math_test.cpp 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733
  1. /*
  2. * Copyright 2010-2023 Branimir Karadzic. All rights reserved.
  3. * License: https://github.com/bkaradzic/bx/blob/master/LICENSE
  4. */
  5. #include "test.h"
  6. #include <bx/math.h>
  7. #include <bx/file.h>
  8. #include <math.h>
  9. #include <stdint.h> // intXX_t
  10. #include <limits.h> // UCHAR_*
  11. TEST_CASE("isFinite, isInfinite, isNan", "[math]")
  12. {
  13. for (uint64_t ii = 0; ii < UINT32_MAX; ii += rand()%(1<<13)+1)
  14. {
  15. union { uint32_t ui; float f; } u = { uint32_t(ii) };
  16. #if BX_PLATFORM_OSX
  17. REQUIRE(::__isnanf(u.f) == bx::isNan(u.f) );
  18. REQUIRE(::__isfinitef(u.f) == bx::isFinite(u.f) );
  19. REQUIRE(::__isinff(u.f) == bx::isInfinite(u.f) );
  20. #elif BX_COMPILER_MSVC
  21. REQUIRE(!!::isnan(u.f) == bx::isNan(u.f));
  22. REQUIRE(!!::isfinite(u.f) == bx::isFinite(u.f));
  23. REQUIRE(!!::isinf(u.f) == bx::isInfinite(u.f));
  24. #else
  25. REQUIRE(::isnanf(u.f) == bx::isNan(u.f) );
  26. REQUIRE(::finitef(u.f) == bx::isFinite(u.f) );
  27. REQUIRE(::isinff(u.f) == bx::isInfinite(u.f) );
  28. #endif // BX_PLATFORM_OSX
  29. }
  30. }
  31. bool log2_test(float _a)
  32. {
  33. return bx::log2(_a) == bx::log(_a) * (1.0f / bx::log(2.0f) );
  34. }
  35. TEST_CASE("log2", "[math][libm]")
  36. {
  37. log2_test(0.0f);
  38. log2_test(256.0f);
  39. REQUIRE(0.0f == bx::log2(1.0f) );
  40. REQUIRE(1.0f == bx::log2(2.0f) );
  41. REQUIRE(2.0f == bx::log2(4.0f) );
  42. REQUIRE(3.0f == bx::log2(8.0f) );
  43. REQUIRE(4.0f == bx::log2(16.0f) );
  44. REQUIRE(5.0f == bx::log2(32.0f) );
  45. REQUIRE(6.0f == bx::log2(64.0f) );
  46. REQUIRE(7.0f == bx::log2(128.0f) );
  47. REQUIRE(8.0f == bx::log2(256.0f) );
  48. }
  49. TEST_CASE("ceilLog2", "[math]")
  50. {
  51. REQUIRE(0 == bx::ceilLog2(-1) );
  52. REQUIRE(0 == bx::ceilLog2(0) );
  53. REQUIRE(0 == bx::ceilLog2(1) );
  54. REQUIRE(1 == bx::ceilLog2(2) );
  55. REQUIRE(2 == bx::ceilLog2(4) );
  56. REQUIRE(3 == bx::ceilLog2(8) );
  57. REQUIRE(4 == bx::ceilLog2(16) );
  58. REQUIRE(5 == bx::ceilLog2(32) );
  59. REQUIRE(6 == bx::ceilLog2(64) );
  60. REQUIRE(7 == bx::ceilLog2(128) );
  61. REQUIRE(8 == bx::ceilLog2(256) );
  62. {
  63. uint32_t ii = 0;
  64. for (; ii < 8; ++ii)
  65. {
  66. REQUIRE(ii == bx::ceilLog2(uint8_t(1<<ii) ) );
  67. REQUIRE(ii == bx::ceilLog2(uint16_t(1<<ii) ) );
  68. REQUIRE(ii == bx::ceilLog2(uint32_t(1<<ii) ) );
  69. REQUIRE(ii == bx::ceilLog2(uint64_t(1llu<<ii) ) );
  70. }
  71. for (; ii < 16; ++ii)
  72. {
  73. REQUIRE(ii == bx::ceilLog2(uint16_t(1<<ii) ) );
  74. REQUIRE(ii == bx::ceilLog2(uint32_t(1<<ii) ) );
  75. REQUIRE(ii == bx::ceilLog2(uint64_t(1llu<<ii) ) );
  76. }
  77. for (; ii < 32; ++ii)
  78. {
  79. REQUIRE(ii == bx::ceilLog2(uint32_t(1<<ii) ) );
  80. REQUIRE(ii == bx::ceilLog2(uint64_t(1llu<<ii) ) );
  81. }
  82. for (; ii < 64; ++ii)
  83. {
  84. REQUIRE(ii == bx::ceilLog2(uint64_t(1llu<<ii) ) );
  85. }
  86. }
  87. for (uint32_t ii = 1; ii < INT32_MAX; ii += rand()%(1<<13)+1)
  88. {
  89. // DBG("%u: %u %u", ii, bx::uint32_nextpow2(ii), bx::nextPow2(ii) );
  90. REQUIRE(bx::nextPow2(ii) == bx::uint32_nextpow2(ii) );
  91. }
  92. }
  93. TEST_CASE("floorLog2", "[math]")
  94. {
  95. REQUIRE(0 == bx::floorLog2(-1) );
  96. REQUIRE(0 == bx::floorLog2(0) );
  97. REQUIRE(0 == bx::floorLog2(1) );
  98. REQUIRE(1 == bx::floorLog2(2) );
  99. REQUIRE(2 == bx::floorLog2(4) );
  100. REQUIRE(3 == bx::floorLog2(8) );
  101. REQUIRE(4 == bx::floorLog2(16) );
  102. REQUIRE(5 == bx::floorLog2(32) );
  103. REQUIRE(6 == bx::floorLog2(64) );
  104. REQUIRE(7 == bx::floorLog2(128) );
  105. REQUIRE(8 == bx::floorLog2(256) );
  106. {
  107. uint32_t ii = 0;
  108. for (; ii < 8; ++ii)
  109. {
  110. REQUIRE(ii == bx::floorLog2(uint8_t(1<<ii) ) );
  111. REQUIRE(ii == bx::floorLog2(uint16_t(1<<ii) ) );
  112. REQUIRE(ii == bx::floorLog2(uint32_t(1<<ii) ) );
  113. REQUIRE(ii == bx::floorLog2(uint64_t(1llu<<ii) ) );
  114. }
  115. for (; ii < 16; ++ii)
  116. {
  117. REQUIRE(ii == bx::floorLog2(uint16_t(1<<ii) ) );
  118. REQUIRE(ii == bx::floorLog2(uint32_t(1<<ii) ) );
  119. REQUIRE(ii == bx::floorLog2(uint64_t(1llu<<ii) ) );
  120. }
  121. for (; ii < 32; ++ii)
  122. {
  123. REQUIRE(ii == bx::floorLog2(uint32_t(1<<ii) ) );
  124. REQUIRE(ii == bx::floorLog2(uint64_t(1llu<<ii) ) );
  125. }
  126. for (; ii < 64; ++ii)
  127. {
  128. REQUIRE(ii == bx::floorLog2(uint64_t(1llu<<ii) ) );
  129. }
  130. }
  131. }
  132. TEST_CASE("ceil/floorLog2", "[math]")
  133. {
  134. {
  135. uint32_t prev = 0;
  136. uint32_t next = 0;
  137. for (uint32_t ii = 0; ii < (1<<18); ++ii)
  138. {
  139. if (bx::isPowerOf2(ii) )
  140. {
  141. REQUIRE(bx::ceilLog2(ii) == bx::floorLog2(ii) );
  142. prev = next;
  143. ++next;
  144. }
  145. else
  146. {
  147. REQUIRE(prev == bx::floorLog2(ii) );
  148. REQUIRE(next == bx::ceilLog2(ii) );
  149. }
  150. }
  151. }
  152. }
  153. TEST_CASE("countTrailingZeros", "[math]")
  154. {
  155. REQUIRE( 0 == bx::countTrailingZeros<uint8_t >(1) );
  156. REQUIRE( 7 == bx::countTrailingZeros<uint8_t >(1<<7) );
  157. REQUIRE( 8 == bx::countTrailingZeros<uint8_t >(0) );
  158. REQUIRE( 1 == bx::countTrailingZeros<uint8_t >(0x3e) );
  159. REQUIRE( 0 == bx::countTrailingZeros<uint16_t>(1) );
  160. REQUIRE(15 == bx::countTrailingZeros<uint16_t>(1<<15) );
  161. REQUIRE(16 == bx::countTrailingZeros<uint16_t>(0) );
  162. REQUIRE( 0 == bx::countTrailingZeros<uint32_t>(1) );
  163. REQUIRE(32 == bx::countTrailingZeros<uint32_t>(0) );
  164. REQUIRE(31 == bx::countTrailingZeros<uint32_t>(1u<<31) );
  165. REQUIRE( 0 == bx::countTrailingZeros<uint64_t>(1) );
  166. REQUIRE(64 == bx::countTrailingZeros<uint64_t>(0) );
  167. }
  168. TEST_CASE("countLeadingZeros", "[math]")
  169. {
  170. REQUIRE( 7 == bx::countLeadingZeros<uint8_t >(1) );
  171. REQUIRE( 8 == bx::countLeadingZeros<uint8_t >(0) );
  172. REQUIRE( 2 == bx::countLeadingZeros<uint8_t >(0x3e) );
  173. REQUIRE(15 == bx::countLeadingZeros<uint16_t>(1) );
  174. REQUIRE(16 == bx::countLeadingZeros<uint16_t>(0) );
  175. REQUIRE(31 == bx::countLeadingZeros<uint32_t>(1) );
  176. REQUIRE(32 == bx::countLeadingZeros<uint32_t>(0) );
  177. REQUIRE(63 == bx::countLeadingZeros<uint64_t>(1) );
  178. REQUIRE(64 == bx::countLeadingZeros<uint64_t>(0) );
  179. }
  180. TEST_CASE("countBits", "[math]")
  181. {
  182. REQUIRE( 0 == bx::countBits(0) );
  183. REQUIRE( 1 == bx::countBits(1) );
  184. REQUIRE( 4 == bx::countBits<uint8_t>(0x55) );
  185. REQUIRE( 8 == bx::countBits<uint16_t>(0x5555) );
  186. REQUIRE(16 == bx::countBits<uint32_t>(0x55555555) );
  187. REQUIRE(32 == bx::countBits<uint64_t>(0x5555555555555555) );
  188. REQUIRE( 8 == bx::countBits(UINT8_MAX) );
  189. REQUIRE(16 == bx::countBits(UINT16_MAX) );
  190. REQUIRE(32 == bx::countBits(UINT32_MAX) );
  191. REQUIRE(64 == bx::countBits(UINT64_MAX) );
  192. }
  193. TEST_CASE("findFirstSet", "[math]")
  194. {
  195. REQUIRE( 1 == bx::findFirstSet<uint8_t >(1) );
  196. REQUIRE( 8 == bx::findFirstSet<uint8_t >(1<<7) );
  197. REQUIRE( 0 == bx::findFirstSet<uint8_t >(0) );
  198. REQUIRE( 2 == bx::findFirstSet<uint8_t >(0x3e) );
  199. REQUIRE( 1 == bx::findFirstSet<uint16_t>(1) );
  200. REQUIRE(16 == bx::findFirstSet<uint16_t>(1<<15) );
  201. REQUIRE( 0 == bx::findFirstSet<uint16_t>(0) );
  202. REQUIRE( 1 == bx::findFirstSet<uint32_t>(1) );
  203. REQUIRE( 0 == bx::findFirstSet<uint32_t>(0) );
  204. REQUIRE(32 == bx::findFirstSet<uint32_t>(1u<<31) );
  205. REQUIRE( 1 == bx::findFirstSet<uint64_t>(1) );
  206. REQUIRE( 0 == bx::findFirstSet<uint64_t>(0) );
  207. }
  208. BX_PRAGMA_DIAGNOSTIC_PUSH();
  209. BX_PRAGMA_DIAGNOSTIC_IGNORED_MSVC(4723) // potential divide by 0
  210. TEST_CASE("rsqrt", "[math][libm]")
  211. {
  212. bx::WriterI* writer = bx::getNullOut();
  213. bx::Error err;
  214. // rsqrtRef
  215. REQUIRE(bx::isInfinite(bx::rsqrtRef(0.0f)));
  216. for (float xx = bx::kNearZero; xx < 100.0f; xx += 0.1f)
  217. {
  218. bx::write(writer, &err, "rsqrtRef(%f) == %f (expected: %f)\n", xx, bx::rsqrtRef(xx), 1.0f / ::sqrtf(xx));
  219. REQUIRE(err.isOk());
  220. REQUIRE(bx::isEqual(bx::rsqrtRef(xx), 1.0f / ::sqrtf(xx), 0.00001f));
  221. }
  222. // rsqrtSimd
  223. REQUIRE(bx::isInfinite(bx::rsqrtSimd(0.0f)));
  224. for (float xx = bx::kNearZero; xx < 100.0f; xx += 0.1f)
  225. {
  226. bx::write(writer, &err, "rsqrtSimd(%f) == %f (expected: %f)\n", xx, bx::rsqrtSimd(xx), 1.0f / ::sqrtf(xx));
  227. REQUIRE(err.isOk());
  228. REQUIRE(bx::isEqual(bx::rsqrtSimd(xx), 1.0f / ::sqrtf(xx), 0.00001f));
  229. }
  230. // rsqrt
  231. REQUIRE(bx::isInfinite(1.0f / ::sqrtf(0.0f)));
  232. REQUIRE(bx::isInfinite(bx::rsqrt(0.0f)));
  233. for (float xx = bx::kNearZero; xx < 100.0f; xx += 0.1f)
  234. {
  235. bx::write(writer, &err, "rsqrt(%f) == %f (expected: %f)\n", xx, bx::rsqrt(xx), 1.0f / ::sqrtf(xx));
  236. REQUIRE(err.isOk());
  237. REQUIRE(bx::isEqual(bx::rsqrt(xx), 1.0f / ::sqrtf(xx), 0.00001f));
  238. }
  239. }
  240. TEST_CASE("sqrt", "[math][libm]")
  241. {
  242. bx::WriterI* writer = bx::getNullOut();
  243. bx::Error err;
  244. // sqrtRef
  245. REQUIRE(bx::isNan(bx::sqrtRef(-1.0f)));
  246. REQUIRE(bx::isEqual(bx::sqrtRef(0.0f), ::sqrtf(0.0f), 0.0f));
  247. REQUIRE(bx::isEqual(bx::sqrtRef(1.0f), ::sqrtf(1.0f), 0.0f));
  248. for (float xx = 0.0f; xx < 1000000.0f; xx += 1000.f)
  249. {
  250. bx::write(writer, &err, "sqrtRef(%f) == %f (expected: %f)\n", xx, bx::sqrtRef(xx), ::sqrtf(xx));
  251. REQUIRE(err.isOk());
  252. REQUIRE(bx::isEqual(bx::sqrtRef(xx), ::sqrtf(xx), 0.00001f));
  253. }
  254. // sqrtSimd
  255. REQUIRE(bx::isNan(bx::sqrtSimd(-1.0f)));
  256. REQUIRE(bx::isEqual(bx::sqrtSimd(0.0f), ::sqrtf(0.0f), 0.0f));
  257. REQUIRE(bx::isEqual(bx::sqrtSimd(1.0f), ::sqrtf(1.0f), 0.0f));
  258. for (float xx = 0.0f; xx < 1000000.0f; xx += 1000.f)
  259. {
  260. bx::write(writer, &err, "sqrtSimd(%f) == %f (expected: %f)\n", xx, bx::sqrtSimd(xx), ::sqrtf(xx));
  261. REQUIRE(err.isOk());
  262. REQUIRE(bx::isEqual(bx::sqrtSimd(xx), ::sqrtf(xx), 0.00001f));
  263. }
  264. for (float xx = 0.0f; xx < 100.0f; xx += 0.1f)
  265. {
  266. bx::write(writer, &err, "sqrt(%f) == %f (expected: %f)\n", xx, bx::sqrt(xx), ::sqrtf(xx));
  267. REQUIRE(err.isOk());
  268. REQUIRE(bx::isEqual(bx::sqrt(xx), ::sqrtf(xx), 0.00001f));
  269. }
  270. // sqrt
  271. REQUIRE(bx::isNan(::sqrtf(-1.0f)));
  272. REQUIRE(bx::isNan(bx::sqrt(-1.0f)));
  273. REQUIRE(bx::isEqual(bx::sqrt(0.0f), ::sqrtf(0.0f), 0.0f));
  274. REQUIRE(bx::isEqual(bx::sqrt(1.0f), ::sqrtf(1.0f), 0.0f));
  275. for (float xx = 0.0f; xx < 1000000.0f; xx += 1000.f)
  276. {
  277. bx::write(writer, &err, "sqrt(%f) == %f (expected: %f)\n", xx, bx::sqrt(xx), ::sqrtf(xx));
  278. REQUIRE(err.isOk());
  279. REQUIRE(bx::isEqual(bx::sqrt(xx), ::sqrtf(xx), 0.00001f));
  280. }
  281. for (float xx = 0.0f; xx < 100.0f; xx += 0.1f)
  282. {
  283. bx::write(writer, &err, "sqrt(%f) == %f (expected: %f)\n", xx, bx::sqrt(xx), ::sqrtf(xx));
  284. REQUIRE(err.isOk());
  285. REQUIRE(bx::isEqual(bx::sqrt(xx), ::sqrtf(xx), 0.00001f));
  286. }
  287. }
  288. BX_PRAGMA_DIAGNOSTIC_POP();
  289. TEST_CASE("abs", "[math][libm]")
  290. {
  291. REQUIRE(1389.0f == bx::abs(-1389.0f) );
  292. REQUIRE(1389.0f == bx::abs( 1389.0f) );
  293. REQUIRE( 0.0f == bx::abs(-0.0f) );
  294. REQUIRE( 0.0f == bx::abs( 0.0f) );
  295. }
  296. TEST_CASE("mod", "[math][libm]")
  297. {
  298. REQUIRE(389.0f == bx::mod(1389.0f, 1000.0f) );
  299. }
  300. TEST_CASE("floor", "[math][libm]")
  301. {
  302. REQUIRE( 13.0f == bx::floor( 13.89f) );
  303. REQUIRE(-14.0f == bx::floor(-13.89f) );
  304. }
  305. TEST_CASE("ceil", "[math][libm]")
  306. {
  307. REQUIRE( 14.0f == bx::ceil( 13.89f) );
  308. REQUIRE(-13.0f == bx::ceil( -13.89f) );
  309. }
  310. TEST_CASE("trunc", "[math][libm]")
  311. {
  312. REQUIRE( 13.0f == bx::trunc( 13.89f) );
  313. REQUIRE(-13.0f == bx::trunc(-13.89f) );
  314. }
  315. TEST_CASE("fract", "[math][libm]")
  316. {
  317. REQUIRE(bx::isEqual( 0.89f, bx::fract( 13.89f), 0.000001f) );
  318. REQUIRE(bx::isEqual(-0.89f, bx::fract(-13.89f), 0.000001f) );
  319. }
  320. TEST_CASE("ldexp", "[math][libm]")
  321. {
  322. bx::WriterI* writer = bx::getNullOut();
  323. bx::Error err;
  324. for (int32_t yy = -10; yy < 10; ++yy)
  325. {
  326. for (float xx = -100.0f; xx < 100.0f; xx += 0.1f)
  327. {
  328. bx::write(writer, &err, "ldexp(%f, %d) == %f (expected: %f)\n", xx, yy, bx::ldexp(xx, yy), ::ldexpf(xx, yy) );
  329. REQUIRE(bx::isEqual(bx::ldexp(xx, yy), ::ldexpf(xx, yy), 0.00001f) );
  330. }
  331. }
  332. }
  333. TEST_CASE("exp", "[math][libm]")
  334. {
  335. bx::WriterI* writer = bx::getNullOut();
  336. bx::Error err;
  337. for (float xx = -80.0f; xx < 80.0f; xx += 0.1f)
  338. {
  339. bx::write(writer, &err, "exp(%f) == %f (expected: %f)\n", xx, bx::exp(xx), ::expf(xx) );
  340. REQUIRE(err.isOk() );
  341. REQUIRE(bx::isEqual(bx::exp(xx), ::expf(xx), 0.00001f) );
  342. }
  343. }
  344. TEST_CASE("pow", "[math][libm]")
  345. {
  346. bx::WriterI* writer = bx::getNullOut();
  347. bx::Error err;
  348. for (float xx = -100.0f; xx < 100.0f; xx += 0.1f)
  349. {
  350. bx::write(writer, &err, "pow(1.389f, %f) == %f (expected: %f)\n", xx, bx::pow(1.389f, xx), ::powf(1.389f, xx) );
  351. REQUIRE(err.isOk() );
  352. REQUIRE(bx::isEqual(bx::pow(1.389f, xx), ::powf(1.389f, xx), 0.00001f) );
  353. }
  354. }
  355. TEST_CASE("asin", "[math][libm]")
  356. {
  357. bx::WriterI* writer = bx::getNullOut();
  358. bx::Error err;
  359. for (float xx = -1.0f; xx < 1.0f; xx += 0.001f)
  360. {
  361. bx::write(writer, &err, "asin(%f) == %f (expected: %f)\n", xx, bx::asin(xx), ::asinf(xx) );
  362. REQUIRE(err.isOk() );
  363. REQUIRE(bx::isEqual(bx::asin(xx), ::asinf(xx), 0.0001f) );
  364. }
  365. }
  366. TEST_CASE("sin", "[math][libm]")
  367. {
  368. bx::WriterI* writer = bx::getNullOut();
  369. bx::Error err;
  370. for (float xx = -100.0f; xx < 100.0f; xx += 0.1f)
  371. {
  372. bx::write(writer, &err, "sin(%f) == %f (expected: %f)\n", xx, bx::sin(xx), ::sinf(xx) );
  373. REQUIRE(err.isOk() );
  374. REQUIRE(bx::isEqual(bx::sin(xx), ::sinf(xx), 0.00001f) );
  375. }
  376. for (float xx = -bx::kPi2; xx < bx::kPi2; xx += 0.0001f)
  377. {
  378. bx::write(writer, &err, "sin(%f) == %f (expected: %f)\n", xx, bx::sin(xx), ::sinf(xx) );
  379. REQUIRE(err.isOk() );
  380. REQUIRE(bx::isEqual(bx::sin(xx), ::sinf(xx), 0.00001f) );
  381. }
  382. }
  383. TEST_CASE("sinh", "[math][libm]")
  384. {
  385. bx::WriterI* writer = bx::getNullOut();
  386. bx::Error err;
  387. for (float xx = -1.0f; xx < 1.0f; xx += 0.1f)
  388. {
  389. bx::write(writer, &err, "sinh(%f) == %f (expected: %f)\n", xx, bx::sinh(xx), ::sinhf(xx) );
  390. REQUIRE(err.isOk() );
  391. REQUIRE(bx::isEqual(bx::sinh(xx), ::sinhf(xx), 0.00001f) );
  392. }
  393. }
  394. TEST_CASE("acos", "[math][libm]")
  395. {
  396. bx::WriterI* writer = bx::getNullOut();
  397. bx::Error err;
  398. for (float xx = -1.0f; xx < 1.0f; xx += 0.001f)
  399. {
  400. bx::write(writer, &err, "acos(%f) == %f (expected: %f\n)", xx, bx::acos(xx), ::acosf(xx) );
  401. REQUIRE(err.isOk() );
  402. REQUIRE(bx::isEqual(bx::acos(xx), ::acosf(xx), 0.0001f) );
  403. }
  404. }
  405. TEST_CASE("cos", "[math][libm]")
  406. {
  407. bx::WriterI* writer = bx::getNullOut();
  408. bx::Error err;
  409. for (float xx = -100.0f; xx < 100.0f; xx += 0.1f)
  410. {
  411. bx::write(writer, &err, "cos(%f) == %f (expected: %f)\n", xx, bx::cos(xx), ::cosf(xx) );
  412. REQUIRE(err.isOk() );
  413. REQUIRE(bx::isEqual(bx::cos(xx), ::cosf(xx), 0.00001f) );
  414. }
  415. for (float xx = -bx::kPi2; xx < bx::kPi2; xx += 0.0001f)
  416. {
  417. bx::write(writer, &err, "cos(%f) == %f (expected: %f)\n", xx, bx::cos(xx), ::cosf(xx) );
  418. REQUIRE(err.isOk() );
  419. REQUIRE(bx::isEqual(bx::cos(xx), ::cosf(xx), 0.00001f) );
  420. }
  421. }
  422. TEST_CASE("tan", "[math][libm]")
  423. {
  424. bx::WriterI* writer = bx::getNullOut();
  425. bx::Error err;
  426. for (float xx = -100.0f; xx < 100.0f; xx += 0.1f)
  427. {
  428. bx::write(writer, &err, "tan(%f) == %f (expected: %f)\n", xx, bx::tan(xx), ::tanf(xx) );
  429. REQUIRE(err.isOk() );
  430. REQUIRE(bx::isEqual(bx::tan(xx), ::tanf(xx), 0.001f) );
  431. }
  432. }
  433. TEST_CASE("tanh", "[math][libm]")
  434. {
  435. bx::WriterI* writer = bx::getNullOut();
  436. bx::Error err;
  437. for (float xx = -1.0f; xx < 1.0f; xx += 0.1f)
  438. {
  439. bx::write(writer, &err, "tanh(%f) == %f (expected: %f\n", xx, bx::tanh(xx), ::tanhf(xx) );
  440. REQUIRE(err.isOk() );
  441. REQUIRE(bx::isEqual(bx::tanh(xx), ::tanhf(xx), 0.00001f) );
  442. }
  443. }
  444. TEST_CASE("atan", "[math][libm]")
  445. {
  446. bx::WriterI* writer = bx::getNullOut();
  447. bx::Error err;
  448. for (float xx = -100.0f; xx < 100.0f; xx += 0.1f)
  449. {
  450. bx::write(writer, &err, "atan(%f) == %f (expected: %f)\n", xx, bx::atan(xx), ::atanf(xx) );
  451. REQUIRE(err.isOk() );
  452. REQUIRE(bx::isEqual(bx::atan(xx), ::atanf(xx), 0.00001f) );
  453. }
  454. }
  455. TEST_CASE("atan2", "[math][libm]")
  456. {
  457. bx::WriterI* writer = bx::getNullOut();
  458. bx::Error err;
  459. REQUIRE(bx::isEqual(bx::atan2(0.0f, 0.0f), ::atan2f(0.0f, 0.0f), 0.00001f) );
  460. REQUIRE(bx::isEqual(bx::atan2(0.0f, 1.0f), ::atan2f(0.0f, 1.0f), 0.00001f) );
  461. REQUIRE(bx::isEqual(bx::atan2(0.0f, -1.0f), ::atan2f(0.0f, -1.0f), 0.00001f) );
  462. for (float yy = -100.0f; yy < 100.0f; yy += 0.1f)
  463. {
  464. for (float xx = -100.0f; xx < 100.0f; xx += 0.1f)
  465. {
  466. bx::write(writer, &err, "atan2(%f, %f) == %f (expected: %f)\n", yy, xx, bx::atan2(yy, xx), ::atan2f(yy, xx) );
  467. REQUIRE(err.isOk() );
  468. REQUIRE(bx::isEqual(bx::atan2(yy, xx), ::atan2f(yy, xx), 0.00001f) );
  469. }
  470. }
  471. }
  472. TEST_CASE("sign", "[math][libm]")
  473. {
  474. STATIC_REQUIRE(-1 == bx::sign(-0.1389f) );
  475. STATIC_REQUIRE( 0 == bx::sign( 0.0000f) );
  476. STATIC_REQUIRE( 1 == bx::sign( 0.1389f) );
  477. REQUIRE(-1 == bx::sign(-bx::kFloatInfinity) );
  478. REQUIRE( 1 == bx::sign( bx::kFloatInfinity) );
  479. }
  480. TEST_CASE("signbit", "[math][libm]")
  481. {
  482. STATIC_REQUIRE( bx::signbit(-0.1389f) );
  483. STATIC_REQUIRE(!bx::signbit( 0.0000f) );
  484. STATIC_REQUIRE(!bx::signbit( 0.1389f) );
  485. REQUIRE( bx::signbit(-bx::kFloatInfinity) );
  486. REQUIRE(!bx::signbit( bx::kFloatInfinity) );
  487. }
  488. TEST_CASE("copysign", "[math][libm]")
  489. {
  490. STATIC_REQUIRE( 0.1389f == bx::copysign(-0.1389f, +1389) );
  491. STATIC_REQUIRE(-0.0000f == bx::copysign( 0.0000f, -1389) );
  492. STATIC_REQUIRE(-0.1389f == bx::copysign( 0.1389f, -1389) );
  493. REQUIRE(-bx::kFloatInfinity == bx::copysign(bx::kFloatInfinity, -1389) );
  494. }
  495. TEST_CASE("bitsToFloat, floatToBits, bitsToDouble, doubleToBits", "[math]")
  496. {
  497. REQUIRE(UINT32_C(0x12345678) == bx::floatToBits( bx::bitsToFloat( UINT32_C(0x12345678) ) ) );
  498. REQUIRE(UINT64_C(0x123456789abcdef0) == bx::doubleToBits(bx::bitsToDouble(UINT32_C(0x123456789abcdef0) ) ) );
  499. }
  500. TEST_CASE("lerp", "[math]")
  501. {
  502. REQUIRE(1389.0f == bx::lerp(1389.0f, 1453.0f, 0.0f) );
  503. REQUIRE(1453.0f == bx::lerp(1389.0f, 1453.0f, 1.0f) );
  504. REQUIRE( 0.5f == bx::lerp( 0.0f, 1.0f, 0.5f) );
  505. REQUIRE( 0.0f == bx::lerp( 0.0f, 0.0f, 0.5f) );
  506. }
  507. void mtxCheck(const float* _a, const float* _b)
  508. {
  509. if (!bx::isEqual(_a, _b, 16, 0.01f) )
  510. {
  511. DBG("\n"
  512. "A:\n"
  513. "%10.4f %10.4f %10.4f %10.4f\n"
  514. "%10.4f %10.4f %10.4f %10.4f\n"
  515. "%10.4f %10.4f %10.4f %10.4f\n"
  516. "%10.4f %10.4f %10.4f %10.4f\n"
  517. "B:\n"
  518. "%10.4f %10.4f %10.4f %10.4f\n"
  519. "%10.4f %10.4f %10.4f %10.4f\n"
  520. "%10.4f %10.4f %10.4f %10.4f\n"
  521. "%10.4f %10.4f %10.4f %10.4f\n"
  522. , _a[ 0], _a[ 1], _a[ 2], _a[ 3]
  523. , _a[ 4], _a[ 5], _a[ 6], _a[ 7]
  524. , _a[ 8], _a[ 9], _a[10], _a[11]
  525. , _a[12], _a[13], _a[14], _a[15]
  526. , _b[ 0], _b[ 1], _b[ 2], _b[ 3]
  527. , _b[ 4], _b[ 5], _b[ 6], _b[ 7]
  528. , _b[ 8], _b[ 9], _b[10], _b[11]
  529. , _b[12], _b[13], _b[14], _b[15]
  530. );
  531. REQUIRE(false);
  532. }
  533. }
  534. TEST_CASE("vec3", "[math][vec3]")
  535. {
  536. bx::Vec3 normalized = bx::normalize({0.0f, 1.0f, 0.0f});
  537. REQUIRE(bx::isEqual(normalized, {0.0f, 1.0f, 0.0f}, 0.0f) );
  538. float length = bx::length(normalized);
  539. REQUIRE(bx::isEqual(length, 1.0f, 0.0f) );
  540. }
  541. TEST_CASE("quaternion", "[math][quaternion]")
  542. {
  543. float mtxQ[16];
  544. float mtx[16];
  545. bx::Quaternion quat = bx::InitIdentity;
  546. bx::Quaternion q2 = bx::InitNone;
  547. bx::Vec3 axis = bx::InitNone;
  548. bx::Vec3 euler = bx::InitNone;
  549. float angle;
  550. bx::mtxFromQuaternion(mtxQ, quat);
  551. bx::mtxIdentity(mtx);
  552. mtxCheck(mtxQ, mtx);
  553. float ax = bx::kPi/27.0f;
  554. float ay = bx::kPi/13.0f;
  555. float az = bx::kPi/7.0f;
  556. { // x
  557. quat = bx::rotateX(ax);
  558. bx::mtxFromQuaternion(mtxQ, quat);
  559. bx::mtxRotateX(mtx, ax);
  560. mtxCheck(mtxQ, mtx);
  561. bx::toAxisAngle(axis, angle, quat);
  562. REQUIRE(bx::isEqual(axis, bx::Vec3{1.0f, 0.0f, 0.0f}, 0.01f) );
  563. REQUIRE(bx::isEqual(angle, ax, 0.01f) );
  564. euler = bx::toEuler(quat);
  565. REQUIRE(bx::isEqual(euler.x, ax, 0.001f) );
  566. q2 = bx::fromEuler(euler);
  567. REQUIRE(bx::isEqual(quat, q2, 0.001f) );
  568. }
  569. { // y
  570. quat = bx::rotateY(ay);
  571. bx::mtxFromQuaternion(mtxQ, quat);
  572. bx::mtxRotateY(mtx, ay);
  573. mtxCheck(mtxQ, mtx);
  574. bx::toAxisAngle(axis, angle, quat);
  575. REQUIRE(bx::isEqual(axis, bx::Vec3{0.0f, 1.0f, 0.0f}, 0.01f) );
  576. REQUIRE(bx::isEqual(angle, ay, 0.01f) );
  577. euler = bx::toEuler(quat);
  578. REQUIRE(bx::isEqual(euler.y, ay, 0.001f) );
  579. q2 = bx::fromEuler(euler);
  580. REQUIRE(bx::isEqual(quat, q2, 0.001f) );
  581. }
  582. { // z
  583. quat = bx::rotateZ(az);
  584. bx::mtxFromQuaternion(mtxQ, quat);
  585. bx::mtxRotateZ(mtx, az);
  586. mtxCheck(mtxQ, mtx);
  587. bx::toAxisAngle(axis, angle, quat);
  588. REQUIRE(bx::isEqual(axis, bx::Vec3{0.0f, 0.0f, 1.0f}, 0.01f) );
  589. REQUIRE(bx::isEqual(angle, az, 0.01f) );
  590. euler = bx::toEuler(quat);
  591. REQUIRE(bx::isEqual(euler.z, az, 0.001f) );
  592. q2 = bx::fromEuler(euler);
  593. REQUIRE(bx::isEqual(quat, q2, 0.001f) );
  594. }
  595. }
  596. TEST_CASE("limits", "[math]")
  597. {
  598. STATIC_REQUIRE(bx::LimitsT<int8_t>::min == INT8_MIN);
  599. STATIC_REQUIRE(bx::LimitsT<int8_t>::max == INT8_MAX);
  600. STATIC_REQUIRE(bx::LimitsT<signed char>::min == CHAR_MIN);
  601. STATIC_REQUIRE(bx::LimitsT<signed char>::max == CHAR_MAX);
  602. STATIC_REQUIRE(bx::LimitsT<unsigned char>::min == 0);
  603. STATIC_REQUIRE(bx::LimitsT<unsigned char>::max == UCHAR_MAX);
  604. STATIC_REQUIRE(bx::LimitsT<int16_t>::min == INT16_MIN);
  605. STATIC_REQUIRE(bx::LimitsT<int16_t>::max == INT16_MAX);
  606. STATIC_REQUIRE(bx::LimitsT<uint16_t>::min == 0);
  607. STATIC_REQUIRE(bx::LimitsT<uint16_t>::max == UINT16_MAX);
  608. STATIC_REQUIRE(bx::LimitsT<int32_t>::min == INT32_MIN);
  609. STATIC_REQUIRE(bx::LimitsT<int32_t>::max == INT32_MAX);
  610. STATIC_REQUIRE(bx::LimitsT<uint32_t>::min == 0);
  611. STATIC_REQUIRE(bx::LimitsT<uint32_t>::max == UINT32_MAX);
  612. STATIC_REQUIRE(bx::LimitsT<int64_t>::min == INT64_MIN);
  613. STATIC_REQUIRE(bx::LimitsT<int64_t>::max == INT64_MAX);
  614. STATIC_REQUIRE(bx::LimitsT<uint64_t>::min == 0);
  615. STATIC_REQUIRE(bx::LimitsT<uint64_t>::max == UINT64_MAX);
  616. STATIC_REQUIRE(bx::LimitsT<float>::min == std::numeric_limits<float>::lowest() );
  617. STATIC_REQUIRE(bx::LimitsT<float>::max == std::numeric_limits<float>::max() );
  618. STATIC_REQUIRE(bx::LimitsT<double>::min == std::numeric_limits<double>::lowest() );
  619. STATIC_REQUIRE(bx::LimitsT<double>::max == std::numeric_limits<double>::max() );
  620. }