| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555 |
- /*
- * Progressive Mesh type Polygon Reduction Algorithm
- *
- * Original version by Stan Melax (c) 1998
- * C version by Cloud Wu (c) 2020
- *
- * The function ProgressiveMesh() takes a model in an "indexed face
- * set" sort of way. i.e. Array of vertices and Array of triangles.
- * The function then does the polygon reduction algorithm
- * internally and reduces the model all the way down to 0
- * vertices and then returns the order in which the
- * vertices are collapsed and to which neighbor each vertex
- * is collapsed to. More specifically the returned "permutation"
- * indicates how to reorder your vertices so you can render
- * an object by using the first n vertices (for the n
- * vertex version). After permuting your vertices, the
- * map Array indicates to which vertex each vertex is collapsed to.
- */
- /*
- * The MIT License (MIT)
- *
- * Copyright (c) 2014 Stan Melax
- * Copyright (c) 2020 Cloud Wu
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
- #include <assert.h>
- #include <math.h>
- #include <stdlib.h>
- #define ARRAY_SIZE 16
- struct triangle {
- int vertex[3]; // the 3 points (id) that make this tri
- float normal[3]; // unit vector orthogonal to this face
- };
- struct array {
- int n;
- int cap;
- int *buffer;
- int tmp[ARRAY_SIZE];
- };
- struct vertex {
- float position[3]; // location of point in euclidean space
- int id; // place of vertex in original Array
- struct array neighbor; // adjacent vertices
- struct array face; // adjacent triangles
- float objdist; // cached cost of collapsing edge
- int collapse; // candidate vertex (id) for collapse
- };
- struct mesh {
- int n_face;
- int n_vertex;
- struct vertex *v;
- struct triangle *t;
- };
- // vec3 math
- static inline void
- vec3_sub(const float v0[3], const float v1[3], float v[3]) {
- v[0] = v0[0] - v1[0];
- v[1] = v0[1] - v1[1];
- v[2] = v0[2] - v1[2];
- }
- static inline void
- vec3_cross(const float a[3], const float b[3], float v[3]) {
- v[0] = a[1]*b[2] - a[2]*b[1];
- v[1] = a[2]*b[0] - a[0]*b[2];
- v[2] = a[0]*b[1] - a[1]*b[0];
- }
- static inline float
- vec3_dot(const float a[3], const float b[3]) {
- return a[0]*b[0] + a[1]*b[1] + a[2] * b[2];
- }
- static inline float
- vec3_length(const float v[3]) {
- return sqrtf(vec3_dot(v,v));
- }
- static inline void
- vec3_normalize(float v[3]) {
- const float invLen = 1.0f/vec3_length(v);
- v[0] *= invLen;
- v[1] *= invLen;
- v[2] *= invLen;
- }
- // array
- static void
- array_init(struct array *a) {
- a->n = 0;
- a->cap = ARRAY_SIZE;
- a->buffer = a->tmp;
- }
- static void
- array_deinit(struct array *a) {
- if (a->buffer != a->tmp) {
- free(a->buffer);
- a->buffer = a->tmp;
- a->cap = ARRAY_SIZE;
- a->n = 0;
- }
- }
- static inline int
- array_index(struct array *a, int idx) {
- return a->buffer[idx];
- }
- static void
- array_push(struct array *a, int v) {
- if (a->n >= a->cap) {
- int *old = a->buffer;
- a->cap *= 2;
- a->buffer = (int *)malloc(a->cap * sizeof(int));
- int i;
- for (i=0;i<a->n;i++) {
- a->buffer[i] = old[i];
- }
- if (old != a->tmp)
- free(old);
- }
- a->buffer[a->n++] = v;
- }
- static inline void
- array_remove_index(struct array *a, int idx) {
- a->buffer[idx] = a->buffer[--a->n];
- }
- static void
- array_remove(struct array *a, int v) {
- int i;
- for (i=0; i<a->n; i++) {
- if (a->buffer[i] == v) {
- array_remove_index(a, i);
- return;
- }
- }
- }
- static inline struct vertex *
- Vertex(struct mesh *M, int id) {
- return &M->v[id];
- }
- static inline struct triangle *
- Triangle(struct mesh *M, int id) {
- return &M->t[id];
- }
- static inline struct triangle *
- Face(struct mesh *M, struct vertex *v, int idx) {
- return Triangle(M, array_index(&v->face, idx));
- }
- static void
- AddVertex(struct mesh *M, const float v[3]) {
- int id = M->n_vertex++;
- struct vertex * tmp = Vertex(M, id);
- tmp->position[0] = v[0];
- tmp->position[1] = v[1];
- tmp->position[2] = v[2];
- tmp->id = id;
- array_init(&tmp->neighbor);
- array_init(&tmp->face);
- tmp->objdist = 0;
- tmp->collapse = -1;
- }
- static void
- RemoveVertex(struct mesh *M, int id) {
- struct vertex * v = Vertex(M, id);
- assert(v->id == id);
- assert(v->face.n == 0);
- int i;
- for (i=0;i<v->face.n;i++) {
- struct vertex * nv = Vertex(M, array_index(&v->face, i));
- array_remove(&nv->neighbor, id);
- }
- v->id = -1; // invalid vertex id
- array_deinit(&v->neighbor);
- array_deinit(&v->face);
- }
- static void
- ComputeNormal(struct mesh *M, struct triangle *t) {
- struct vertex * v0 = Vertex(M, t->vertex[0]);
- struct vertex * v1 = Vertex(M, t->vertex[1]);
- struct vertex * v2 = Vertex(M, t->vertex[2]);
- float a[3], b[3];
- vec3_sub(v1->position, v0->position, a);
- vec3_sub(v2->position, v1->position, b);
- vec3_cross(a,b, t->normal);
- vec3_normalize(t->normal);
- }
- static void
- AddNeighbor(struct mesh *M, int vid, int id) {
- struct vertex *v = Vertex(M, vid);
- int i;
- for (i=0;i<v->neighbor.n;i++) {
- if (array_index(&v->neighbor,i) == id)
- return;
- }
- array_push(&v->neighbor, id);
- }
- #include <stdio.h>
- static void
- AddTriangle(struct mesh *M, const int v[3]) {
- int v0 = v[0];
- int v1 = v[1];
- int v2 = v[2];
- if (v0 == v1 || v0 == v2 || v1 == v2)
- return;
- assert(v0 < M->n_vertex);
- assert(v1 < M->n_vertex);
- assert(v2 < M->n_vertex);
- int id = M->n_face++;
- struct triangle * tmp = Triangle(M, id);
- tmp->vertex[0] = v0;
- tmp->vertex[1] = v1;
- tmp->vertex[2] = v2;
- ComputeNormal(M, tmp);
- int i;
- for(i=0;i<3;i++) {
- struct vertex *obj = Vertex(M, v[i]);
- array_push(&obj->face, id);
- }
- AddNeighbor(M, v0, v1);
- AddNeighbor(M, v0, v2);
- AddNeighbor(M, v1, v0);
- AddNeighbor(M, v1, v2);
- AddNeighbor(M, v2, v0);
- AddNeighbor(M, v2, v1);
- }
- static int
- HasVertex(struct triangle * t, int vid) {
- return (t->vertex[0] == vid || t->vertex[1] == vid || t->vertex[2] == vid);
- }
- static void
- RemoveIfNonNeighbor_(struct mesh *M, struct vertex *v, int id) {
- int i,j;
- for (i=0;i<v->neighbor.n;i++) {
- if (array_index(&v->neighbor, i) == id) {
- for (j=0;j<v->face.n;j++) {
- if (HasVertex(Face(M, v, j), id))
- return;
- }
- // remove from neighbors
- array_remove_index(&v->neighbor, i);
- return;
- }
- }
- }
- static void
- RemoveIfNonNeighbor(struct mesh *M, struct vertex *v0, struct vertex *v1) {
- if (v0 == NULL || v1 == NULL)
- return;
- RemoveIfNonNeighbor_(M, v0, v1->id);
- RemoveIfNonNeighbor_(M, v1, v0->id);
- }
- static void
- RemoveTriangle(struct mesh *M, int id) {
- struct triangle * face = Triangle(M, id);
- struct vertex * v[3];
- int i;
- for (i=0;i<3;i++) {
- v[i] = Vertex(M, face->vertex[i]);
- if (v[i]->id < 0)
- v[i] = NULL;
- else {
- array_remove(&v[i]->face, id);
- }
- }
- RemoveIfNonNeighbor(M, v[0], v[1]);
- RemoveIfNonNeighbor(M, v[1], v[2]);
- RemoveIfNonNeighbor(M, v[2], v[0]);
- }
- static void
- ReplaceVertex(struct mesh *M, int faceid, int oldid, int newid) {
- struct triangle * face = Triangle(M, faceid);
- assert(oldid >=0 && newid >= 0);
- assert(HasVertex(face, oldid));
- assert(!HasVertex(face, newid));
- if(oldid==face->vertex[0]){
- face->vertex[0]=newid;
- } else if(oldid==face->vertex[1]){
- face->vertex[1]=newid;
- } else {
- face->vertex[2]=newid;
- }
- struct vertex *vold = Vertex(M, oldid);
- struct vertex *vnew = Vertex(M, newid);
- array_remove(&vold->face, faceid);
- array_push(&vnew->face, faceid);
- int i;
- for (i = 0; i<3; i++) {
- struct vertex *v = Vertex(M, face->vertex[i]);
- RemoveIfNonNeighbor(M, vold, v);
- }
- AddNeighbor(M, face->vertex[0], face->vertex[1]);
- AddNeighbor(M, face->vertex[0], face->vertex[2]);
- AddNeighbor(M, face->vertex[1], face->vertex[0]);
- AddNeighbor(M, face->vertex[1], face->vertex[2]);
- AddNeighbor(M, face->vertex[2], face->vertex[0]);
- AddNeighbor(M, face->vertex[2], face->vertex[1]);
- ComputeNormal(M, face);
- }
- static void
- mesh_init(struct mesh *M, int vert_n, int tri_n) {
- M->n_face = 0;
- M->n_vertex = 0;
- M->v = (struct vertex *)malloc(vert_n * sizeof(struct vertex));
- M->t = (struct triangle *)malloc(tri_n * sizeof(struct triangle));
- }
- static void
- mesh_deinit(struct mesh *M) {
- free(M->v);
- free(M->t);
- }
- static float
- ComputeEdgeCollapseCost(struct mesh *M, struct vertex *u, int vid) {
- // if we collapse edge uv by moving u to v then how
- // much different will the model change, i.e. how much "error".
- // Texture, vertex normal, and border vertex code was removed
- // to keep this demo as simple as possible.
- // The method of determining cost was designed in order
- // to exploit small and coplanar regions for
- // effective polygon reduction.
- // Is is possible to add some checks here to see if "folds"
- // would be generated. i.e. normal of a remaining face gets
- // flipped. I never seemed to run into this problem and
- // therefore never added code to detect this case.
- struct vertex *v = Vertex(M, vid);
- float tmp[3];
- vec3_sub(v->position, u->position, tmp);
- float edgelength = vec3_length(tmp);
- float curvature=0;
- // find the "sides" triangles that are on the edge uv
- struct array sides;
- array_init(&sides);
- int i,j;
- for (i = 0; i<u->face.n; i++) {
- if (HasVertex(Face(M, u, i), vid)) {
- array_push(&sides, array_index(&u->face, i));
- }
- }
- // use the triangle facing most away from the sides
- // to determine our curvature term
- for (i = 0; i<u->face.n; i++) {
- float mincurv=1; // curve for face i and closer side to it
- for (j = 0; j<sides.n; j++) {
- float dotprod = vec3_dot(Triangle(M, array_index(&u->face, i))->normal,
- Triangle(M, array_index(&sides,j))->normal); // use dot product of face normals.
- float t = (1-dotprod)/2.0f;
- if (t < mincurv) {
- mincurv = t;
- }
- }
- if (mincurv > curvature)
- curvature = mincurv;
- }
- array_deinit(&sides);
- // the more coplanar the lower the curvature term
- return edgelength * curvature;
- }
- static void
- ComputeEdgeCostAtVertex(struct mesh *M, struct vertex *v) {
- // compute the edge collapse cost for all edges that start
- // from vertex v. Since we are only interested in reducing
- // the object by selecting the min cost edge at each step, we
- // only cache the cost of the least cost edge at this vertex
- // (in member variable collapse) as well as the value of the
- // cost (in member variable objdist).
- if (v->neighbor.n == 0) {
- // v doesn't have neighbors so it costs nothing to collapse
- v->collapse=-1;
- v->objdist=-0.01f;
- return;
- }
- v->objdist = 1000000;
- v->collapse=-1;
- // search all neighboring edges for "least cost" edge
- int i;
- for (i = 0; i<v->neighbor.n; i++) {
- float dist;
- dist = ComputeEdgeCollapseCost(M, v, array_index(&v->neighbor, i));
- if(dist<v->objdist) {
- v->collapse=array_index(&v->neighbor, i); // candidate for edge collapse
- v->objdist=dist; // cost of the collapse
- }
- }
- }
- static void
- ComputeAllEdgeCollapseCosts(struct mesh *M) {
- // For all the edges, compute the difference it would make
- // to the model if it was collapsed. The least of these
- // per vertex is cached in each vertex object.
- int i;
- for (i = 0; i<M->n_vertex; i++) {
- ComputeEdgeCostAtVertex(M, Vertex(M, i));
- }
- }
- static void
- Collapse(struct mesh *M, int uid, int vid) {
- // Collapse the edge uv by moving vertex u onto v
- // Actually remove tris on uv, then update tris that
- // have u to have v, and then remove u.
- struct vertex *u = Vertex(M, uid);
- if(vid < 0) {
- // u is a vertex all by itself so just delete it
- RemoveVertex(M, uid);
- return;
- }
- struct array tmp;
- array_init(&tmp);
- int i;
- // make tmp a Array of all the neighbors of u
- for (i = 0; i<u->neighbor.n; i++) {
- array_push(&tmp, array_index(&u->neighbor, i));
- }
- // delete triangles on edge uv:
- {
- i = u->face.n;
- while (i--) {
- if (HasVertex(Face(M, u, i), vid)) {
- RemoveTriangle(M, array_index(&u->face, i));
- }
- }
- }
- // update remaining triangles to have v instead of u
- {
- i = u->face.n;
- while (i--) {
- ReplaceVertex(M, array_index(&u->face, i), uid, vid);
- }
- }
- RemoveVertex(M, uid);
- // recompute the edge collapse costs for neighboring vertices
- for (i = 0; i<tmp.n; i++) {
- ComputeEdgeCostAtVertex(M, Vertex(M, array_index(&tmp, i)));
- }
- array_deinit(&tmp);
- }
- static struct vertex *
- MinimumCostEdge(struct mesh *M) {
- // Find the edge that when collapsed will affect model the least.
- // This function actually returns a Vertex, the second vertex
- // of the edge (collapse candidate) is stored in the vertex data.
- // Serious optimization opportunity here: this function currently
- // does a sequential search through an unsorted Array :-(
- // Our algorithm could be O(n*lg(n)) instead of O(n*n)
- int i;
- struct vertex *mn = NULL;
- for (i = 0; i<M->n_vertex; i++) {
- struct vertex *v = Vertex(M, i);
- if (v->id >=0) {
- if (mn == NULL || v->objdist < mn->objdist) {
- mn = v;
- }
- }
- }
- return mn;
- }
- void
- ProgressiveMesh(int vert_n, int vert_stride, const float *v, int tri_n, const int *tri, int *map, int *permutation) {
- struct mesh M;
- mesh_init(&M, vert_n, tri_n);
- // put input data into our data structures M
- int i;
- const char * tmp = (const char *)v;
- for (i=0;i<vert_n;i++) {
- AddVertex(&M, (const float *) tmp);
- tmp += vert_stride;
- }
- for (i=0;i<tri_n;i++) {
- AddTriangle(&M, &tri[i*3]);
- }
- ComputeAllEdgeCollapseCosts(&M); // cache all edge collapse costs
- for (i = vert_n-1; i>=0; i--) {
- // get the next vertex to collapse
- struct vertex *mn = MinimumCostEdge(&M);
- // keep track of this vertex, i.e. the collapse ordering
- permutation[mn->id] = i;
- // keep track of vertex to which we collapse to
- map[i] = mn->collapse;
- // Collapse this edge
- Collapse(&M, mn->id, mn->collapse);
- }
- // reorder the map Array based on the collapse ordering
- for (i = 0; i<vert_n; i++) {
- map[i] = (map[i]==-1)?0:permutation[map[i]];
- }
- // The caller of this function should reorder their vertices
- // according to the returned "permutation".
- mesh_deinit(&M);
- }
|