vector_complex.cpp 7.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266
  1. /*-
  2. * Copyright 2012 Matthew Endsley
  3. * All rights reserved
  4. *
  5. * Redistribution and use in source and binary forms, with or without
  6. * modification, are permitted providing that the following conditions
  7. * are met:
  8. * 1. Redistributions of source code must retain the above copyright
  9. * notice, this list of conditions and the following disclaimer.
  10. * 2. Redistributions in binary form must reproduce the above copyright
  11. * notice, this list of conditions and the following disclaimer in the
  12. * documentation and/or other materials provided with the distribution.
  13. *
  14. * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
  15. * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
  16. * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  17. * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
  18. * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  19. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  20. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  21. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
  22. * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
  23. * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
  24. * POSSIBILITY OF SUCH DAMAGE.
  25. */
  26. #include "test.h"
  27. #include <tinystl/allocator.h>
  28. #include <tinystl/vector.h>
  29. #include <algorithm>
  30. #include <string.h>
  31. #include <stdlib.h>
  32. struct complex {
  33. complex() {data = 0;}
  34. complex(const char* s) { data = _strdup(s); }
  35. ~complex() { free(data); }
  36. complex(const complex& other) { data = 0; if (other.data) data = _strdup(other.data); }
  37. complex& operator=(const complex& other) { complex(other).swap(*this); return *this; }
  38. void swap(complex& other) { std::swap(data, other.data); }
  39. char* data;
  40. };
  41. static inline bool operator==(const complex& lhs, const complex& rhs) {
  42. if (lhs.data == 0 && rhs.data == 0)
  43. return true;
  44. if (lhs.data != 0 && rhs.data != 0)
  45. return 0 == strcmp(lhs.data, rhs.data);
  46. return false;
  47. }
  48. TEST(vector_complex_constructor) {
  49. typedef tinystl::vector<complex> vector;
  50. {
  51. vector v;
  52. CHECK( v.empty() );
  53. CHECK( v.size() == 0 );
  54. }
  55. {
  56. const complex array[10] = {"1", "2", "3", "4", "5", "6", "7", "8", "9", "10"};
  57. vector v(array, array + 10);
  58. CHECK( v.size() == 10 );
  59. CHECK( std::equal(v.begin(), v.end(), array) );
  60. }
  61. {
  62. const complex value = "127";
  63. const size_t count = 24;
  64. vector v(count, value);
  65. CHECK( v.size() == count );
  66. vector::iterator it = v.begin(), end = v.end();
  67. for (; it != end; ++it)
  68. CHECK(*it == value);
  69. }
  70. {
  71. const size_t count = 24;
  72. vector v(count);
  73. CHECK(v.size() == count);
  74. vector::iterator it = v.begin(), end = v.end();
  75. for (; it != end; ++it)
  76. CHECK(*it == complex());
  77. }
  78. {
  79. const complex array[10] = {"1", "2", "3", "4", "5", "6", "7", "8", "9", "10"};
  80. vector other(array, array + 10);
  81. vector v = other;
  82. CHECK( v.size() == other.size() );
  83. CHECK( std::equal(v.begin(), v.end(), other.begin()) );
  84. }
  85. }
  86. TEST(vector_complex_assignment) {
  87. typedef tinystl::vector<complex> vector;
  88. {
  89. const complex array[10] = {"1", "2", "3", "4", "5", "6", "7", "8", "9", "10"};
  90. vector other(array, array + 10);
  91. vector v;
  92. v = other;
  93. CHECK( v.size() == 10 );
  94. CHECK( std::equal(v.begin(), v.end(), array) );
  95. CHECK( other.size() == 10 );
  96. CHECK( std::equal(v.begin(), v.end(), other.begin()) );
  97. }
  98. }
  99. TEST(vector_complex_pushback) {
  100. tinystl::vector<complex> v;
  101. v.push_back("42");
  102. CHECK(v.size() == 1);
  103. CHECK(v[0] == "42");
  104. }
  105. TEST(vector_complex_vector) {
  106. tinystl::vector< tinystl::vector<complex> > v(10, tinystl::vector<complex>());
  107. tinystl::vector< tinystl::vector<complex> >::iterator it = v.begin(), end = v.end();
  108. for (; it != end; ++it) {
  109. CHECK( (*it).empty() );
  110. CHECK( (*it).size() == 0 );
  111. CHECK( (*it).begin() == (*it).end() );
  112. }
  113. }
  114. TEST(vector_complex_swap) {
  115. tinystl::vector<complex> v1;
  116. v1.push_back("12");
  117. v1.push_back("20");
  118. tinystl::vector<complex> v2;
  119. v2.push_back("54");
  120. v1.swap(v2);
  121. CHECK(v1.size() == 1);
  122. CHECK(v2.size() == 2);
  123. CHECK(v1[0] == "54");
  124. CHECK(v2[0] == "12");
  125. CHECK(v2[1] == "20");
  126. }
  127. TEST(vector_complex_popback) {
  128. tinystl::vector<complex> v;
  129. v.push_back("12");
  130. v.push_back("24");
  131. CHECK(v.back() == "24");
  132. v.pop_back();
  133. CHECK(v.back() == "12");
  134. CHECK(v.size() == 1);
  135. }
  136. TEST(vector_complex_assign) {
  137. tinystl::vector<complex> v;
  138. CHECK(v.size() == 0);
  139. const complex array[10] = {"1", "2", "3", "4", "5", "6", "7", "8", "9", "10"};
  140. v.assign(array, array + 10);
  141. CHECK(v.size() == 10);
  142. CHECK( std::equal(v.begin(), v.end(), array) );
  143. }
  144. TEST(vector_complex_erase) {
  145. const complex array[10] = {"1", "2", "3", "4", "5", "6", "7", "8", "9", "10"};
  146. tinystl::vector<complex> v(array, array + 10);
  147. tinystl::vector<complex>::iterator it = v.erase(v.begin());
  148. CHECK(*it == "2");
  149. CHECK(v.size() == 9);
  150. CHECK( std::equal(v.begin(), v.end(), array + 1) );
  151. it = v.erase(v.end() - 1);
  152. CHECK(it == v.end());
  153. CHECK(v.size() == 8);
  154. CHECK( std::equal(v.begin(), v.end(), array + 1) );
  155. v.erase(v.begin() + 1, v.end() - 1);
  156. CHECK(v.size() == 2);
  157. CHECK(v[0] == "2");
  158. CHECK(v[1] == "9");
  159. }
  160. TEST(vector_complex_erase_unordered) {
  161. const complex array[10] = {"1", "2", "3", "4", "5", "6", "7", "8", "9", "10"};
  162. typedef tinystl::vector<complex> vector;
  163. vector v(array, array + 10);
  164. complex first = *(v.begin());
  165. vector::iterator it = v.erase_unordered(v.begin());
  166. CHECK(it == v.begin());
  167. CHECK(v.size() == 9);
  168. CHECK( std::count(v.begin(), v.end(), first) == 0 );
  169. for (it = v.begin(); it != v.end(); ++it) {
  170. CHECK( std::count(v.begin(), v.end(), *it) == 1 );
  171. }
  172. complex last = *(v.end() - 1);
  173. it = v.erase_unordered(v.end() - 1);
  174. CHECK(it == v.end());
  175. CHECK(v.size() == 8);
  176. CHECK( std::count(v.begin(), v.end(), last) == 0 );
  177. for (it = v.begin(); it != v.end(); ++it) {
  178. CHECK( std::count(v.begin(), v.end(), *it) == 1 );
  179. }
  180. first = *(v.begin());
  181. last = *(v.end() - 1);
  182. v.erase_unordered(v.begin() + 1, v.end() - 1);
  183. CHECK(v.size() == 2);
  184. CHECK( std::count(v.begin(), v.end(), first) == 1 );
  185. CHECK( std::count(v.begin(), v.end(), last) == 1 );
  186. }
  187. TEST(vector_complex_insert) {
  188. const complex array[10] = {"1", "2", "3", "4", "5", "6", "7", "8", "9", "10"};
  189. tinystl::vector<complex> v(array, array + 10);
  190. v.insert(v.begin(), "0");
  191. CHECK(v.size() == 11);
  192. CHECK(v[0] == "0");
  193. CHECK( std::equal(v.begin() + 1, v.end(), array) );
  194. v.insert(v.end(), "11");
  195. CHECK(v.size() == 12);
  196. CHECK(v[0] == "0");
  197. CHECK( std::equal(array, array + 10, v.begin() + 1) );
  198. CHECK(v.back() == "11");
  199. const complex array2[3] = {"11", "12", "13"};
  200. const complex finalarray[] = {"0", "1", "2", "3", "11", "12", "13", "4", "5", "6", "7", "8", "9", "10", "11"};
  201. v.insert(v.begin() + 4, array2, array2 + 3);
  202. CHECK( v.size() == 15 );
  203. CHECK( std::equal(v.begin(), v.end(), finalarray) );
  204. }
  205. TEST(vector_complex_iterator) {
  206. const complex array[10] = {"1", "2", "3", "4", "5", "6", "7", "8", "9", "10"};
  207. tinystl::vector<complex> v(array, array + 10);
  208. const tinystl::vector<complex>& cv = v;
  209. CHECK(v.data() == &*v.begin());
  210. CHECK(v.data() == &v[0]);
  211. CHECK(v.data() + v.size() == &*v.end());
  212. CHECK(v.begin() == cv.begin());
  213. CHECK(v.end() == cv.end());
  214. CHECK(v.data() == cv.data());
  215. tinystl::vector<complex> w = v;
  216. CHECK(v.begin() != w.begin());
  217. CHECK(v.end() != w.end());
  218. }