| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566 |
- bool frustumCullingTest(mat4 mvp, vec3 bmin, vec3 bmax);
- struct Frustum
- {
- vec4 planes[6];
- };
- /**
- * Extract Frustum Planes from MVP Matrix
- *
- * Based on "Fast Extraction of Viewing Frustum Planes from the World-
- * View-Projection Matrix", by Gil Gribb and Klaus Hartmann.
- * This procedure computes the planes of the frustum and normalizes
- * them.
- */
- void loadFrustum(out Frustum f, mat4 mvp)
- {
- for (int i = 0; i < 3; ++i)
- {
- for (int j = 0; j < 2; ++j)
- {
- f.planes[i*2+j].x = mtxGetElement(mvp, 0, 3) + (j == 0 ? mtxGetElement(mvp, 0, i) : -mtxGetElement(mvp, 0, i));
- f.planes[i*2+j].y = mtxGetElement(mvp, 1, 3) + (j == 0 ? mtxGetElement(mvp, 1, i) : -mtxGetElement(mvp, 1, i));
- f.planes[i*2+j].z = mtxGetElement(mvp, 2, 3) + (j == 0 ? mtxGetElement(mvp, 2, i) : -mtxGetElement(mvp, 2, i));
- f.planes[i*2+j].w = mtxGetElement(mvp, 3, 3) + (j == 0 ? mtxGetElement(mvp, 3, i) : -mtxGetElement(mvp, 3, i));
- f.planes[i*2+j]*= length(f.planes[i*2+j].xyz);
- }
- }
- }
- /**
- * Negative Vertex of an AABB
- *
- * This procedure computes the negative vertex of an AABB
- * given a normal.
- * See the View Frustum Culling tutorial @ LightHouse3D.com
- * http://www.lighthouse3d.com/tutorials/view-frustum-culling/geometric-approach-testing-boxes-ii/
- */
- vec3 negativeVertex(vec3 bmin, vec3 bmax, vec3 n)
- {
- bvec3 b = greaterThan(n, vec3(0.0, 0.0, 0.0));
- return mix(bmin, bmax, b);
- }
- /**
- * Frustum-AABB Culling Test
- *
- * This procedure returns true if the AABB is either inside, or in
- * intersection with the frustum, and false otherwise.
- * The test is based on the View Frustum Culling tutorial @ LightHouse3D.com
- * http://www.lighthouse3d.com/tutorials/view-frustum-culling/geometric-approach-testing-boxes-ii/
- */
- bool frustumCullingTest(mat4 mvp, vec3 bmin, vec3 bmax)
- {
- float a = 1.0f;
- Frustum f;
- loadFrustum(f, mvp);
- for (int i = 0; i < 6 && a >= 0.0f; ++i)
- {
- vec3 n = negativeVertex(bmin, bmax, f.planes[i].xyz);
- a = dot(vec4(n, 1.0f), f.planes[i]);
- }
- return (a >= 0.0);
- }
|