math_test.cpp 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443
  1. /*
  2. * Copyright 2010-2023 Branimir Karadzic. All rights reserved.
  3. * License: https://github.com/bkaradzic/bx/blob/master/LICENSE
  4. */
  5. #include "test.h"
  6. #include <bx/math.h>
  7. #include <bx/file.h>
  8. #include <math.h>
  9. #include <stdint.h> // intXX_t
  10. #include <limits.h> // UCHAR_*
  11. TEST_CASE("isFinite, isInfinite, isNan", "")
  12. {
  13. for (uint64_t ii = 0; ii < UINT32_MAX; ii += rand()%(1<<13)+1)
  14. {
  15. union { uint32_t ui; float f; } u = { uint32_t(ii) };
  16. #if BX_PLATFORM_OSX
  17. BX_UNUSED(u);
  18. REQUIRE(::__isnanf(u.f) == bx::isNan(u.f) );
  19. REQUIRE(::__isfinitef(u.f) == bx::isFinite(u.f) );
  20. REQUIRE(::__isinff(u.f) == bx::isInfinite(u.f) );
  21. #else
  22. REQUIRE(::isnanf(u.f) == bx::isNan(u.f) );
  23. REQUIRE(::finitef(u.f) == bx::isFinite(u.f) );
  24. REQUIRE(::isinff(u.f) == bx::isInfinite(u.f) );
  25. #endif // BX_PLATFORM_OSX
  26. }
  27. }
  28. bool log2_test(float _a)
  29. {
  30. return bx::log2(_a) == bx::log(_a) * (1.0f / bx::log(2.0f) );
  31. }
  32. TEST_CASE("log2", "")
  33. {
  34. log2_test(0.0f);
  35. log2_test(256.0f);
  36. REQUIRE(0.0f == bx::log2(1.0f) );
  37. REQUIRE(0 == bx::log2(1) );
  38. REQUIRE(1.0f == bx::log2(2.0f) );
  39. REQUIRE(1 == bx::log2(2) );
  40. REQUIRE(2.0f == bx::log2(4.0f) );
  41. REQUIRE(2 == bx::log2(4) );
  42. REQUIRE(3.0f == bx::log2(8.0f) );
  43. REQUIRE(3 == bx::log2(8) );
  44. REQUIRE(4.0f == bx::log2(16.0f) );
  45. REQUIRE(4 == bx::log2(16) );
  46. REQUIRE(5.0f == bx::log2(32.0f) );
  47. REQUIRE(5 == bx::log2(32) );
  48. REQUIRE(6.0f == bx::log2(64.0f) );
  49. REQUIRE(6 == bx::log2(64) );
  50. REQUIRE(7.0f == bx::log2(128.0f) );
  51. REQUIRE(7 == bx::log2(128) );
  52. REQUIRE(8.0f == bx::log2(256.0f) );
  53. REQUIRE(8 == bx::log2(256) );
  54. }
  55. TEST_CASE("libm", "")
  56. {
  57. bx::WriterI* writer = bx::getNullOut();
  58. bx::Error err;
  59. REQUIRE(1389.0f == bx::abs(-1389.0f) );
  60. REQUIRE(1389.0f == bx::abs( 1389.0f) );
  61. REQUIRE( 0.0f == bx::abs(-0.0f) );
  62. REQUIRE( 0.0f == bx::abs( 0.0f) );
  63. REQUIRE(389.0f == bx::mod(1389.0f, 1000.0f) );
  64. REQUIRE( 13.0f == bx::floor( 13.89f) );
  65. REQUIRE(-14.0f == bx::floor(-13.89f) );
  66. REQUIRE( 14.0f == bx::ceil( 13.89f) );
  67. REQUIRE(-13.0f == bx::ceil( -13.89f) );
  68. REQUIRE( 13.0f == bx::trunc( 13.89f) );
  69. REQUIRE(-13.0f == bx::trunc(-13.89f) );
  70. REQUIRE(bx::isEqual( 0.89f, bx::fract( 13.89f), 0.000001f) );
  71. REQUIRE(bx::isEqual(-0.89f, bx::fract(-13.89f), 0.000001f) );
  72. for (int32_t yy = -10; yy < 10; ++yy)
  73. {
  74. for (float xx = -100.0f; xx < 100.0f; xx += 0.1f)
  75. {
  76. bx::write(writer, &err, "ldexp(%f, %d) == %f (expected: %f)\n", xx, yy, bx::ldexp(xx, yy), ::ldexpf(xx, yy) );
  77. REQUIRE(bx::isEqual(bx::ldexp(xx, yy), ::ldexpf(xx, yy), 0.00001f) );
  78. }
  79. }
  80. for (float xx = -80.0f; xx < 80.0f; xx += 0.1f)
  81. {
  82. bx::write(writer, &err, "exp(%f) == %f (expected: %f)\n", xx, bx::exp(xx), ::expf(xx) );
  83. REQUIRE(err.isOk() );
  84. REQUIRE(bx::isEqual(bx::exp(xx), ::expf(xx), 0.00001f) );
  85. }
  86. // rsqrt
  87. REQUIRE(bx::isInfinite(1.0f/::sqrtf(0.0f) ) );
  88. REQUIRE(bx::isInfinite(bx::rsqrt(0.0f) ) );
  89. for (float xx = bx::kNearZero; xx < 100.0f; xx += 0.1f)
  90. {
  91. bx::write(writer, &err, "rsqrt(%f) == %f (expected: %f)\n", xx, bx::rsqrt(xx), 1.0f/::sqrtf(xx) );
  92. REQUIRE(err.isOk() );
  93. REQUIRE(bx::isEqual(bx::rsqrt(xx), 1.0f/::sqrtf(xx), 0.00001f) );
  94. }
  95. // rsqrtRef
  96. REQUIRE(bx::isInfinite(bx::rsqrtRef(0.0f) ) );
  97. for (float xx = bx::kNearZero; xx < 100.0f; xx += 0.1f)
  98. {
  99. bx::write(writer, &err, "rsqrtRef(%f) == %f (expected: %f)\n", xx, bx::rsqrtRef(xx), 1.0f/::sqrtf(xx) );
  100. REQUIRE(err.isOk() );
  101. REQUIRE(bx::isEqual(bx::rsqrtRef(xx), 1.0f/::sqrtf(xx), 0.00001f) );
  102. }
  103. // rsqrtSimd
  104. REQUIRE(bx::isInfinite(bx::rsqrtSimd(0.0f) ) );
  105. for (float xx = bx::kNearZero; xx < 100.0f; xx += 0.1f)
  106. {
  107. bx::write(writer, &err, "rsqrtSimd(%f) == %f (expected: %f)\n", xx, bx::rsqrtSimd(xx), 1.0f/::sqrtf(xx) );
  108. REQUIRE(err.isOk() );
  109. REQUIRE(bx::isEqual(bx::rsqrtSimd(xx), 1.0f/::sqrtf(xx), 0.00001f) );
  110. }
  111. // sqrt
  112. REQUIRE(bx::isNan(::sqrtf(-1.0f) ) );
  113. REQUIRE(bx::isNan(bx::sqrt(-1.0f) ) );
  114. REQUIRE(bx::isEqual(bx::sqrt(0.0f), ::sqrtf(0.0f), 0.0f) );
  115. REQUIRE(bx::isEqual(bx::sqrt(1.0f), ::sqrtf(1.0f), 0.0f) );
  116. for (float xx = 0.0f; xx < 1000000.0f; xx += 1000.f)
  117. {
  118. bx::write(writer, &err, "sqrt(%f) == %f (expected: %f)\n", xx, bx::sqrt(xx), ::sqrtf(xx) );
  119. REQUIRE(err.isOk() );
  120. REQUIRE(bx::isEqual(bx::sqrt(xx), ::sqrtf(xx), 0.00001f) );
  121. }
  122. // sqrtRef
  123. REQUIRE(bx::isNan(bx::sqrtRef(-1.0f) ) );
  124. REQUIRE(bx::isEqual(bx::sqrtRef(0.0f), ::sqrtf(0.0f), 0.0f) );
  125. REQUIRE(bx::isEqual(bx::sqrtRef(1.0f), ::sqrtf(1.0f), 0.0f) );
  126. for (float xx = 0.0f; xx < 1000000.0f; xx += 1000.f)
  127. {
  128. bx::write(writer, &err, "sqrtRef(%f) == %f (expected: %f)\n", xx, bx::sqrtRef(xx), ::sqrtf(xx) );
  129. REQUIRE(err.isOk() );
  130. REQUIRE(bx::isEqual(bx::sqrtRef(xx), ::sqrtf(xx), 0.00001f) );
  131. }
  132. // sqrtSimd
  133. REQUIRE(bx::isNan(bx::sqrtSimd(-1.0f) ) );
  134. REQUIRE(bx::isEqual(bx::sqrtSimd(0.0f), ::sqrtf(0.0f), 0.0f) );
  135. REQUIRE(bx::isEqual(bx::sqrtSimd(1.0f), ::sqrtf(1.0f), 0.0f) );
  136. for (float xx = 0.0f; xx < 1000000.0f; xx += 1000.f)
  137. {
  138. bx::write(writer, &err, "sqrtSimd(%f) == %f (expected: %f)\n", xx, bx::sqrtSimd(xx), ::sqrtf(xx) );
  139. REQUIRE(err.isOk() );
  140. REQUIRE(bx::isEqual(bx::sqrtSimd(xx), ::sqrtf(xx), 0.00001f) );
  141. }
  142. for (float xx = 0.0f; xx < 100.0f; xx += 0.1f)
  143. {
  144. bx::write(writer, &err, "sqrt(%f) == %f (expected: %f)\n", xx, bx::sqrt(xx), ::sqrtf(xx) );
  145. REQUIRE(err.isOk() );
  146. REQUIRE(bx::isEqual(bx::sqrt(xx), ::sqrtf(xx), 0.00001f) );
  147. }
  148. for (float xx = -100.0f; xx < 100.0f; xx += 0.1f)
  149. {
  150. bx::write(writer, &err, "pow(1.389f, %f) == %f (expected: %f)\n", xx, bx::pow(1.389f, xx), ::powf(1.389f, xx) );
  151. REQUIRE(err.isOk() );
  152. REQUIRE(bx::isEqual(bx::pow(1.389f, xx), ::powf(1.389f, xx), 0.00001f) );
  153. }
  154. for (float xx = -1.0f; xx < 1.0f; xx += 0.001f)
  155. {
  156. bx::write(writer, &err, "asin(%f) == %f (expected: %f)\n", xx, bx::asin(xx), ::asinf(xx) );
  157. REQUIRE(err.isOk() );
  158. REQUIRE(bx::isEqual(bx::asin(xx), ::asinf(xx), 0.0001f) );
  159. }
  160. for (float xx = -100.0f; xx < 100.0f; xx += 0.1f)
  161. {
  162. bx::write(writer, &err, "sin(%f) == %f (expected: %f)\n", xx, bx::sin(xx), ::sinf(xx) );
  163. REQUIRE(err.isOk() );
  164. REQUIRE(bx::isEqual(bx::sin(xx), ::sinf(xx), 0.00001f) );
  165. }
  166. for (float xx = -bx::kPi2; xx < bx::kPi2; xx += 0.0001f)
  167. {
  168. bx::write(writer, &err, "sin(%f) == %f (expected: %f)\n", xx, bx::sin(xx), ::sinf(xx) );
  169. REQUIRE(err.isOk() );
  170. REQUIRE(bx::isEqual(bx::sin(xx), ::sinf(xx), 0.00001f) );
  171. }
  172. for (float xx = -1.0f; xx < 1.0f; xx += 0.1f)
  173. {
  174. bx::write(writer, &err, "sinh(%f) == %f (expected: %f)\n", xx, bx::sinh(xx), ::sinhf(xx) );
  175. REQUIRE(err.isOk() );
  176. REQUIRE(bx::isEqual(bx::sinh(xx), ::sinhf(xx), 0.00001f) );
  177. }
  178. for (float xx = -1.0f; xx < 1.0f; xx += 0.001f)
  179. {
  180. bx::write(writer, &err, "acos(%f) == %f (expected: %f\n)", xx, bx::acos(xx), ::acosf(xx) );
  181. REQUIRE(err.isOk() );
  182. REQUIRE(bx::isEqual(bx::acos(xx), ::acosf(xx), 0.0001f) );
  183. }
  184. for (float xx = -100.0f; xx < 100.0f; xx += 0.1f)
  185. {
  186. bx::write(writer, &err, "cos(%f) == %f (expected: %f)\n", xx, bx::cos(xx), ::cosf(xx) );
  187. REQUIRE(err.isOk() );
  188. REQUIRE(bx::isEqual(bx::cos(xx), ::cosf(xx), 0.00001f) );
  189. }
  190. for (float xx = -bx::kPi2; xx < bx::kPi2; xx += 0.0001f)
  191. {
  192. bx::write(writer, &err, "cos(%f) == %f (expected: %f)\n", xx, bx::cos(xx), ::cosf(xx) );
  193. REQUIRE(err.isOk() );
  194. REQUIRE(bx::isEqual(bx::cos(xx), ::cosf(xx), 0.00001f) );
  195. }
  196. for (float xx = -100.0f; xx < 100.0f; xx += 0.1f)
  197. {
  198. bx::write(writer, &err, "tan(%f) == %f (expected: %f)\n", xx, bx::tan(xx), ::tanf(xx) );
  199. REQUIRE(err.isOk() );
  200. REQUIRE(bx::isEqual(bx::tan(xx), ::tanf(xx), 0.001f) );
  201. }
  202. for (float xx = -1.0f; xx < 1.0f; xx += 0.1f)
  203. {
  204. bx::write(writer, &err, "tanh(%f) == %f (expected: %f\n", xx, bx::tanh(xx), ::tanhf(xx) );
  205. REQUIRE(err.isOk() );
  206. REQUIRE(bx::isEqual(bx::tanh(xx), ::tanhf(xx), 0.00001f) );
  207. }
  208. for (float xx = -100.0f; xx < 100.0f; xx += 0.1f)
  209. {
  210. bx::write(writer, &err, "atan(%f) == %f (expected: %f)\n", xx, bx::atan(xx), ::atanf(xx) );
  211. REQUIRE(err.isOk() );
  212. REQUIRE(bx::isEqual(bx::atan(xx), ::atanf(xx), 0.00001f) );
  213. }
  214. }
  215. TEST_CASE("atan2", "")
  216. {
  217. bx::WriterI* writer = bx::getNullOut();
  218. bx::Error err;
  219. REQUIRE(bx::isEqual(bx::atan2(0.0f, 0.0f), ::atan2f(0.0f, 0.0f), 0.00001f) );
  220. REQUIRE(bx::isEqual(bx::atan2(0.0f, 1.0f), ::atan2f(0.0f, 1.0f), 0.00001f) );
  221. REQUIRE(bx::isEqual(bx::atan2(0.0f, -1.0f), ::atan2f(0.0f, -1.0f), 0.00001f) );
  222. for (float yy = -100.0f; yy < 100.0f; yy += 0.1f)
  223. {
  224. for (float xx = -100.0f; xx < 100.0f; xx += 0.1f)
  225. {
  226. bx::write(writer, &err, "atan2(%f, %f) == %f (expected: %f)\n", yy, xx, bx::atan2(yy, xx), ::atan2f(yy, xx) );
  227. REQUIRE(err.isOk() );
  228. REQUIRE(bx::isEqual(bx::atan2(yy, xx), ::atan2f(yy, xx), 0.00001f) );
  229. }
  230. }
  231. }
  232. TEST_CASE("sign", "")
  233. {
  234. REQUIRE(-1 == bx::sign(-0.1389f) );
  235. REQUIRE( 0 == bx::sign( 0.0000f) );
  236. REQUIRE( 1 == bx::sign( 0.1389f) );
  237. }
  238. TEST_CASE("ToBits", "")
  239. {
  240. REQUIRE(UINT32_C(0x12345678) == bx::floatToBits( bx::bitsToFloat( UINT32_C(0x12345678) ) ) );
  241. REQUIRE(UINT64_C(0x123456789abcdef0) == bx::doubleToBits(bx::bitsToDouble(UINT32_C(0x123456789abcdef0) ) ) );
  242. }
  243. TEST_CASE("lerp", "")
  244. {
  245. REQUIRE(1389.0f == bx::lerp(1389.0f, 1453.0f, 0.0f) );
  246. REQUIRE(1453.0f == bx::lerp(1389.0f, 1453.0f, 1.0f) );
  247. REQUIRE(0.5f == bx::lerp(0.0f, 1.0f, 0.5f) );
  248. }
  249. void mtxCheck(const float* _a, const float* _b)
  250. {
  251. if (!bx::isEqual(_a, _b, 16, 0.01f) )
  252. {
  253. DBG("\n"
  254. "A:\n"
  255. "%10.4f %10.4f %10.4f %10.4f\n"
  256. "%10.4f %10.4f %10.4f %10.4f\n"
  257. "%10.4f %10.4f %10.4f %10.4f\n"
  258. "%10.4f %10.4f %10.4f %10.4f\n"
  259. "B:\n"
  260. "%10.4f %10.4f %10.4f %10.4f\n"
  261. "%10.4f %10.4f %10.4f %10.4f\n"
  262. "%10.4f %10.4f %10.4f %10.4f\n"
  263. "%10.4f %10.4f %10.4f %10.4f\n"
  264. , _a[ 0], _a[ 1], _a[ 2], _a[ 3]
  265. , _a[ 4], _a[ 5], _a[ 6], _a[ 7]
  266. , _a[ 8], _a[ 9], _a[10], _a[11]
  267. , _a[12], _a[13], _a[14], _a[15]
  268. , _b[ 0], _b[ 1], _b[ 2], _b[ 3]
  269. , _b[ 4], _b[ 5], _b[ 6], _b[ 7]
  270. , _b[ 8], _b[ 9], _b[10], _b[11]
  271. , _b[12], _b[13], _b[14], _b[15]
  272. );
  273. REQUIRE(false);
  274. }
  275. }
  276. TEST_CASE("vec3", "")
  277. {
  278. bx::Vec3 normalized = bx::normalize({0.0f, 1.0f, 0.0f});
  279. REQUIRE(bx::isEqual(normalized, {0.0f, 1.0f, 0.0f}, 0.0f) );
  280. float length = bx::length(normalized);
  281. REQUIRE(bx::isEqual(length, 1.0f, 0.0f) );
  282. }
  283. TEST_CASE("quaternion", "")
  284. {
  285. float mtxQ[16];
  286. float mtx[16];
  287. bx::Quaternion quat = bx::init::Identity;
  288. bx::Quaternion q2 = bx::init::None;
  289. bx::Vec3 axis = bx::init::None;
  290. bx::Vec3 euler = bx::init::None;
  291. float angle;
  292. bx::mtxFromQuaternion(mtxQ, quat);
  293. bx::mtxIdentity(mtx);
  294. mtxCheck(mtxQ, mtx);
  295. float ax = bx::kPi/27.0f;
  296. float ay = bx::kPi/13.0f;
  297. float az = bx::kPi/7.0f;
  298. { // x
  299. quat = bx::rotateX(ax);
  300. bx::mtxFromQuaternion(mtxQ, quat);
  301. bx::mtxRotateX(mtx, ax);
  302. mtxCheck(mtxQ, mtx);
  303. bx::toAxisAngle(axis, angle, quat);
  304. REQUIRE(bx::isEqual(axis, bx::Vec3{1.0f, 0.0f, 0.0f}, 0.01f) );
  305. REQUIRE(bx::isEqual(angle, ax, 0.01f) );
  306. euler = bx::toEuler(quat);
  307. REQUIRE(bx::isEqual(euler.x, ax, 0.001f) );
  308. q2 = bx::fromEuler(euler);
  309. REQUIRE(bx::isEqual(quat, q2, 0.001f) );
  310. }
  311. { // y
  312. quat = bx::rotateY(ay);
  313. bx::mtxFromQuaternion(mtxQ, quat);
  314. bx::mtxRotateY(mtx, ay);
  315. mtxCheck(mtxQ, mtx);
  316. bx::toAxisAngle(axis, angle, quat);
  317. REQUIRE(bx::isEqual(axis, bx::Vec3{0.0f, 1.0f, 0.0f}, 0.01f) );
  318. REQUIRE(bx::isEqual(angle, ay, 0.01f) );
  319. euler = bx::toEuler(quat);
  320. REQUIRE(bx::isEqual(euler.y, ay, 0.001f) );
  321. q2 = bx::fromEuler(euler);
  322. REQUIRE(bx::isEqual(quat, q2, 0.001f) );
  323. }
  324. { // z
  325. quat = bx::rotateZ(az);
  326. bx::mtxFromQuaternion(mtxQ, quat);
  327. bx::mtxRotateZ(mtx, az);
  328. mtxCheck(mtxQ, mtx);
  329. bx::toAxisAngle(axis, angle, quat);
  330. REQUIRE(bx::isEqual(axis, bx::Vec3{0.0f, 0.0f, 1.0f}, 0.01f) );
  331. REQUIRE(bx::isEqual(angle, az, 0.01f) );
  332. euler = bx::toEuler(quat);
  333. REQUIRE(bx::isEqual(euler.z, az, 0.001f) );
  334. q2 = bx::fromEuler(euler);
  335. REQUIRE(bx::isEqual(quat, q2, 0.001f) );
  336. }
  337. }
  338. TEST_CASE("limits", "")
  339. {
  340. STATIC_REQUIRE(bx::LimitsT<int8_t>::min == INT8_MIN);
  341. STATIC_REQUIRE(bx::LimitsT<int8_t>::max == INT8_MAX);
  342. STATIC_REQUIRE(bx::LimitsT<signed char>::min == CHAR_MIN);
  343. STATIC_REQUIRE(bx::LimitsT<signed char>::max == CHAR_MAX);
  344. STATIC_REQUIRE(bx::LimitsT<unsigned char>::min == 0);
  345. STATIC_REQUIRE(bx::LimitsT<unsigned char>::max == UCHAR_MAX);
  346. STATIC_REQUIRE(bx::LimitsT<int16_t>::min == INT16_MIN);
  347. STATIC_REQUIRE(bx::LimitsT<int16_t>::max == INT16_MAX);
  348. STATIC_REQUIRE(bx::LimitsT<uint16_t>::min == 0);
  349. STATIC_REQUIRE(bx::LimitsT<uint16_t>::max == UINT16_MAX);
  350. STATIC_REQUIRE(bx::LimitsT<int32_t>::min == INT32_MIN);
  351. STATIC_REQUIRE(bx::LimitsT<int32_t>::max == INT32_MAX);
  352. STATIC_REQUIRE(bx::LimitsT<uint32_t>::min == 0);
  353. STATIC_REQUIRE(bx::LimitsT<uint32_t>::max == UINT32_MAX);
  354. STATIC_REQUIRE(bx::LimitsT<int64_t>::min == INT64_MIN);
  355. STATIC_REQUIRE(bx::LimitsT<int64_t>::max == INT64_MAX);
  356. STATIC_REQUIRE(bx::LimitsT<uint64_t>::min == 0);
  357. STATIC_REQUIRE(bx::LimitsT<uint64_t>::max == UINT64_MAX);
  358. STATIC_REQUIRE(bx::LimitsT<float>::min == std::numeric_limits<float>::lowest() );
  359. STATIC_REQUIRE(bx::LimitsT<float>::max == std::numeric_limits<float>::max() );
  360. STATIC_REQUIRE(bx::LimitsT<double>::min == std::numeric_limits<double>::lowest() );
  361. STATIC_REQUIRE(bx::LimitsT<double>::max == std::numeric_limits<double>::max() );
  362. }