| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781 |
- /*----------------------------------------------------------------------------*/
- /**
- * This confidential and proprietary software may be used only as
- * authorised by a licensing agreement from ARM Limited
- * (C) COPYRIGHT 2011-2012 ARM Limited
- * ALL RIGHTS RESERVED
- *
- * The entire notice above must be reproduced on all authorised
- * copies and copies may only be made to the extent permitted
- * by a licensing agreement from ARM Limited.
- *
- * @brief Library of math functions.
- */
- /*----------------------------------------------------------------------------*/
- #define _USE_MATH_DEFINES // for M_PI on windows
- #include <time.h>
- #include <stdlib.h>
- #include <stdio.h>
- #include <math.h>
- #include "mathlib.h"
- #ifdef WIN32
- double cbrt(double n)
- {
- return n < 0 ? -pow(-n, 1.0 / 3.0) : pow(n, 1.0 / 3.0);
- }
- #endif
- /**************************
- basic OpenCL functions
- **************************/
- float inversesqrt(float p)
- {
- return 1.0f / sqrt(p);
- }
- float acospi(float p)
- {
- return static_cast < float >(acos(p) * (1.0f / M_PI));
- };
- float sinpi(float p)
- {
- return static_cast < float >(sin(p * M_PI));
- }
- float cospi(float p)
- {
- return static_cast < float >(cos(p * M_PI));
- }
- float nan(int p)
- {
- union
- {
- int p;
- float q;
- } v;
- v.p = p | 0x7FC00000U;
- return v.q;
- }
- #if !defined(_MSC_VER) && (__cplusplus < 201103L)
- float fmax(float p, float q)
- {
- if (p != p)
- return q;
- if (q != q)
- return p;
- if (p > q)
- return p;
- return q;
- }
- float fmin(float p, float q)
- {
- if (p != p)
- return q;
- if (q != q)
- return p;
- if (p < q)
- return p;
- return q;
- }
- #endif // C++11
- float2 fmax(float2 p, float2 q)
- {
- return float2(fmax(p.x, q.x), fmax(p.y, q.y));
- }
- float3 fmax(float3 p, float3 q)
- {
- return float3(fmax(p.x, q.x), fmax(p.y, q.y), fmax(p.z, q.z));
- }
- float4 fmax(float4 p, float4 q)
- {
- return float4(fmax(p.x, q.x), fmax(p.y, q.y), fmax(p.z, q.z), fmax(p.w, q.w));
- }
- float2 fmin(float2 p, float2 q)
- {
- return float2(fmin(p.x, q.x), fmin(p.y, q.y));
- }
- float3 fmin(float3 p, float3 q)
- {
- return float3(fmin(p.x, q.x), fmin(p.y, q.y), fmin(p.z, q.z));
- }
- float4 fmin(float4 p, float4 q)
- {
- return float4(fmin(p.x, q.x), fmin(p.y, q.y), fmin(p.z, q.z), fmin(p.w, q.w));
- }
- /*
- float dot( float2 p, float2 q ) { return p.x*q.x + p.y*q.y; } float dot( float3 p, float3 q ) { return p.x*q.x + p.y*q.y + p.z*q.z; } float dot( float4 p, float4 q ) { return p.x*q.x + p.y*q.y +
- p.z*q.z + p.w*q.w; } */
- float3 cross(float3 p, float3 q)
- {
- return p.yzx * q.zxy - p.zxy * q.yzx;
- }
- float4 cross(float4 p, float4 q)
- {
- return float4(p.yzx * q.zxy - p.zxy * q.yzx, 0.0f);
- }
- float length(float2 p)
- {
- return sqrt(dot(p, p));
- }
- float length(float3 p)
- {
- return sqrt(dot(p, p));
- }
- float length(float4 p)
- {
- return sqrt(dot(p, p));
- }
- float length_sqr(float2 p)
- {
- return dot(p, p);
- }
- float length_sqr(float3 p)
- {
- return dot(p, p);
- }
- float length_sqr(float4 p)
- {
- return dot(p, p);
- }
- float distance(float2 p, float2 q)
- {
- return length(q - p);
- }
- float distance(float3 p, float3 q)
- {
- return length(q - p);
- }
- float distance(float4 p, float4 q)
- {
- return length(q - p);
- }
- float distance_sqr(float2 p, float2 q)
- {
- return length_sqr(q - p);
- }
- float distance_sqr(float3 p, float3 q)
- {
- return length_sqr(q - p);
- }
- float distance_sqr(float4 p, float4 q)
- {
- return length_sqr(q - p);
- }
- float2 normalize(float2 p)
- {
- return p / length(p);
- }
- float3 normalize(float3 p)
- {
- return p / length(p);
- }
- float4 normalize(float4 p)
- {
- return p / length(p);
- }
- /**************************************************
- matrix functions, for 2x2, 3x3 and 4x4 matrices:
- * trace
- * determinant
- * transform
- * inverse
- * adjugate
- * characteristic polynomial
- * eigenvalue
- * eigenvector
- additionally, root solver
- for 2nd, 3rd and 4th degree monic polynomials.
- *************************************************/
- /*
- struct mat2 { float2 v[2]; };
- struct mat3 { float3 v[3]; };
- struct mat4 { float4 v[4]; };
- */
- float trace(mat2 p)
- {
- return p.v[0].x + p.v[1].y;
- }
- float trace(mat3 p)
- {
- return p.v[0].x + p.v[1].y + p.v[2].z;
- }
- float trace(mat4 p)
- {
- return p.v[0].x + p.v[1].y + p.v[2].z + p.v[3].w;
- }
- float determinant(mat2 p)
- {
- float2 v = p.v[0].xy * p.v[1].yx;
- return v.x - v.y;
- }
- float determinant(mat3 p)
- {
- return dot(p.v[0], cross(p.v[1], p.v[2]));
- }
- float determinant(mat4 p)
- {
- return dot(p.v[0],
- float4(dot(p.v[1].yzw, cross(p.v[2].yzw, p.v[3].yzw)),
- -dot(p.v[1].xzw, cross(p.v[2].xzw, p.v[3].xzw)), dot(p.v[1].xyw, cross(p.v[2].xyw, p.v[3].xyw)), -dot(p.v[1].xyz, cross(p.v[2].xyz, p.v[3].xyz))));
- }
- /*
- characteristic polynomials for matrices. These polynomials are monic, meaning that the coefficient of the highest component is 1; this component is omitted. The first component is the constant
- part. */
- float2 characteristic_poly(mat2 p)
- {
- return float2(determinant(p), -trace(p));
- }
- float3 characteristic_poly(mat3 p)
- {
- float2 v1 = (p.v[0].xy * p.v[1].yx) + (p.v[0].xz * p.v[2].zx) + (p.v[1].yz * p.v[2].zy);
- return float3(-determinant(p), v1.x - v1.y, -trace(p));
- }
- float4 characteristic_poly(mat4 p)
- {
- float2 v1 = (p.v[0].xy * p.v[1].yx) + (p.v[0].xz * p.v[2].zx) + (p.v[0].xw * p.v[3].wx) + (p.v[1].yz * p.v[2].zy) + (p.v[1].yw * p.v[3].wy) + (p.v[2].zw * p.v[3].wz);
- return float4(determinant(p),
- -dot(p.v[1].yzw, cross(p.v[2].yzw, p.v[3].yzw))
- - dot(p.v[0].xzw, cross(p.v[2].xzw, p.v[3].xzw)) - dot(p.v[0].xyw, cross(p.v[1].xyw, p.v[3].xyw)) - dot(p.v[0].xyz, cross(p.v[1].xyz, p.v[2].xyz)), v1.x - v1.y, -trace(p));
- }
- /*
- Root finders for monic polynomials (highest coefficient is equal to 1)
- Returns a vector with length equal to the number of roots that the polynomial has;
- for roots that do not genuinely exist, we return NaN.
- The polynomial is basically
- poly(n) = p.x + p.y*n + p.z*n^2 + p.w*n^3
- (including only the components of the vector that actually exist; the next coefficient
- has the value 1, and the remaining ones have value 0. )
- */
- float2 solve_monic(float2 p)
- {
- float v = sqrt(p.y * p.y - 4 * p.x);
- return (p.yy + float2(v, -v)) * -0.5f;
- }
- float3 solve_monic(float3 p)
- {
- p = p * (1.0f / 3.0f);
- float pz = p.z;
- // compute a normalization value to scale the vector by.
- // The normalization factor is divided by 2^20.
- // This is supposed to make internal calculations unlikely
- // to overflow while also making underflows unlikely.
- float scal = 1.0f;
- float cx = static_cast < float >(cbrt(fabs(p.x)));
- float cy = static_cast < float >(cbrt(fabs(p.y)));
- scal = fmax(fmax(fabsf(p.z), cx), cy * cy) * (1.0f / 1048576.0f);
- float rscal = 1.0f / scal;
- p = p * float3(rscal * rscal * rscal, rscal * rscal, rscal);
- float bb = p.z * p.z; // div scal^2
- float nq = bb - p.y; // div scal^2
- float r = 1.5f * (p.y * p.z - p.x) - p.z * bb; // div scal^3
- float nq3 = nq * nq * nq; // div scal^6
- float r2 = r * r; // div scal^6
- if (nq3 < r2)
- {
- // one root
- float root = sqrt(r2 - nq3); // div scal^3
- float s = static_cast < float >(cbrt(r + root)); // div scal
- float t = static_cast < float >(cbrt(r - root)); // div scal
- return float3((s + t) * scal - pz, nan(0), nan(0));
- }
- else
- {
- // three roots
- float phi_r = inversesqrt(nq3); // div scal ^ -3
- float phi_root = static_cast < float >(cbrt(phi_r * nq3)); // div scal
- float theta = acospi(r * phi_r);
- theta *= 1.0f / 3.0f;
- float ncprod = phi_root * cospi(theta);
- float dev = 1.73205080756887729353f * phi_root * sinpi(theta);
- return float3(2 * ncprod, -dev - ncprod, dev - ncprod) * scal - pz;
- }
- }
- /*
- * This function is not overflow-safe. Use with care.
- */
- float4 solve_monic(float4 p)
- {
- // step 1: depress the input polynomial
- float bias = p.w * 0.25f;
- float3 qv = float3((-3.0f / 256.0f) * p.w * p.w, (1.0f / 8.0f) * p.w, (-3.0 / 8.0f));
- float3 rv = float3((1.0f / 16.0f) * p.z * p.w - (1.0f / 4.0f) * p.y, (-1.0f / 2.0f) * p.z, 0.0f);
- float3 qx = float3(qv * p.w + rv) * p.w + p.xyz;
- // step 2: solve a cubic equation to get hold of a parameter p.
- float3 monicp = float3(-qx.y * qx.y, (qx.z * qx.z) - (4.0f * qx.x), 2.0f * qx.z);
- float4 v = float4(solve_monic(monicp), 1e-37f);
- // the cubic equation may have multiple solutions; at least one of them
- // is numerically at least nonnegative (but may have become negative as a result of
- // a roundoff error). We use fmax() to extract this value or a very small positive value.
- float2 v2 = fmax(v.xy, v.zw);
- float p2 = fmax(v2.x, v2.y); // p^2
- float pr = inversesqrt(p2); // 1/p
- float pm = p2 * pr; // p
- // step 3: use the solution for the cubic equation to set up two quadratic equations;
- // these two equations then result in the 4 possible roots.
- float f1 = qx.z + p2;
- float f2 = qx.y * pr;
- float s = 0.5f * (f1 + f2);
- float q = 0.5f * (f1 - f2);
- float4 res = float4(solve_monic(float2(q, pm)),
- solve_monic(float2(s, -pm)));
- // finally, order the results and apply the bias.
- if (res.x != res.x)
- return res.zwxy - bias;
- else
- return res - bias;
- }
- float2 transform(mat2 p, float2 q)
- {
- return float2(dot(p.v[0], q), dot(p.v[1], q));
- }
- float3 transform(mat3 p, float3 q)
- {
- return float3(dot(p.v[0], q), dot(p.v[1], q), dot(p.v[2], q));
- }
- float4 transform(mat4 p, float4 q)
- {
- return float4(dot(p.v[0], q), dot(p.v[1], q), dot(p.v[2], q), dot(p.v[3], q));
- }
- mat2 adjugate(mat2 p)
- {
- mat2 res;
- res.v[0] = float2(p.v[1].y, -p.v[0].y);
- res.v[1] = float2(-p.v[1].x, p.v[0].x);
- return res;
- }
- mat2 invert(mat2 p)
- {
- float rdet = 1.0f / determinant(p);
- mat2 res;
- res.v[0] = float2(p.v[1].y, -p.v[0].y) * rdet;
- res.v[1] = float2(-p.v[1].x, p.v[0].x) * rdet;
- return res;
- }
- mat3 adjugate(mat3 p)
- {
- mat3 res;
- float3 prd0 = cross(p.v[1], p.v[2]);
- float3 prd1 = cross(p.v[2], p.v[0]);
- float3 prd2 = cross(p.v[0], p.v[1]);
- res.v[0] = float3(prd0.x, prd1.x, prd2.x);
- res.v[1] = float3(prd0.y, prd1.y, prd2.y);
- res.v[2] = float3(prd0.z, prd1.z, prd2.z);
- return res;
- }
- mat3 invert(mat3 p)
- {
- float3 cross0 = cross(p.v[1], p.v[2]);
- float det = dot(cross0, p.v[0]);
- float rdet = 1.0f / det;
- mat3 res;
- float3 prd0 = cross0 * rdet;
- float3 prd1 = cross(p.v[2], p.v[0]) * rdet;
- float3 prd2 = cross(p.v[0], p.v[1]) * rdet;
- res.v[0] = float3(prd0.x, prd1.x, prd2.x);
- res.v[1] = float3(prd0.y, prd1.y, prd2.y);
- res.v[2] = float3(prd0.z, prd1.z, prd2.z);
- return res;
- }
- mat4 adjugate(mat4 p)
- {
- mat4 res;
- float3 bpc0 = cross(p.v[2].yzw, p.v[3].yzw);
- float3 tpc0 = cross(p.v[0].yzw, p.v[1].yzw);
- res.v[0] = float4(dot(bpc0, p.v[1].yzw), -dot(bpc0, p.v[0].yzw), dot(tpc0, p.v[3].yzw), -dot(tpc0, p.v[2].yzw));
- float3 bpc1 = cross(p.v[2].xzw, p.v[3].xzw);
- float3 tpc1 = cross(p.v[0].xzw, p.v[1].xzw);
- res.v[1] = float4(-dot(bpc1, p.v[1].xzw), dot(bpc1, p.v[0].xzw), -dot(tpc1, p.v[3].xzw), dot(tpc1, p.v[2].xzw));
- float3 bpc2 = cross(p.v[2].xyw, p.v[3].xyw);
- float3 tpc2 = cross(p.v[0].xyw, p.v[1].xyw);
- res.v[2] = float4(dot(bpc2, p.v[1].xyw), -dot(bpc2, p.v[0].xyw), dot(tpc2, p.v[3].xyw), -dot(tpc2, p.v[2].xyw));
- float3 bpc3 = cross(p.v[2].xyz, p.v[3].xyz);
- float3 tpc3 = cross(p.v[0].xyz, p.v[1].xyz);
- res.v[3] = float4(-dot(bpc3, p.v[1].xyz), dot(bpc3, p.v[0].xyz), -dot(tpc3, p.v[3].xyz), dot(tpc3, p.v[2].xyz));
- return res;
- }
- mat4 invert(mat4 p)
- {
- // cross products between the bottom two rows
- float3 bpc0 = cross(p.v[2].yzw, p.v[3].yzw);
- float3 bpc1 = cross(p.v[2].xzw, p.v[3].xzw);
- float3 bpc2 = cross(p.v[2].xyw, p.v[3].xyw);
- float3 bpc3 = cross(p.v[2].xyz, p.v[3].xyz);
- // dot-products for the top rows
- float4 row1 = float4(dot(bpc0, p.v[1].yzw),
- -dot(bpc1, p.v[1].xzw),
- dot(bpc2, p.v[1].xyw),
- -dot(bpc3, p.v[1].xyz));
- float det = dot(p.v[0], row1);
- float rdet = 1.0f / det;
- mat4 res;
- float3 tpc0 = cross(p.v[0].yzw, p.v[1].yzw);
- res.v[0] = float4(row1.x, -dot(bpc0, p.v[0].yzw), dot(tpc0, p.v[3].yzw), -dot(tpc0, p.v[2].yzw)) * rdet;
- float3 tpc1 = cross(p.v[0].xzw, p.v[1].xzw);
- res.v[1] = float4(row1.y, dot(bpc1, p.v[0].xzw), -dot(tpc1, p.v[3].xzw), dot(tpc1, p.v[2].xzw)) * rdet;
- float3 tpc2 = cross(p.v[0].xyw, p.v[1].xyw);
- res.v[2] = float4(row1.z, -dot(bpc2, p.v[0].xyw), dot(tpc2, p.v[3].xyw), -dot(tpc2, p.v[2].xyw)) * rdet;
- float3 tpc3 = cross(p.v[0].xyz, p.v[1].xyz);
- res.v[3] = float4(row1.w, dot(bpc3, p.v[0].xyz), -dot(tpc3, p.v[3].xyz), dot(tpc3, p.v[2].xyz)) * rdet;
- return res;
- }
- float2 eigenvalues(mat2 p)
- {
- return solve_monic(characteristic_poly(p));
- }
- float3 eigenvalues(mat3 p)
- {
- return solve_monic(characteristic_poly(p));
- }
- float4 eigenvalues(mat4 p)
- {
- return solve_monic(characteristic_poly(p));
- }
- float2 eigenvector(mat2 p, float eigvl)
- {
- // for a mat2, we first reverse-subtract the eigenvalue from the matrix diagonal,
- // then return whichever row had the larger sum-of-absolute-values.
- float4 v = float4(p.v[0], p.v[1]);
- v.xw = eigvl - v.xw;
- if (fabs(v.x) + fabs(v.y) > fabs(v.z) + fabs(v.w))
- return v.yx;
- else
- return v.wz;
- }
- float3 eigenvector(mat3 p, float eigvl)
- {
- // for a mat3, we obtain the eigenvector as follows:
- // step 1: subtract the eigenvalue from the matrix diagonal
- // step 2: take two cross products between rows in the matrix
- // step 3: return whichever of the cross products resulted in a longer vector.
- float3 r0 = p.v[0];
- float3 r1 = p.v[1];
- float3 r2 = p.v[2];
- r0.x = r0.x - eigvl;
- r1.y = r1.y - eigvl;
- r2.z = r2.z - eigvl;
- float3 v1 = cross(r0, r1);
- float3 v2 = cross(r1, r2);
- float len1 = dot(v1, v1);
- float len2 = dot(v2, v2);
- return len1 > len2 ? v1 : v2;
- }
- // generalized cross product: 3 vectors with 4 components each.
- // The result is a vector that is perpendicular to all the three specified vectors.
- // it works in the sense that it produces a perpendicular-to-everything vector,
- // but it has not been tested whether it points in the "right" direction.
- float4 gcross(float4 p, float4 q, float4 r)
- {
- return float4(dot(p.yzw, cross(q.yzw, r.yzw)), -dot(p.xzw, cross(q.xzw, r.xzw)), dot(p.xyw, cross(q.xyw, r.xyw)), -dot(p.xyz, cross(q.xyz, r.xyz)));
- }
- float4 eigenvector(mat4 p, float eigvl)
- {
- float4 r0 = p.v[0];
- float4 r1 = p.v[1];
- float4 r2 = p.v[2];
- float4 r3 = p.v[3];
- r0.x = r0.x - eigvl;
- r1.y = r1.y - eigvl;
- r2.z = r2.z - eigvl;
- r3.w = r3.w - eigvl;
- // generate four candidate vectors using the generalized cross product.
- // These will in general point in the same direction (or 180 degree opposite),
- // however they will have different lengths. Pick the longest one.
- float3 tpc0 = cross(r0.yzw, r1.yzw);
- float3 tpc1 = cross(r0.xzw, r1.xzw);
- float3 tpc2 = cross(r0.xyw, r1.xyw);
- float3 tpc3 = cross(r0.xyz, r1.xyz);
- float4 v1 = float4(dot(r2.yzw, tpc0),
- -dot(r2.xzw, tpc1),
- dot(r2.xyw, tpc2),
- -dot(r2.xyz, tpc3));
- float4 v2 = float4(dot(r3.yzw, tpc0),
- -dot(r3.xzw, tpc1),
- dot(r3.xyw, tpc2),
- -dot(r3.xyz, tpc3));
- float3 bpc0 = cross(r2.yzw, r3.yzw);
- float3 bpc1 = cross(r2.xzw, r3.xzw);
- float3 bpc2 = cross(r2.xyw, r3.xyw);
- float3 bpc3 = cross(r2.xyz, r3.xyz);
- float4 v3 = float4(dot(r0.yzw, bpc0),
- -dot(r0.xzw, bpc1),
- dot(r0.xyw, bpc2),
- -dot(r0.xyz, bpc3));
- float4 v4 = float4(dot(r1.yzw, bpc0),
- -dot(r1.xzw, bpc1),
- dot(r1.xyw, bpc2),
- -dot(r1.xyz, bpc3));
- float len1 = dot(v1, v1);
- float len2 = dot(v2, v2);
- float len3 = dot(v3, v3);
- float len4 = dot(v4, v4);
- if (fmax(len1, len2) > fmax(len3, len4))
- return len1 > len2 ? v1 : v2;
- else
- return len3 > len4 ? v3 : v4;
- }
- // matrix multiply
- mat2 operator *(mat2 a, mat2 b)
- {
- mat2 res;
- res.v[0] = a.v[0].x * b.v[0] + a.v[0].y * b.v[1];
- res.v[1] = a.v[1].x * b.v[0] + a.v[1].y * b.v[1];
- return res;
- }
- mat3 operator *(mat3 a, mat3 b)
- {
- mat3 res;
- res.v[0] = a.v[0].x * b.v[0] + a.v[0].y * b.v[1] + a.v[0].z * b.v[2];
- res.v[1] = a.v[1].x * b.v[0] + a.v[1].y * b.v[1] + a.v[1].z * b.v[2];
- res.v[2] = a.v[2].x * b.v[0] + a.v[2].y * b.v[1] + a.v[2].z * b.v[2];
- return res;
- }
- mat4 operator *(mat4 a, mat4 b)
- {
- mat4 res;
- res.v[0] = a.v[0].x * b.v[0] + a.v[0].y * b.v[1] + a.v[0].z * b.v[2] + a.v[0].w * b.v[3];
- res.v[1] = a.v[1].x * b.v[0] + a.v[1].y * b.v[1] + a.v[1].z * b.v[2] + a.v[1].w * b.v[3];
- res.v[2] = a.v[2].x * b.v[0] + a.v[2].y * b.v[1] + a.v[2].z * b.v[2] + a.v[2].w * b.v[3];
- res.v[3] = a.v[3].x * b.v[0] + a.v[3].y * b.v[1] + a.v[3].z * b.v[2] + a.v[3].w * b.v[3];
- return res;
- }
- /*************************
- simple geometric functions
- *************************/
- // return parameter value for the point on the line closest to the specified point
- float param_nearest_on_line(float2 point, line2 line)
- {
- return dot(point - line.a, line.b) / dot(line.b, line.b);
- }
- float param_nearest_on_line(float3 point, line3 line)
- {
- return dot(point - line.a, line.b) / dot(line.b, line.b);
- }
- float param_nearest_on_line(float4 point, line4 line)
- {
- return dot(point - line.a, line.b) / dot(line.b, line.b);
- }
- // return distance between point and line
- float point_line_distance(float2 point, line2 line)
- {
- return distance(point, line.a + line.b * param_nearest_on_line(point, line));
- }
- float point_line_distance(float3 point, line3 line)
- {
- return distance(point, line.a + line.b * param_nearest_on_line(point, line));
- }
- float point_line_distance(float4 point, line4 line)
- {
- return distance(point, line.a + line.b * param_nearest_on_line(point, line));
- }
- float point_line_distance_sqr(float2 point, line2 line)
- {
- return distance_sqr(point, line.a + line.b * param_nearest_on_line(point, line));
- }
- float point_line_distance_sqr(float3 point, line3 line)
- {
- return distance_sqr(point, line.a + line.b * param_nearest_on_line(point, line));
- }
- float point_line_distance_sqr(float4 point, line4 line)
- {
- return distance_sqr(point, line.a + line.b * param_nearest_on_line(point, line));
- }
- // distance between plane/hyperplane in 3D and 4D
- float point_plane_3d_distance(float3 point, plane_3d plane)
- {
- return dot(point - plane.root_point, plane.normal);
- }
- float point_hyperplane_4d_distance(float4 point, hyperplane_4d plane)
- {
- return dot(point - plane.root_point, plane.normal);
- }
- // helper functions to produce a 3D plane from three points and a 4D hyperplane from four points.
- plane_3d generate_plane_from_points(float3 point0, float3 point1, float3 point2)
- {
- plane_3d res;
- res.root_point = point0;
- res.normal = normalize(cross(point1 - point0, point2 - point0));
- return res;
- }
- hyperplane_4d generate_hyperplane_from_points(float4 point0, float4 point1, float4 point2, float4 point3)
- {
- hyperplane_4d res;
- res.root_point = point0;
- res.normal = normalize(gcross(point1 - point0, point2 - point0, point3 - point0));
- return res;
- }
|