math_test.cpp 6.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238
  1. /*
  2. * Copyright 2010-2019 Branimir Karadzic. All rights reserved.
  3. * License: https://github.com/bkaradzic/bx#license-bsd-2-clause
  4. */
  5. #include "test.h"
  6. #include <bx/math.h>
  7. #include <bx/file.h>
  8. #include <math.h>
  9. #if !BX_COMPILER_MSVC || BX_COMPILER_MSVC >= 1800
  10. TEST_CASE("isFinite, isInfinite, isNan", "")
  11. {
  12. for (uint64_t ii = 0; ii < UINT32_MAX; ii += rand()%(1<<13)+1)
  13. {
  14. union { uint32_t ui; float f; } u = { uint32_t(ii) };
  15. REQUIRE(std::isnan(u.f) == bx::isNan(u.f) );
  16. REQUIRE(std::isfinite(u.f) == bx::isFinite(u.f) );
  17. REQUIRE(std::isinf(u.f) == bx::isInfinite(u.f) );
  18. }
  19. }
  20. #endif // !BX_COMPILER_MSVC || BX_COMPILER_MSVC >= 1800
  21. bool log2_test(float _a)
  22. {
  23. return bx::log2(_a) == bx::log(_a) * (1.0f / bx::log(2.0f) );
  24. }
  25. TEST_CASE("log2", "")
  26. {
  27. log2_test(0.0f);
  28. log2_test(256.0f);
  29. }
  30. TEST_CASE("libm", "")
  31. {
  32. bx::WriterI* writer = bx::getNullOut();
  33. REQUIRE(1389.0f == bx::abs(-1389.0f) );
  34. REQUIRE(1389.0f == bx::abs( 1389.0f) );
  35. REQUIRE( 0.0f == bx::abs(-0.0f) );
  36. REQUIRE( 0.0f == bx::abs( 0.0f) );
  37. REQUIRE(389.0f == bx::mod(1389.0f, 1000.0f) );
  38. REQUIRE(bx::isNan(bx::mod(0.0f, 0.0f) ) );
  39. REQUIRE( 13.0f == bx::floor( 13.89f) );
  40. REQUIRE(-14.0f == bx::floor(-13.89f) );
  41. REQUIRE( 14.0f == bx::ceil( 13.89f) );
  42. REQUIRE(-13.0f == bx::ceil( -13.89f) );
  43. REQUIRE( 13.0f == bx::trunc( 13.89f) );
  44. REQUIRE(-13.0f == bx::trunc(-13.89f) );
  45. REQUIRE(bx::equal( 0.89f, bx::fract( 13.89f), 0.000001f) );
  46. REQUIRE(bx::equal(-0.89f, bx::fract(-13.89f), 0.000001f) );
  47. bx::Error err;
  48. for (int32_t yy = -10; yy < 10; ++yy)
  49. {
  50. for (float xx = -100.0f; xx < 100.0f; xx += 0.1f)
  51. {
  52. bx::write(writer, &err, "ldexp(%f, %d) == %f (expected: %f)\n", xx, yy, bx::ldexp(xx, yy), ::ldexpf(xx, yy) );
  53. REQUIRE(bx::equal(bx::ldexp(xx, yy), ::ldexpf(xx, yy), 0.00001f) );
  54. }
  55. }
  56. for (float xx = -80.0f; xx < 80.0f; xx += 0.1f)
  57. {
  58. bx::write(writer, &err, "exp(%f) == %f (expected: %f)\n", xx, bx::exp(xx), ::expf(xx) );
  59. REQUIRE(err.isOk() );
  60. REQUIRE(bx::equal(bx::exp(xx), ::expf(xx), 0.00001f) );
  61. }
  62. for (float xx = 0.0f; xx < 100.0f; xx += 0.1f)
  63. {
  64. bx::write(writer, &err, "rsqrt(%f) == %f (expected: %f)\n", xx, bx::rsqrt(xx), 1.0f/::sqrtf(xx) );
  65. REQUIRE(err.isOk() );
  66. REQUIRE(bx::equal(bx::rsqrt(xx), 1.0f/::sqrtf(xx), 0.00001f) );
  67. }
  68. for (float xx = 0.0f; xx < 100.0f; xx += 0.1f)
  69. {
  70. bx::write(writer, &err, "sqrt(%f) == %f (expected: %f)\n", xx, bx::sqrt(xx), ::sqrtf(xx) );
  71. REQUIRE(err.isOk() );
  72. REQUIRE(bx::equal(bx::sqrt(xx), ::sqrtf(xx), 0.00001f) );
  73. }
  74. for (float xx = -100.0f; xx < 100.0f; xx += 0.1f)
  75. {
  76. bx::write(writer, &err, "pow(1.389f, %f) == %f (expected: %f)\n", xx, bx::pow(1.389f, xx), ::powf(1.389f, xx) );
  77. REQUIRE(err.isOk() );
  78. REQUIRE(bx::equal(bx::pow(1.389f, xx), ::powf(1.389f, xx), 0.00001f) );
  79. }
  80. for (float xx = -1.0f; xx < 1.0f; xx += 0.001f)
  81. {
  82. bx::write(writer, &err, "asin(%f) == %f (expected: %f)\n", xx, bx::asin(xx), ::asinf(xx) );
  83. REQUIRE(err.isOk() );
  84. REQUIRE(bx::equal(bx::asin(xx), ::asinf(xx), 0.0001f) );
  85. }
  86. for (float xx = -100.0f; xx < 100.0f; xx += 0.1f)
  87. {
  88. bx::write(writer, &err, "sin(%f) == %f (expected: %f)\n", xx, bx::sin(xx), ::sinf(xx) );
  89. REQUIRE(err.isOk() );
  90. REQUIRE(bx::equal(bx::sin(xx), ::sinf(xx), 0.00001f) );
  91. }
  92. for (float xx = -1.0f; xx < 1.0f; xx += 0.1f)
  93. {
  94. bx::write(writer, &err, "sinh(%f) == %f (expected: %f)\n", xx, bx::sinh(xx), ::sinhf(xx) );
  95. REQUIRE(err.isOk() );
  96. REQUIRE(bx::equal(bx::sinh(xx), ::sinhf(xx), 0.00001f) );
  97. }
  98. for (float xx = -1.0f; xx < 1.0f; xx += 0.001f)
  99. {
  100. bx::write(writer, &err, "acos(%f) == %f (expected: %f\n)", xx, bx::acos(xx), ::acosf(xx) );
  101. REQUIRE(err.isOk() );
  102. REQUIRE(bx::equal(bx::acos(xx), ::acosf(xx), 0.0001f) );
  103. }
  104. for (float xx = -100.0f; xx < 100.0f; xx += 0.1f)
  105. {
  106. bx::write(writer, &err, "cos(%f) == %f (expected: %f)\n", xx, bx::cos(xx), ::cosf(xx) );
  107. REQUIRE(err.isOk() );
  108. REQUIRE(bx::equal(bx::cos(xx), ::cosf(xx), 0.00001f) );
  109. }
  110. for (float xx = -100.0f; xx < 100.0f; xx += 0.1f)
  111. {
  112. bx::write(writer, &err, "tan(%f) == %f (expected: %f)\n", xx, bx::tan(xx), ::tanf(xx) );
  113. REQUIRE(err.isOk() );
  114. REQUIRE(bx::equal(bx::tan(xx), ::tanf(xx), 0.001f) );
  115. }
  116. for (float xx = -1.0f; xx < 1.0f; xx += 0.1f)
  117. {
  118. bx::write(writer, &err, "tanh(%f) == %f (expected: %f\n", xx, bx::tanh(xx), ::tanhf(xx) );
  119. REQUIRE(err.isOk() );
  120. REQUIRE(bx::equal(bx::tanh(xx), ::tanhf(xx), 0.00001f) );
  121. }
  122. for (float xx = -100.0f; xx < 100.0f; xx += 0.1f)
  123. {
  124. bx::write(writer, &err, "atan(%f) == %f (expected: %f)\n", xx, bx::atan(xx), ::atanf(xx) );
  125. REQUIRE(err.isOk() );
  126. REQUIRE(bx::equal(bx::atan(xx), ::atanf(xx), 0.00001f) );
  127. }
  128. for (float yy = -100.0f; yy < 100.0f; yy += 0.1f)
  129. {
  130. for (float xx = -100.0f; xx < 100.0f; xx += 0.1f)
  131. {
  132. bx::write(writer, &err, "atan2(%f, %f) == %f (expected: %f)\n", yy, xx, bx::atan2(yy, xx), ::atan2f(yy, xx) );
  133. REQUIRE(err.isOk() );
  134. REQUIRE(bx::equal(bx::atan2(yy, xx), ::atan2f(yy, xx), 0.00001f) );
  135. }
  136. }
  137. REQUIRE(bx::equal(bx::atan2(0.0f, 0.0f), ::atan2f(0.0f, 0.0f), 0.00001f) );
  138. }
  139. TEST_CASE("ToBits", "")
  140. {
  141. REQUIRE(UINT32_C(0x12345678) == bx::floatToBits( bx::bitsToFloat( UINT32_C(0x12345678) ) ) );
  142. REQUIRE(UINT64_C(0x123456789abcdef0) == bx::doubleToBits(bx::bitsToDouble(UINT32_C(0x123456789abcdef0) ) ) );
  143. }
  144. void mtxCheck(const float* _a, const float* _b)
  145. {
  146. if (!bx::equal(_a, _b, 16, 0.01f) )
  147. {
  148. DBG("\n"
  149. "A:\n"
  150. "%10.4f %10.4f %10.4f %10.4f\n"
  151. "%10.4f %10.4f %10.4f %10.4f\n"
  152. "%10.4f %10.4f %10.4f %10.4f\n"
  153. "%10.4f %10.4f %10.4f %10.4f\n"
  154. "B:\n"
  155. "%10.4f %10.4f %10.4f %10.4f\n"
  156. "%10.4f %10.4f %10.4f %10.4f\n"
  157. "%10.4f %10.4f %10.4f %10.4f\n"
  158. "%10.4f %10.4f %10.4f %10.4f\n"
  159. , _a[ 0], _a[ 1], _a[ 2], _a[ 3]
  160. , _a[ 4], _a[ 5], _a[ 6], _a[ 7]
  161. , _a[ 8], _a[ 9], _a[10], _a[11]
  162. , _a[12], _a[13], _a[14], _a[15]
  163. , _b[ 0], _b[ 1], _b[ 2], _b[ 3]
  164. , _b[ 4], _b[ 5], _b[ 6], _b[ 7]
  165. , _b[ 8], _b[ 9], _b[10], _b[11]
  166. , _b[12], _b[13], _b[14], _b[15]
  167. );
  168. CHECK(false);
  169. }
  170. }
  171. TEST_CASE("quaternion", "")
  172. {
  173. float mtxQ[16];
  174. float mtx[16];
  175. bx::Quaternion quat = { 0.0f, 0.0f, 0.0f, 1.0f };
  176. bx::mtxQuat(mtxQ, quat);
  177. bx::mtxIdentity(mtx);
  178. mtxCheck(mtxQ, mtx);
  179. float ax = bx::kPi/27.0f;
  180. float ay = bx::kPi/13.0f;
  181. float az = bx::kPi/7.0f;
  182. quat = bx::rotateX(ax);
  183. bx::mtxQuat(mtxQ, quat);
  184. bx::mtxRotateX(mtx, ax);
  185. mtxCheck(mtxQ, mtx);
  186. bx::Vec3 euler = bx::toEuler(quat);
  187. CHECK(bx::equal(euler.x, ax, 0.001f) );
  188. quat = bx::rotateY(ay);
  189. bx::mtxQuat(mtxQ, quat);
  190. bx::mtxRotateY(mtx, ay);
  191. mtxCheck(mtxQ, mtx);
  192. euler = bx::toEuler(quat);
  193. CHECK(bx::equal(euler.y, ay, 0.001f) );
  194. quat = bx::rotateZ(az);
  195. bx::mtxQuat(mtxQ, quat);
  196. bx::mtxRotateZ(mtx, az);
  197. mtxCheck(mtxQ, mtx);
  198. euler = bx::toEuler(quat);
  199. CHECK(bx::equal(euler.z, az, 0.001f) );
  200. }