math_test.cpp 3.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149
  1. /*
  2. * Copyright 2010-2018 Branimir Karadzic. All rights reserved.
  3. * License: https://github.com/bkaradzic/bx#license-bsd-2-clause
  4. */
  5. #include "test.h"
  6. #include <bx/math.h>
  7. #include <cmath>
  8. #if !BX_COMPILER_MSVC || BX_COMPILER_MSVC >= 1800
  9. TEST_CASE("isFinite, isInfinite, isNan", "")
  10. {
  11. for (uint64_t ii = 0; ii < UINT32_MAX; ii += rand()%(1<<13)+1)
  12. {
  13. union { uint32_t ui; float f; } u = { uint32_t(ii) };
  14. REQUIRE(std::isnan(u.f) == bx::isNan(u.f) );
  15. REQUIRE(std::isfinite(u.f) == bx::isFinite(u.f) );
  16. REQUIRE(std::isinf(u.f) == bx::isInfinite(u.f) );
  17. }
  18. }
  19. #endif // !BX_COMPILER_MSVC || BX_COMPILER_MSVC >= 1800
  20. bool log2_test(float _a)
  21. {
  22. return bx::log2(_a) == bx::log(_a) * (1.0f / bx::log(2.0f) );
  23. }
  24. TEST_CASE("log2", "")
  25. {
  26. log2_test(0.0f);
  27. log2_test(256.0f);
  28. }
  29. TEST_CASE("libm", "")
  30. {
  31. REQUIRE(1389.0f == bx::abs(-1389.0f) );
  32. REQUIRE(1389.0f == bx::abs( 1389.0f) );
  33. REQUIRE( 0.0f == bx::abs(-0.0f) );
  34. REQUIRE( 0.0f == bx::abs( 0.0f) );
  35. REQUIRE(389.0f == bx::mod(1389.0f, 1000.0f) );
  36. REQUIRE(bx::isNan(bx::mod(0.0f, 0.0f) ) );
  37. REQUIRE( 13.0f == bx::floor( 13.89f) );
  38. REQUIRE(-14.0f == bx::floor(-13.89f) );
  39. REQUIRE( 14.0f == bx::ceil( 13.89f) );
  40. REQUIRE(-13.0f == bx::ceil( -13.89f) );
  41. REQUIRE( 13.0f == bx::trunc( 13.89f) );
  42. REQUIRE(-13.0f == bx::trunc(-13.89f) );
  43. REQUIRE(bx::equal( 0.89f, bx::fract( 13.89f), 0.000001f) );
  44. REQUIRE(bx::equal(-0.89f, bx::fract(-13.89f), 0.000001f) );
  45. for (float xx = -100.0f; xx < 100.0f; xx += 0.1f)
  46. {
  47. REQUIRE(bx::equal(bx::pow(1.389f, xx), ::pow(1.389f, xx), 0.00001f) );
  48. }
  49. for (float xx = -100.0f; xx < 100.0f; xx += 0.1f)
  50. {
  51. REQUIRE(bx::equal(bx::sin(xx), ::sin(xx), 0.00001f) );
  52. }
  53. for (float xx = -100.0f; xx < 100.0f; xx += 0.1f)
  54. {
  55. REQUIRE(bx::equal(bx::cos(xx), ::cos(xx), 0.00001f) );
  56. }
  57. for (float xx = -100.0f; xx < 100.0f; xx += 0.1f)
  58. {
  59. REQUIRE(bx::equal(bx::tan(xx), ::tan(xx), 0.00001f) );
  60. }
  61. }
  62. TEST_CASE("ToBits", "")
  63. {
  64. REQUIRE(UINT32_C(0x12345678) == bx::floatToBits( bx::bitsToFloat( UINT32_C(0x12345678) ) ) );
  65. REQUIRE(UINT64_C(0x123456789abcdef0) == bx::doubleToBits(bx::bitsToDouble(UINT32_C(0x123456789abcdef0) ) ) );
  66. }
  67. void mtxCheck(const float* _a, const float* _b)
  68. {
  69. if (!bx::equal(_a, _b, 16, 0.01f) )
  70. {
  71. DBG("\n"
  72. "A:\n"
  73. "%10.4f %10.4f %10.4f %10.4f\n"
  74. "%10.4f %10.4f %10.4f %10.4f\n"
  75. "%10.4f %10.4f %10.4f %10.4f\n"
  76. "%10.4f %10.4f %10.4f %10.4f\n"
  77. "B:\n"
  78. "%10.4f %10.4f %10.4f %10.4f\n"
  79. "%10.4f %10.4f %10.4f %10.4f\n"
  80. "%10.4f %10.4f %10.4f %10.4f\n"
  81. "%10.4f %10.4f %10.4f %10.4f\n"
  82. , _a[ 0], _a[ 1], _a[ 2], _a[ 3]
  83. , _a[ 4], _a[ 5], _a[ 6], _a[ 7]
  84. , _a[ 8], _a[ 9], _a[10], _a[11]
  85. , _a[12], _a[13], _a[14], _a[15]
  86. , _b[ 0], _b[ 1], _b[ 2], _b[ 3]
  87. , _b[ 4], _b[ 5], _b[ 6], _b[ 7]
  88. , _b[ 8], _b[ 9], _b[10], _b[11]
  89. , _b[12], _b[13], _b[14], _b[15]
  90. );
  91. CHECK(false);
  92. }
  93. }
  94. TEST_CASE("quaternion", "")
  95. {
  96. float mtxQ[16];
  97. float mtx[16];
  98. float quat[4] = { 0.0f, 0.0f, 0.0f, 1.0f };
  99. bx::mtxQuat(mtxQ, quat);
  100. bx::mtxIdentity(mtx);
  101. mtxCheck(mtxQ, mtx);
  102. float ax = bx::kPi/27.0f;
  103. float ay = bx::kPi/13.0f;
  104. float az = bx::kPi/7.0f;
  105. bx::quatRotateX(quat, ax);
  106. bx::mtxQuat(mtxQ, quat);
  107. bx::mtxRotateX(mtx, ax);
  108. mtxCheck(mtxQ, mtx);
  109. float euler[3];
  110. bx::quatToEuler(euler, quat);
  111. CHECK(bx::equal(euler[0], ax, 0.001f) );
  112. bx::quatRotateY(quat, ay);
  113. bx::mtxQuat(mtxQ, quat);
  114. bx::mtxRotateY(mtx, ay);
  115. mtxCheck(mtxQ, mtx);
  116. bx::quatToEuler(euler, quat);
  117. CHECK(bx::equal(euler[1], ay, 0.001f) );
  118. bx::quatRotateZ(quat, az);
  119. bx::mtxQuat(mtxQ, quat);
  120. bx::mtxRotateZ(mtx, az);
  121. mtxCheck(mtxQ, mtx);
  122. bx::quatToEuler(euler, quat);
  123. CHECK(bx::equal(euler[2], az, 0.001f) );
  124. }