline const unsigned char* decodeBytesGroupSimd(const unsigned char* data, unsigned char* buffer, int hbits)
  916. {
  917. switch (hbits)
  918. {
  919. case 0:
  920. case 4:
  921. {
  922. v128_t result = wasm_i8x16_splat(0);
  923. wasm_v128_store(buffer, result);
  924. return data;
  925. }
  926. case 1:
  927. case 6:
  928. {
  929. v128_t sel2 = wasm_v128_load(data);
  930. v128_t rest = wasm_v128_load(data + 4);
  931. v128_t sel22 = wasmx_unpacklo_v8x16(wasm_i16x8_shr(sel2, 4), sel2);
  932. v128_t sel2222 = wasmx_unpacklo_v8x16(wasm_i16x8_shr(sel22, 2), sel22);
  933. v128_t sel = wasm_v128_and(sel2222, wasm_i8x16_splat(3));
  934. v128_t mask = wasm_i8x16_eq(sel, wasm_i8x16_splat(3));
  935. unsigned char mask0, mask1;
  936. wasmMoveMask(mask, mask0, mask1);
  937. v128_t shuf = decodeShuffleMask(mask0, mask1);
  938. v128_t result = wasm_v128_bitselect(wasm_i8x16_swizzle(rest, shuf), sel, mask);
  939. wasm_v128_store(buffer, result);
  940. return data + 4 + kDecodeBytesGroupCount[mask0] + kDecodeBytesGroupCount[mask1];
  941. }
  942. case 2:
  943. case 7:
  944. {
  945. v128_t sel4 = wasm_v128_load(data);
  946. v128_t rest = wasm_v128_load(data + 8);
  947. v128_t sel44 = wasmx_unpacklo_v8x16(wasm_i16x8_shr(sel4, 4), sel4);
  948. v128_t sel = wasm_v128_and(sel44, wasm_i8x16_splat(15));
  949. v128_t mask = wasm_i8x16_eq(sel, wasm_i8x16_splat(15));
  950. unsigned char mask0, mask1;
  951. wasmMoveMask(mask, mask0, mask1);
  952. v128_t shuf = decodeShuffleMask(mask0, mask1);
  953. v128_t result = wasm_v128_bitselect(wasm_i8x16_swizzle(rest, shuf), sel, mask);
  954. wasm_v128_store(buffer, result);
  955. return data + 8 + kDecodeBytesGroupCount[mask0] + kDecodeBytesGroupCount[mask1];
  956. }
  957. case 3:
  958. case 8:
  959. {
  960. v128_t result = wasm_v128_load(data);
  961. wasm_v128_store(buffer, result);
  962. return data + 16;
  963. }
  964. case 5:
  965. {
  966. v128_t rest = wasm_v128_load(data + 2);
  967. unsigned char mask0 = data[0];
  968. unsigned char mask1 = data[1];
  969. v128_t shuf = decodeShuffleMask(mask0, mask1);
  970. v128_t result = wasm_i8x16_swizzle(rest, shuf);
  971. wasm_v128_store(buffer, result);
  972. return data + 2 + kDecodeBytesGroupCount[mask0] + kDecodeBytesGroupCount[mask1];
  973. }
  974. default:
  975. SIMD_UNREACHABLE(); // unreachable
  976. }
  977. }
  978. #endif
  979. #if defined(SIMD_SSE) || defined(SIMD_AVX)
  980. SIMD_TARGET
  981. inline void transpose8(__m128i& x0, __m128i& x1, __m128i& x2, __m128i& x3)
  982. {
  983. __m128i t0 = _mm_unpacklo_epi8(x0, x1);
  984. __m128i t1 = _mm_unpackhi_epi8(x0, x1);
  985. __m128i t2 = _mm_unpacklo_epi8(x2, x3);
  986. __m128i t3 = _mm_unpackhi_epi8(x2, x3);
  987. x0 = _mm_unpacklo_epi16(t0, t2);
  988. x1 = _mm_unpackhi_epi16(t0, t2);
  989. x2 = _mm_unpacklo_epi16(t1, t3);
  990. x3 = _mm_unpackhi_epi16(t1, t3);
  991. }
  992. SIMD_TARGET
  993. inline __m128i unzigzag8(__m128i v)
  994. {
  995. __m128i xl = _mm_sub_epi8(_mm_setzero_si128(), _mm_and_si128(v, _mm_set1_epi8(1)));
  996. __m128i xr = _mm_and_si128(_mm_srli_epi16(v, 1), _mm_set1_epi8(127));
  997. return _mm_xor_si128(xl, xr);
  998. }
  999. SIMD_TARGET
  1000. inline __m128i unzigzag16(__m128i v)
  1001. {
  1002. __m128i xl = _mm_sub_epi16(_mm_setzero_si128(), _mm_and_si128(v, _mm_set1_epi16(1)));
  1003. __m128i xr = _mm_srli_epi16(v, 1);
  1004. return _mm_xor_si128(xl, xr);
  1005. }
  1006. SIMD_TARGET
  1007. inline __m128i rotate32(__m128i v, int r)
  1008. {
  1009. return _mm_or_si128(_mm_slli_epi32(v, r), _mm_srli_epi32(v, 32 - r));
  1010. }
  1011. #endif
  1012. #ifdef SIMD_NEON
  1013. SIMD_TARGET
  1014. inline void transpose8(uint8x16_t& x0, uint8x16_t& x1, uint8x16_t& x2, uint8x16_t& x3)
  1015. {
  1016. uint8x16x2_t t01 = vzipq_u8(x0, x1);
  1017. uint8x16x2_t t23 = vzipq_u8(x2, x3);
  1018. uint16x8x2_t x01 = vzipq_u16(vreinterpretq_u16_u8(t01.val[0]), vreinterpretq_u16_u8(t23.val[0]));
  1019. uint16x8x2_t x23 = vzipq_u16(vreinterpretq_u16_u8(t01.val[1]), vreinterpretq_u16_u8(t23.val[1]));
  1020. x0 = vreinterpretq_u8_u16(x01.val[0]);
  1021. x1 = vreinterpretq_u8_u16(x01.val[1]);
  1022. x2 = vreinterpretq_u8_u16(x23.val[0]);
  1023. x3 = vreinterpretq_u8_u16(x23.val[1]);
  1024. }
  1025. SIMD_TARGET
  1026. inline uint8x16_t unzigzag8(uint8x16_t v)
  1027. {
  1028. uint8x16_t xl = vreinterpretq_u8_s8(vnegq_s8(vreinterpretq_s8_u8(vandq_u8(v, vdupq_n_u8(1)))));
  1029. uint8x16_t xr = vshrq_n_u8(v, 1);
  1030. return veorq_u8(xl, xr);
  1031. }
  1032. SIMD_TARGET
  1033. inline uint8x16_t unzigzag16(uint8x16_t v)
  1034. {
  1035. uint16x8_t vv = vreinterpretq_u16_u8(v);
  1036. uint8x16_t xl = vreinterpretq_u8_s16(vnegq_s16(vreinterpretq_s16_u16(vandq_u16(vv, vdupq_n_u16(1)))));
  1037. uint8x16_t xr = vreinterpretq_u8_u16(vshrq_n_u16(vv, 1));
  1038. return veorq_u8(xl, xr);
  1039. }
  1040. SIMD_TARGET
  1041. inline uint8x16_t rotate32(uint8x16_t v, int r)
  1042. {
  1043. uint32x4_t v32 = vreinterpretq_u32_u8(v);
  1044. return vreinterpretq_u8_u32(vorrq_u32(vshlq_u32(v32, vdupq_n_s32(r)), vshlq_u32(v32, vdupq_n_s32(r - 32))));
  1045. }
  1046. template <int Channel>
  1047. SIMD_TARGET inline uint8x8_t rebase(uint8x8_t npi, uint8x16_t r0, uint8x16_t r1, uint8x16_t r2, uint8x16_t r3)
  1048. {
  1049. switch (Channel)
  1050. {
  1051. case 0:
  1052. {
  1053. uint8x16_t rsum = vaddq_u8(vaddq_u8(r0, r1), vaddq_u8(r2, r3));
  1054. uint8x8_t rsumx = vadd_u8(vget_low_u8(rsum), vget_high_u8(rsum));
  1055. return vadd_u8(vadd_u8(npi, rsumx), vext_u8(rsumx, rsumx, 4));
  1056. }
  1057. case 1:
  1058. {
  1059. uint16x8_t rsum = vaddq_u16(vaddq_u16(vreinterpretq_u16_u8(r0), vreinterpretq_u16_u8(r1)), vaddq_u16(vreinterpretq_u16_u8(r2), vreinterpretq_u16_u8(r3)));
  1060. uint16x4_t rsumx = vadd_u16(vget_low_u16(rsum), vget_high_u16(rsum));
  1061. return vreinterpret_u8_u16(vadd_u16(vadd_u16(vreinterpret_u16_u8(npi), rsumx), vext_u16(rsumx, rsumx, 2)));
  1062. }
  1063. case 2:
  1064. {
  1065. uint8x16_t rsum = veorq_u8(veorq_u8(r0, r1), veorq_u8(r2, r3));
  1066. uint8x8_t rsumx = veor_u8(vget_low_u8(rsum), vget_high_u8(rsum));
  1067. return veor_u8(veor_u8(npi, rsumx), vext_u8(rsumx, rsumx, 4));
  1068. }
  1069. default:
  1070. return npi;
  1071. }
  1072. }
  1073. #endif
  1074. #ifdef SIMD_WASM
  1075. SIMD_TARGET
  1076. inline void transpose8(v128_t& x0, v128_t& x1, v128_t& x2, v128_t& x3)
  1077. {
  1078. v128_t t0 = wasmx_unpacklo_v8x16(x0, x1);
  1079. v128_t t1 = wasmx_unpackhi_v8x16(x0, x1);
  1080. v128_t t2 = wasmx_unpacklo_v8x16(x2, x3);
  1081. v128_t t3 = wasmx_unpackhi_v8x16(x2, x3);
  1082. x0 = wasmx_unpacklo_v16x8(t0, t2);
  1083. x1 = wasmx_unpackhi_v16x8(t0, t2);
  1084. x2 = wasmx_unpacklo_v16x8(t1, t3);
  1085. x3 = wasmx_unpackhi_v16x8(t1, t3);
  1086. }
  1087. SIMD_TARGET
  1088. inline v128_t unzigzag8(v128_t v)
  1089. {
  1090. v128_t xl = wasm_i8x16_neg(wasm_v128_and(v, wasm_i8x16_splat(1)));
  1091. v128_t xr = wasm_u8x16_shr(v, 1);
  1092. return wasm_v128_xor(xl, xr);
  1093. }
  1094. SIMD_TARGET
  1095. inline v128_t unzigzag16(v128_t v)
  1096. {
  1097. v128_t xl = wasm_i16x8_neg(wasm_v128_and(v, wasm_i16x8_splat(1)));
  1098. v128_t xr = wasm_u16x8_shr(v, 1);
  1099. return wasm_v128_xor(xl, xr);
  1100. }
  1101. SIMD_TARGET
  1102. inline v128_t rotate32(v128_t v, int r)
  1103. {
  1104. return wasm_v128_or(wasm_i32x4_shl(v, r), wasm_i32x4_shr(v, 32 - r));
  1105. }
  1106. #endif
  1107. #if defined(SIMD_SSE) || defined(SIMD_AVX) || defined(SIMD_NEON) || defined(SIMD_WASM)
  1108. SIMD_TARGET
  1109. static const unsigned char* decodeBytesSimd(const unsigned char* data, const unsigned char* data_end, unsigned char* buffer, size_t buffer_size, int hshift)
  1110. {
  1111. assert(buffer_size % kByteGroupSize == 0);
  1112. assert(kByteGroupSize == 16);
  1113. // round number of groups to 4 to get number of header bytes
  1114. size_t header_size = (buffer_size / kByteGroupSize + 3) / 4;
  1115. if (size_t(data_end - data) < header_size)
  1116. return NULL;
  1117. const unsigned char* header = data;
  1118. data += header_size;
  1119. size_t i = 0;
  1120. // fast-path: process 4 groups at a time, do a shared bounds check
  1121. for (; i + kByteGroupSize * 4 <= buffer_size && size_t(data_end - data) >= kByteGroupDecodeLimit * 4; i += kByteGroupSize * 4)
  1122. {
  1123. size_t header_offset = i / kByteGroupSize;
  1124. unsigned char header_byte = header[header_offset / 4];
  1125. data = decodeBytesGroupSimd(data, buffer + i + kByteGroupSize * 0, hshift + ((header_byte >> 0) & 3));
  1126. data = decodeBytesGroupSimd(data, buffer + i + kByteGroupSize * 1, hshift + ((header_byte >> 2) & 3));
  1127. data = decodeBytesGroupSimd(data, buffer + i + kByteGroupSize * 2, hshift + ((header_byte >> 4) & 3));
  1128. data = decodeBytesGroupSimd(data, buffer + i + kByteGroupSize * 3, hshift + ((header_byte >> 6) & 3));
  1129. }
  1130. // slow-path: process remaining groups
  1131. for (; i < buffer_size; i += kByteGroupSize)
  1132. {
  1133. if (size_t(data_end - data) < kByteGroupDecodeLimit)
  1134. return NULL;
  1135. size_t header_offset = i / kByteGroupSize;
  1136. unsigned char header_byte = header[header_offset / 4];
  1137. data = decodeBytesGroupSimd(data, buffer + i, hshift + ((header_byte >> ((header_offset % 4) * 2)) & 3));
  1138. }
  1139. return data;
  1140. }
  1141. template <int Channel>
  1142. SIMD_TARGET static void
  1143. decodeDeltas4Simd(const unsigned char* buffer, unsigned char* transposed, size_t vertex_count_aligned, size_t vertex_size, unsigned char last_vertex[4], int rot)
  1144. {
  1145. #if defined(SIMD_SSE) || defined(SIMD_AVX)
  1146. #define TEMP __m128i
  1147. #define PREP() __m128i pi = _mm_cvtsi32_si128(*reinterpret_cast<const int*>(last_vertex))
  1148. #define LOAD(i) __m128i r##i = _mm_loadu_si128(reinterpret_cast<const __m128i*>(buffer + j + i * vertex_count_aligned))
  1149. #define GRP4(i) t0 = r##i, t1 = _mm_shuffle_epi32(r##i, 1), t2 = _mm_shuffle_epi32(r##i, 2), t3 = _mm_shuffle_epi32(r##i, 3)
  1150. #define FIXD(i) t##i = pi = Channel == 0 ? _mm_add_epi8(pi, t##i) : (Channel == 1 ? _mm_add_epi16(pi, t##i) : _mm_xor_si128(pi, t##i))
  1151. #define SAVE(i) *reinterpret_cast<int*>(savep) = _mm_cvtsi128_si32(t##i), savep += vertex_size
  1152. #endif
  1153. #ifdef SIMD_NEON
  1154. #define TEMP uint8x8_t
  1155. #define PREP() uint8x8_t pi = vreinterpret_u8_u32(vld1_lane_u32(reinterpret_cast<uint32_t*>(last_vertex), vdup_n_u32(0), 0))
  1156. #define LOAD(i) uint8x16_t r##i = vld1q_u8(buffer + j + i * vertex_count_aligned)
  1157. #define GRP4(i) t0 = vget_low_u8(r##i), t1 = vreinterpret_u8_u32(vdup_lane_u32(vreinterpret_u32_u8(t0), 1)), t2 = vget_high_u8(r##i), t3 = vreinterpret_u8_u32(vdup_lane_u32(vreinterpret_u32_u8(t2), 1))
  1158. #define FIXD(i) t##i = pi = Channel == 0 ? vadd_u8(pi, t##i) : (Channel == 1 ? vreinterpret_u8_u16(vadd_u16(vreinterpret_u16_u8(pi), vreinterpret_u16_u8(t##i))) : veor_u8(pi, t##i))
  1159. #define SAVE(i) vst1_lane_u32(reinterpret_cast<uint32_t*>(savep), vreinterpret_u32_u8(t##i), 0), savep += vertex_size
  1160. #endif
  1161. #ifdef SIMD_WASM
  1162. #define TEMP v128_t
  1163. #define PREP() v128_t pi = wasm_v128_load(last_vertex)
  1164. #define LOAD(i) v128_t r##i = wasm_v128_load(buffer + j + i * vertex_count_aligned)
  1165. #define GRP4(i) t0 = r##i, t1 = wasmx_splat_v32x4(r##i, 1), t2 = wasmx_splat_v32x4(r##i, 2), t3 = wasmx_splat_v32x4(r##i, 3)
  1166. #define FIXD(i) t##i = pi = Channel == 0 ? wasm_i8x16_add(pi, t##i) : (Channel == 1 ? wasm_i16x8_add(pi, t##i) : wasm_v128_xor(pi, t##i))
  1167. #define SAVE(i) wasm_v128_store32_lane(savep, t##i, 0), savep += vertex_size
  1168. #endif
  1169. #define UNZR(i) r##i = Channel == 0 ? unzigzag8(r##i) : (Channel == 1 ? unzigzag16(r##i) : rotate32(r##i, rot))
  1170. PREP();
  1171. unsigned char* savep = transposed;
  1172. for (size_t j = 0; j < vertex_count_aligned; j += 16)
  1173. {
  1174. LOAD(0);
  1175. LOAD(1);
  1176. LOAD(2);
  1177. LOAD(3);
  1178. transpose8(r0, r1, r2, r3);
  1179. TEMP t0, t1, t2, t3;
  1180. TEMP npi = pi;
  1181. UNZR(0);
  1182. GRP4(0);
  1183. FIXD(0), FIXD(1), FIXD(2), FIXD(3);
  1184. SAVE(0), SAVE(1), SAVE(2), SAVE(3);
  1185. UNZR(1);
  1186. GRP4(1);
  1187. FIXD(0), FIXD(1), FIXD(2), FIXD(3);
  1188. SAVE(0), SAVE(1), SAVE(2), SAVE(3);
  1189. UNZR(2);
  1190. GRP4(2);
  1191. FIXD(0), FIXD(1), FIXD(2), FIXD(3);
  1192. SAVE(0), SAVE(1), SAVE(2), SAVE(3);
  1193. UNZR(3);
  1194. GRP4(3);
  1195. FIXD(0), FIXD(1), FIXD(2), FIXD(3);
  1196. SAVE(0), SAVE(1), SAVE(2), SAVE(3);
  1197. #if defined(SIMD_LATENCYOPT) && defined(SIMD_NEON) && (defined(__APPLE__) || defined(_WIN32))
  1198. // instead of relying on accumulated pi, recompute it from scratch from r0..r3; this shortens dependency between loop iterations
  1199. pi = rebase<Channel>(npi, r0, r1, r2, r3);
  1200. #else
  1201. (void)npi;
  1202. #endif
  1203. #undef UNZR
  1204. #undef TEMP
  1205. #undef PREP
  1206. #undef LOAD
  1207. #undef GRP4
  1208. #undef FIXD
  1209. #undef SAVE
  1210. }
  1211. }
  1212. SIMD_TARGET
  1213. static const unsigned char* decodeVertexBlockSimd(const unsigned char* data, const unsigned char* data_end, unsigned char* vertex_data, size_t vertex_count, size_t vertex_size, unsigned char last_vertex[256], const unsigned char* channels, int version)
  1214. {
  1215. assert(vertex_count > 0 && vertex_count <= kVertexBlockMaxSize);
  1216. unsigned char buffer[kVertexBlockMaxSize * 4];
  1217. unsigned char transposed[kVertexBlockSizeBytes];
  1218. size_t vertex_count_aligned = (vertex_count + kByteGroupSize - 1) & ~(kByteGroupSize - 1);
  1219. size_t control_size = version == 0 ? 0 : vertex_size / 4;
  1220. if (size_t(data_end - data) < control_size)
  1221. return NULL;
  1222. const unsigned char* control = data;
  1223. data += control_size;
  1224. for (size_t k = 0; k < vertex_size; k += 4)
  1225. {
  1226. unsigned char ctrl_byte = version == 0 ? 0 : control[k / 4];
  1227. for (size_t j = 0; j < 4; ++j)
  1228. {
  1229. int ctrl = (ctrl_byte >> (j * 2)) & 3;
  1230. if (ctrl == 3)
  1231. {
  1232. // literal encoding; safe to over-copy due to tail
  1233. if (size_t(data_end - data) < vertex_count_aligned)
  1234. return NULL;
  1235. memcpy(buffer + j * vertex_count_aligned, data, vertex_count_aligned);
  1236. data += vertex_count;
  1237. }
  1238. else if (ctrl == 2)
  1239. {
  1240. // zero encoding
  1241. memset(buffer + j * vertex_count_aligned, 0, vertex_count_aligned);
  1242. }
  1243. else
  1244. {
  1245. // for v0, headers are mapped to 0..3; for v1, headers are mapped to 4..8
  1246. int hshift = version == 0 ? 0 : 4 + ctrl;
  1247. data = decodeBytesSimd(data, data_end, buffer + j * vertex_count_aligned, vertex_count_aligned, hshift);
  1248. if (!data)
  1249. return NULL;
  1250. }
  1251. }
  1252. int channel = version == 0 ? 0 : channels[k / 4];
  1253. switch (channel & 3)
  1254. {
  1255. case 0:
  1256. decodeDeltas4Simd<0>(buffer, transposed + k, vertex_count_aligned, vertex_size, last_vertex + k, 0);
  1257. break;
  1258. case 1:
  1259. decodeDeltas4Simd<1>(buffer, transposed + k, vertex_count_aligned, vertex_size, last_vertex + k, 0);
  1260. break;
  1261. case 2:
  1262. decodeDeltas4Simd<2>(buffer, transposed + k, vertex_count_aligned, vertex_size, last_vertex + k, (32 - (channel >> 4)) & 31);
  1263. break;
  1264. default:
  1265. return NULL; // invalid channel type
  1266. }
  1267. }
  1268. memcpy(vertex_data, transposed, vertex_count * vertex_size);
  1269. memcpy(last_vertex, &transposed[vertex_size * (vertex_count - 1)], vertex_size);
  1270. return data;
  1271. }
  1272. #endif
  1273. #if defined(SIMD_SSE) && defined(SIMD_FALLBACK)
  1274. static unsigned int getCpuFeatures()
  1275. {
  1276. int cpuinfo[4] = {};
  1277. #ifdef _MSC_VER
  1278. __cpuid(cpuinfo, 1);
  1279. #else
  1280. __cpuid(1, cpuinfo[0], cpuinfo[1], cpuinfo[2], cpuinfo[3]);
  1281. #endif
  1282. return cpuinfo[2];
  1283. }
  1284. static unsigned int cpuid = getCpuFeatures();
  1285. #endif
  1286. } // namespace meshopt
  1287. size_t meshopt_encodeVertexBufferLevel(unsigned char* buffer, size_t buffer_size, const void* vertices, size_t vertex_count, size_t vertex_size, int level)
  1288. {
  1289. using namespace meshopt;
  1290. assert(vertex_size > 0 && vertex_size <= 256);
  1291. assert(vertex_size % 4 == 0);
  1292. assert(level >= 0 && level <= 9); // only a subset of this range is used right now
  1293. #if TRACE
  1294. memset(vertexstats, 0, sizeof(vertexstats));
  1295. #endif
  1296. const unsigned char* vertex_data = static_cast<const unsigned char*>(vertices);
  1297. unsigned char* data = buffer;
  1298. unsigned char* data_end = buffer + buffer_size;
  1299. if (size_t(data_end - data) < 1)
  1300. return 0;
  1301. int version = gEncodeVertexVersion;
  1302. *data++ = (unsigned char)(kVertexHeader | version);
  1303. unsigned char first_vertex[256] = {};
  1304. if (vertex_count > 0)
  1305. memcpy(first_vertex, vertex_data, vertex_size);
  1306. unsigned char last_vertex[256] = {};
  1307. memcpy(last_vertex, first_vertex, vertex_size);
  1308. size_t vertex_block_size = getVertexBlockSize(vertex_size);
  1309. unsigned char channels[64] = {};
  1310. if (version != 0 && level > 1 && vertex_count > 1)
  1311. for (size_t k = 0; k < vertex_size; k += 4)
  1312. {
  1313. int rot = level >= 3 ? estimateRotate(vertex_data, vertex_count, vertex_size, k, /* group_size= */ 16) : 0;
  1314. int channel = estimateChannel(vertex_data, vertex_count, vertex_size, k, vertex_block_size, /* block_skip= */ 3, /* max_channels= */ level >= 3 ? 3 : 2, rot);
  1315. assert(unsigned(channel) < 2 || ((channel & 3) == 2 && unsigned(channel >> 4) < 8));
  1316. channels[k / 4] = (unsigned char)channel;
  1317. }
  1318. size_t vertex_offset = 0;
  1319. while (vertex_offset < vertex_count)
  1320. {
  1321. size_t block_size = (vertex_offset + vertex_block_size < vertex_count) ? vertex_block_size : vertex_count - vertex_offset;
  1322. data = encodeVertexBlock(data, data_end, vertex_data + vertex_offset * vertex_size, block_size, vertex_size, last_vertex, channels, version, level);
  1323. if (!data)
  1324. return 0;
  1325. vertex_offset += block_size;
  1326. }
  1327. size_t tail_size = vertex_size + (version == 0 ? 0 : vertex_size / 4);
  1328. size_t tail_size_min = version == 0 ? kTailMinSizeV0 : kTailMinSizeV1;
  1329. size_t tail_size_pad = tail_size < tail_size_min ? tail_size_min : tail_size;
  1330. if (size_t(data_end - data) < tail_size_pad)
  1331. return 0;
  1332. if (tail_size < tail_size_pad)
  1333. {
  1334. memset(data, 0, tail_size_pad - tail_size);
  1335. data += tail_size_pad - tail_size;
  1336. }
  1337. memcpy(data, first_vertex, vertex_size);
  1338. data += vertex_size;
  1339. if (version != 0)
  1340. {
  1341. memcpy(data, channels, vertex_size / 4);
  1342. data += vertex_size / 4;
  1343. }
  1344. assert(data >= buffer + tail_size);
  1345. assert(data <= buffer + buffer_size);
  1346. #if TRACE
  1347. size_t total_size = data - buffer;
  1348. for (size_t k = 0; k < vertex_size; ++k)
  1349. {
  1350. const Stats& vsk = vertexstats[k];
  1351. printf("%2d: %7d bytes [%4.1f%%] %.1f bpv", int(k), int(vsk.size), double(vsk.size) / double(total_size) * 100, double(vsk.size) / double(vertex_count) * 8);
  1352. size_t total_k = vsk.header + vsk.bitg[1] + vsk.bitg[2] + vsk.bitg[4] + vsk.bitg[8];
  1353. double total_kr = total_k ? 1.0 / double(total_k) : 0;
  1354. if (version != 0)
  1355. {
  1356. int channel = channels[k / 4];
  1357. if ((channel & 3) == 2 && k % 4 == 0)
  1358. printf(" | ^%d", channel >> 4);
  1359. else
  1360. printf(" | %2s", channel == 0 ? "1" : (channel == 1 && k % 2 == 0 ? "2" : "."));
  1361. }
  1362. printf(" | hdr [%5.1f%%] bitg [1 %4.1f%% 2 %4.1f%% 4 %4.1f%% 8 %4.1f%%]",
  1363. double(vsk.header) * total_kr * 100,
  1364. double(vsk.bitg[1]) * total_kr * 100, double(vsk.bitg[2]) * total_kr * 100,
  1365. double(vsk.bitg[4]) * total_kr * 100, double(vsk.bitg[8]) * total_kr * 100);
  1366. size_t total_ctrl = vsk.ctrl[0] + vsk.ctrl[1] + vsk.ctrl[2] + vsk.ctrl[3];
  1367. if (total_ctrl)
  1368. {
  1369. printf(" | ctrl %3.0f%% %3.0f%% %3.0f%% %3.0f%%",
  1370. double(vsk.ctrl[0]) / double(total_ctrl) * 100, double(vsk.ctrl[1]) / double(total_ctrl) * 100,
  1371. double(vsk.ctrl[2]) / double(total_ctrl) * 100, double(vsk.ctrl[3]) / double(total_ctrl) * 100);
  1372. }
  1373. if (level >= 3)
  1374. printf(" | bitc [%3.0f%% %3.0f%% %3.0f%% %3.0f%% %3.0f%% %3.0f%% %3.0f%% %3.0f%%]",
  1375. double(vsk.bitc[0]) / double(vertex_count) * 100, double(vsk.bitc[1]) / double(vertex_count) * 100,
  1376. double(vsk.bitc[2]) / double(vertex_count) * 100, double(vsk.bitc[3]) / double(vertex_count) * 100,
  1377. double(vsk.bitc[4]) / double(vertex_count) * 100, double(vsk.bitc[5]) / double(vertex_count) * 100,
  1378. double(vsk.bitc[6]) / double(vertex_count) * 100, double(vsk.bitc[7]) / double(vertex_count) * 100);
  1379. printf("\n");
  1380. }
  1381. #endif
  1382. return data - buffer;
  1383. }
  1384. size_t meshopt_encodeVertexBuffer(unsigned char* buffer, size_t buffer_size, const void* vertices, size_t vertex_count, size_t vertex_size)
  1385. {
  1386. return meshopt_encodeVertexBufferLevel(buffer, buffer_size, vertices, vertex_count, vertex_size, meshopt::kEncodeDefaultLevel);
  1387. }
  1388. size_t meshopt_encodeVertexBufferBound(size_t vertex_count, size_t vertex_size)
  1389. {
  1390. using namespace meshopt;
  1391. assert(vertex_size > 0 && vertex_size <= 256);
  1392. assert(vertex_size % 4 == 0);
  1393. size_t vertex_block_size = getVertexBlockSize(vertex_size);
  1394. size_t vertex_block_count = (vertex_count + vertex_block_size - 1) / vertex_block_size;
  1395. size_t vertex_block_control_size = vertex_size / 4;
  1396. size_t vertex_block_header_size = (vertex_block_size / kByteGroupSize + 3) / 4;
  1397. size_t vertex_block_data_size = vertex_block_size;
  1398. size_t tail_size = vertex_size + (vertex_size / 4);
  1399. size_t tail_size_min = kTailMinSizeV0 > kTailMinSizeV1 ? kTailMinSizeV0 : kTailMinSizeV1;
  1400. size_t tail_size_pad = tail_size < tail_size_min ? tail_size_min : tail_size;
  1401. assert(tail_size_pad >= kByteGroupDecodeLimit);
  1402. return 1 + vertex_block_count * vertex_size * (vertex_block_control_size + vertex_block_header_size + vertex_block_data_size) + tail_size_pad;
  1403. }
  1404. void meshopt_encodeVertexVersion(int version)
  1405. {
  1406. assert(unsigned(version) <= 1);
  1407. meshopt::gEncodeVertexVersion = version;
  1408. }
  1409. int meshopt_decodeVertexBuffer(void* destination, size_t vertex_count, size_t vertex_size, const unsigned char* buffer, size_t buffer_size)
  1410. {
  1411. using namespace meshopt;
  1412. assert(vertex_size > 0 && vertex_size <= 256);
  1413. assert(vertex_size % 4 == 0);
  1414. const unsigned char* (*decode)(const unsigned char*, const unsigned char*, unsigned char*, size_t, size_t, unsigned char[256], const unsigned char*, int) = NULL;
  1415. #if defined(SIMD_SSE) && defined(SIMD_FALLBACK)
  1416. decode = (cpuid & (1 << 9)) ? decodeVertexBlockSimd : decodeVertexBlock;
  1417. #elif defined(SIMD_SSE) || defined(SIMD_AVX) || defined(SIMD_NEON) || defined(SIMD_WASM)
  1418. decode = decodeVertexBlockSimd;
  1419. #else
  1420. decode = decodeVertexBlock;
  1421. #endif
  1422. #if defined(SIMD_SSE) || defined(SIMD_NEON) || defined(SIMD_WASM)
  1423. assert(gDecodeBytesGroupInitialized);
  1424. (void)gDecodeBytesGroupInitialized;
  1425. #endif
  1426. unsigned char* vertex_data = static_cast<unsigned char*>(destination);
  1427. const unsigned char* data = buffer;
  1428. const unsigned char* data_end = buffer + buffer_size;
  1429. if (size_t(data_end - data) < 1)
  1430. return -2;
  1431. unsigned char data_header = *data++;
  1432. if ((data_header & 0xf0) != kVertexHeader)
  1433. return -1;
  1434. int version = data_header & 0x0f;
  1435. if (version > 1)
  1436. return -1;
  1437. size_t tail_size = vertex_size + (version == 0 ? 0 : vertex_size / 4);
  1438. size_t tail_size_min = version == 0 ? kTailMinSizeV0 : kTailMinSizeV1;
  1439. size_t tail_size_pad = tail_size < tail_size_min ? tail_size_min : tail_size;
  1440. if (size_t(data_end - data) < tail_size_pad)
  1441. return -2;
  1442. const unsigned char* tail = data_end - tail_size;
  1443. unsigned char last_vertex[256];
  1444. memcpy(last_vertex, tail, vertex_size);
  1445. const unsigned char* channels = version == 0 ? NULL : tail + vertex_size;
  1446. size_t vertex_block_size = getVertexBlockSize(vertex_size);
  1447. size_t vertex_offset = 0;
  1448. while (vertex_offset < vertex_count)
  1449. {
  1450. size_t block_size = (vertex_offset + vertex_block_size < vertex_count) ? vertex_block_size : vertex_count - vertex_offset;
  1451. data = decode(data, data_end, vertex_data + vertex_offset * vertex_size, block_size, vertex_size, last_vertex, channels, version);
  1452. if (!data)
  1453. return -2;
  1454. vertex_offset += block_size;
  1455. }
  1456. if (size_t(data_end - data) != tail_size_pad)
  1457. return -3;
  1458. return 0;
  1459. }
  1460. #undef SIMD_NEON
  1461. #undef SIMD_SSE
  1462. #undef SIMD_AVX
  1463. #undef SIMD_WASM
  1464. #undef SIMD_FALLBACK
  1465. #undef SIMD_TARGET
  1466. #undef SIMD_LATENCYOPT