math_test.cpp 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790
  1. /*
  2. * Copyright 2010-2024 Branimir Karadzic. All rights reserved.
  3. * License: https://github.com/bkaradzic/bx/blob/master/LICENSE
  4. */
  5. #include "test.h"
  6. #include <bx/math.h>
  7. #include <bx/file.h>
  8. #include <math.h>
  9. #include <stdint.h> // intXX_t
  10. #include <limits.h> // UCHAR_*
  11. #if !BX_CRT_MINGW
  12. TEST_CASE("isFinite, isInfinite, isNan", "[math]")
  13. {
  14. for (uint64_t ii = 0; ii < UINT32_MAX; ii += rand()%(1<<13)+1)
  15. {
  16. union { uint32_t ui; float f; } u = { uint32_t(ii) };
  17. #if BX_PLATFORM_OSX
  18. REQUIRE(::__isnanf(u.f) == bx::isNan(u.f) );
  19. REQUIRE(::__isfinitef(u.f) == bx::isFinite(u.f) );
  20. REQUIRE(::__isinff(u.f) == bx::isInfinite(u.f) );
  21. #elif BX_COMPILER_MSVC
  22. REQUIRE(!!::isnan(u.f) == bx::isNan(u.f) );
  23. REQUIRE(!!::isfinite(u.f) == bx::isFinite(u.f) );
  24. REQUIRE(!!::isinf(u.f) == bx::isInfinite(u.f) );
  25. #else
  26. REQUIRE(::isnanf(u.f) == bx::isNan(u.f) );
  27. REQUIRE(::finitef(u.f) == bx::isFinite(u.f) );
  28. REQUIRE(::isinff(u.f) == bx::isInfinite(u.f) );
  29. #endif // BX_PLATFORM_OSX
  30. }
  31. }
  32. #endif // !BX_CRT_MINGW
  33. bool log2_test(float _a)
  34. {
  35. return bx::log2(_a) == bx::log(_a) * (1.0f / bx::log(2.0f) );
  36. }
  37. TEST_CASE("log2", "[math][libm]")
  38. {
  39. log2_test(0.0f);
  40. log2_test(256.0f);
  41. REQUIRE(0.0f == bx::log2(1.0f) );
  42. REQUIRE(1.0f == bx::log2(2.0f) );
  43. REQUIRE(2.0f == bx::log2(4.0f) );
  44. REQUIRE(3.0f == bx::log2(8.0f) );
  45. REQUIRE(4.0f == bx::log2(16.0f) );
  46. REQUIRE(5.0f == bx::log2(32.0f) );
  47. REQUIRE(6.0f == bx::log2(64.0f) );
  48. REQUIRE(7.0f == bx::log2(128.0f) );
  49. REQUIRE(8.0f == bx::log2(256.0f) );
  50. }
  51. TEST_CASE("ceilLog2", "[math]")
  52. {
  53. REQUIRE(0 == bx::ceilLog2(-1) );
  54. REQUIRE(0 == bx::ceilLog2(0) );
  55. REQUIRE(0 == bx::ceilLog2(1) );
  56. REQUIRE(1 == bx::ceilLog2(2) );
  57. REQUIRE(2 == bx::ceilLog2(4) );
  58. REQUIRE(3 == bx::ceilLog2(8) );
  59. REQUIRE(4 == bx::ceilLog2(16) );
  60. REQUIRE(5 == bx::ceilLog2(32) );
  61. REQUIRE(6 == bx::ceilLog2(64) );
  62. REQUIRE(7 == bx::ceilLog2(128) );
  63. REQUIRE(8 == bx::ceilLog2(256) );
  64. {
  65. uint32_t ii = 0;
  66. for (; ii < 8; ++ii)
  67. {
  68. REQUIRE(ii == bx::ceilLog2(uint8_t(1<<ii) ) );
  69. REQUIRE(ii == bx::ceilLog2(uint16_t(1<<ii) ) );
  70. REQUIRE(ii == bx::ceilLog2(uint32_t(1<<ii) ) );
  71. REQUIRE(ii == bx::ceilLog2(uint64_t(1llu<<ii) ) );
  72. }
  73. for (; ii < 16; ++ii)
  74. {
  75. REQUIRE(ii == bx::ceilLog2(uint16_t(1<<ii) ) );
  76. REQUIRE(ii == bx::ceilLog2(uint32_t(1<<ii) ) );
  77. REQUIRE(ii == bx::ceilLog2(uint64_t(1llu<<ii) ) );
  78. }
  79. for (; ii < 32; ++ii)
  80. {
  81. REQUIRE(ii == bx::ceilLog2(uint32_t(1<<ii) ) );
  82. REQUIRE(ii == bx::ceilLog2(uint64_t(1llu<<ii) ) );
  83. }
  84. for (; ii < 64; ++ii)
  85. {
  86. REQUIRE(ii == bx::ceilLog2(uint64_t(1llu<<ii) ) );
  87. }
  88. }
  89. for (uint32_t ii = 1; ii < INT32_MAX; ii += rand()%(1<<13)+1)
  90. {
  91. // DBG("%u: %u %u", ii, bx::uint32_nextpow2(ii), bx::nextPow2(ii) );
  92. REQUIRE(bx::nextPow2(ii) == bx::uint32_nextpow2(ii) );
  93. }
  94. }
  95. TEST_CASE("floorLog2", "[math]")
  96. {
  97. REQUIRE(0 == bx::floorLog2(-1) );
  98. REQUIRE(0 == bx::floorLog2(0) );
  99. REQUIRE(0 == bx::floorLog2(1) );
  100. REQUIRE(1 == bx::floorLog2(2) );
  101. REQUIRE(2 == bx::floorLog2(4) );
  102. REQUIRE(3 == bx::floorLog2(8) );
  103. REQUIRE(4 == bx::floorLog2(16) );
  104. REQUIRE(5 == bx::floorLog2(32) );
  105. REQUIRE(6 == bx::floorLog2(64) );
  106. REQUIRE(7 == bx::floorLog2(128) );
  107. REQUIRE(8 == bx::floorLog2(256) );
  108. {
  109. uint32_t ii = 0;
  110. for (; ii < 8; ++ii)
  111. {
  112. REQUIRE(ii == bx::floorLog2(uint8_t(1<<ii) ) );
  113. REQUIRE(ii == bx::floorLog2(uint16_t(1<<ii) ) );
  114. REQUIRE(ii == bx::floorLog2(uint32_t(1<<ii) ) );
  115. REQUIRE(ii == bx::floorLog2(uint64_t(1llu<<ii) ) );
  116. }
  117. for (; ii < 16; ++ii)
  118. {
  119. REQUIRE(ii == bx::floorLog2(uint16_t(1<<ii) ) );
  120. REQUIRE(ii == bx::floorLog2(uint32_t(1<<ii) ) );
  121. REQUIRE(ii == bx::floorLog2(uint64_t(1llu<<ii) ) );
  122. }
  123. for (; ii < 32; ++ii)
  124. {
  125. REQUIRE(ii == bx::floorLog2(uint32_t(1<<ii) ) );
  126. REQUIRE(ii == bx::floorLog2(uint64_t(1llu<<ii) ) );
  127. }
  128. for (; ii < 64; ++ii)
  129. {
  130. REQUIRE(ii == bx::floorLog2(uint64_t(1llu<<ii) ) );
  131. }
  132. }
  133. }
  134. TEST_CASE("ceilLog2 & floorLog2", "[math]")
  135. {
  136. {
  137. uint32_t prev = 0;
  138. uint32_t next = 0;
  139. for (uint32_t ii = 0; ii < (1<<18); ++ii)
  140. {
  141. if (bx::isPowerOf2(ii) )
  142. {
  143. REQUIRE(bx::ceilLog2(ii) == bx::floorLog2(ii) );
  144. prev = next;
  145. ++next;
  146. }
  147. else
  148. {
  149. REQUIRE(prev == bx::floorLog2(ii) );
  150. REQUIRE(next == bx::ceilLog2(ii) );
  151. }
  152. }
  153. }
  154. }
  155. TEST_CASE("countTrailingZeros", "[math]")
  156. {
  157. REQUIRE( 0 == bx::countTrailingZeros<uint8_t >(1) );
  158. REQUIRE( 7 == bx::countTrailingZeros<uint8_t >(1<<7) );
  159. REQUIRE( 8 == bx::countTrailingZeros<uint8_t >(0) );
  160. REQUIRE( 1 == bx::countTrailingZeros<uint8_t >(0x3e) );
  161. REQUIRE( 0 == bx::countTrailingZeros<uint16_t>(1) );
  162. REQUIRE(15 == bx::countTrailingZeros<uint16_t>(1<<15) );
  163. REQUIRE(16 == bx::countTrailingZeros<uint16_t>(0) );
  164. REQUIRE( 0 == bx::countTrailingZeros<uint32_t>(1) );
  165. REQUIRE(32 == bx::countTrailingZeros<uint32_t>(0) );
  166. REQUIRE(31 == bx::countTrailingZeros<uint32_t>(1u<<31) );
  167. REQUIRE( 0 == bx::countTrailingZeros<uint64_t>(1) );
  168. REQUIRE(64 == bx::countTrailingZeros<uint64_t>(0) );
  169. }
  170. TEST_CASE("countLeadingZeros", "[math]")
  171. {
  172. REQUIRE( 7 == bx::countLeadingZeros<uint8_t >(1) );
  173. REQUIRE( 8 == bx::countLeadingZeros<uint8_t >(0) );
  174. REQUIRE( 2 == bx::countLeadingZeros<uint8_t >(0x3e) );
  175. REQUIRE(15 == bx::countLeadingZeros<uint16_t>(1) );
  176. REQUIRE(16 == bx::countLeadingZeros<uint16_t>(0) );
  177. REQUIRE(31 == bx::countLeadingZeros<uint32_t>(1) );
  178. REQUIRE(32 == bx::countLeadingZeros<uint32_t>(0) );
  179. REQUIRE(63 == bx::countLeadingZeros<uint64_t>(1) );
  180. REQUIRE(64 == bx::countLeadingZeros<uint64_t>(0) );
  181. }
  182. TEST_CASE("countBits", "[math]")
  183. {
  184. REQUIRE( 0 == bx::countBits(0) );
  185. REQUIRE( 1 == bx::countBits(1) );
  186. REQUIRE( 4 == bx::countBits<uint8_t>(0x55) );
  187. REQUIRE( 8 == bx::countBits<uint16_t>(0x5555) );
  188. REQUIRE(16 == bx::countBits<uint32_t>(0x55555555) );
  189. REQUIRE(32 == bx::countBits<uint64_t>(0x5555555555555555) );
  190. REQUIRE( 8 == bx::countBits(UINT8_MAX) );
  191. REQUIRE(16 == bx::countBits(UINT16_MAX) );
  192. REQUIRE(32 == bx::countBits(UINT32_MAX) );
  193. REQUIRE(64 == bx::countBits(UINT64_MAX) );
  194. }
  195. TEST_CASE("findFirstSet", "[math]")
  196. {
  197. REQUIRE( 1 == bx::findFirstSet<uint8_t >(1) );
  198. REQUIRE( 8 == bx::findFirstSet<uint8_t >(1<<7) );
  199. REQUIRE( 0 == bx::findFirstSet<uint8_t >(0) );
  200. REQUIRE( 2 == bx::findFirstSet<uint8_t >(0x3e) );
  201. REQUIRE( 1 == bx::findFirstSet<uint16_t>(1) );
  202. REQUIRE(16 == bx::findFirstSet<uint16_t>(1<<15) );
  203. REQUIRE( 0 == bx::findFirstSet<uint16_t>(0) );
  204. REQUIRE( 1 == bx::findFirstSet<uint32_t>(1) );
  205. REQUIRE( 0 == bx::findFirstSet<uint32_t>(0) );
  206. REQUIRE(32 == bx::findFirstSet<uint32_t>(1u<<31) );
  207. REQUIRE( 1 == bx::findFirstSet<uint64_t>(1) );
  208. REQUIRE( 0 == bx::findFirstSet<uint64_t>(0) );
  209. }
  210. BX_PRAGMA_DIAGNOSTIC_PUSH();
  211. BX_PRAGMA_DIAGNOSTIC_IGNORED_MSVC(4723) // potential divide by 0
  212. TEST_CASE("rcp", "[math][libm]")
  213. {
  214. REQUIRE(1.0f == bx::rcp(1.0f) );
  215. REQUIRE(2.0f == bx::rcp(0.5f) );
  216. REQUIRE(bx::isInfinite(bx::rcp( 0.0f) ) );
  217. REQUIRE(bx::isInfinite(bx::rcp(-0.0f) ) );
  218. }
  219. TEST_CASE("rcpSafe", "[math][libm]")
  220. {
  221. REQUIRE(1.0f == bx::rcpSafe(1.0f) );
  222. REQUIRE(2.0f == bx::rcpSafe(0.5f) );
  223. REQUIRE(!bx::isInfinite(bx::rcpSafe( 0.0f) ) );
  224. REQUIRE(!bx::isInfinite(bx::rcpSafe(-0.0f) ) );
  225. }
  226. TEST_CASE("rsqrt", "[math][libm]")
  227. {
  228. bx::WriterI* writer = bx::getNullOut();
  229. bx::Error err;
  230. // rsqrtRef
  231. REQUIRE(bx::isInfinite(bx::rsqrtRef(0.0f) ) );
  232. for (float xx = bx::kNearZero; xx < 100.0f; xx += 0.1f)
  233. {
  234. bx::write(writer, &err, "rsqrtRef(%f) == %f (expected: %f)\n", xx, bx::rsqrtRef(xx), 1.0f / ::sqrtf(xx) );
  235. REQUIRE(err.isOk() );
  236. REQUIRE(bx::isEqual(bx::rsqrtRef(xx), 1.0f / ::sqrtf(xx), 0.00001f) );
  237. }
  238. // rsqrtSimd
  239. REQUIRE(bx::isInfinite(bx::rsqrtSimd(0.0f) ) );
  240. for (float xx = bx::kNearZero; xx < 100.0f; xx += 0.1f)
  241. {
  242. bx::write(writer, &err, "rsqrtSimd(%f) == %f (expected: %f)\n", xx, bx::rsqrtSimd(xx), 1.0f / ::sqrtf(xx) );
  243. REQUIRE(err.isOk() );
  244. REQUIRE(bx::isEqual(bx::rsqrtSimd(xx), 1.0f / ::sqrtf(xx), 0.00001f) );
  245. }
  246. // rsqrt
  247. REQUIRE(bx::isInfinite(1.0f / ::sqrtf(0.0f) ) );
  248. REQUIRE(bx::isInfinite(bx::rsqrt(0.0f) ) );
  249. for (float xx = bx::kNearZero; xx < 100.0f; xx += 0.1f)
  250. {
  251. bx::write(writer, &err, "rsqrt(%f) == %f (expected: %f)\n", xx, bx::rsqrt(xx), 1.0f / ::sqrtf(xx) );
  252. REQUIRE(err.isOk() );
  253. REQUIRE(bx::isEqual(bx::rsqrt(xx), 1.0f / ::sqrtf(xx), 0.00001f) );
  254. }
  255. }
  256. TEST_CASE("sqrt", "[math][libm]")
  257. {
  258. bx::WriterI* writer = bx::getNullOut();
  259. bx::Error err;
  260. // sqrtRef
  261. REQUIRE(bx::isNan(bx::sqrtRef(-1.0f) ) );
  262. REQUIRE(bx::isEqual(bx::sqrtRef(0.0f), ::sqrtf(0.0f), 0.0f) );
  263. REQUIRE(bx::isEqual(bx::sqrtRef(1.0f), ::sqrtf(1.0f), 0.0f) );
  264. for (float xx = 0.0f; xx < 1000000.0f; xx += 1000.f)
  265. {
  266. bx::write(writer, &err, "sqrtRef(%f) == %f (expected: %f)\n", xx, bx::sqrtRef(xx), ::sqrtf(xx) );
  267. REQUIRE(err.isOk() );
  268. REQUIRE(bx::isEqual(bx::sqrtRef(xx), ::sqrtf(xx), 0.00001f) );
  269. }
  270. // sqrtSimd
  271. REQUIRE(bx::isNan(bx::sqrtSimd(-1.0f) ) );
  272. REQUIRE(bx::isEqual(bx::sqrtSimd(0.0f), ::sqrtf(0.0f), 0.00001f) );
  273. REQUIRE(bx::isEqual(bx::sqrtSimd(1.0f), ::sqrtf(1.0f), 0.00001f) );
  274. for (float xx = 0.0f; xx < 1000000.0f; xx += 1000.f)
  275. {
  276. bx::write(writer, &err, "sqrtSimd(%f) == %f (expected: %f)\n", xx, bx::sqrtSimd(xx), ::sqrtf(xx) );
  277. REQUIRE(err.isOk() );
  278. REQUIRE(bx::isEqual(bx::sqrtSimd(xx), ::sqrtf(xx), 0.00001f) );
  279. }
  280. for (float xx = 0.0f; xx < 100.0f; xx += 0.1f)
  281. {
  282. bx::write(writer, &err, "sqrt(%f) == %f (expected: %f)\n", xx, bx::sqrt(xx), ::sqrtf(xx) );
  283. REQUIRE(err.isOk() );
  284. REQUIRE(bx::isEqual(bx::sqrt(xx), ::sqrtf(xx), 0.00001f) );
  285. }
  286. // sqrt
  287. REQUIRE(bx::isNan(::sqrtf(-1.0f) ) );
  288. REQUIRE(bx::isNan(bx::sqrt(-1.0f) ) );
  289. REQUIRE(bx::isEqual(bx::sqrt(0.0f), ::sqrtf(0.0f), 0.00001f) );
  290. REQUIRE(bx::isEqual(bx::sqrt(1.0f), ::sqrtf(1.0f), 0.00001f) );
  291. for (float xx = 0.0f; xx < 1000000.0f; xx += 1000.f)
  292. {
  293. bx::write(writer, &err, "sqrt(%f) == %f (expected: %f)\n", xx, bx::sqrt(xx), ::sqrtf(xx) );
  294. REQUIRE(err.isOk() );
  295. REQUIRE(bx::isEqual(bx::sqrt(xx), ::sqrtf(xx), 0.00001f) );
  296. }
  297. for (float xx = 0.0f; xx < 100.0f; xx += 0.1f)
  298. {
  299. bx::write(writer, &err, "sqrt(%f) == %f (expected: %f)\n", xx, bx::sqrt(xx), ::sqrtf(xx) );
  300. REQUIRE(err.isOk() );
  301. REQUIRE(bx::isEqual(bx::sqrt(xx), ::sqrtf(xx), 0.00001f) );
  302. }
  303. }
  304. BX_PRAGMA_DIAGNOSTIC_POP();
  305. TEST_CASE("abs", "[math][libm]")
  306. {
  307. REQUIRE(1389.0f == bx::abs(-1389.0f) );
  308. REQUIRE(1389.0f == bx::abs( 1389.0f) );
  309. REQUIRE( 0.0f == bx::abs(-0.0f) );
  310. REQUIRE( 0.0f == bx::abs( 0.0f) );
  311. }
  312. TEST_CASE("mod", "[math][libm]")
  313. {
  314. REQUIRE(389.0f == bx::mod(1389.0f, 1000.0f) );
  315. REQUIRE( 89.0f == bx::mod(1389.0f, 100.0f) );
  316. REQUIRE( 9.0f == bx::mod(1389.0f, 10.0f) );
  317. REQUIRE( 4.0f == bx::mod(1389.0f, 5.0f) );
  318. REQUIRE( 1.0f == bx::mod(1389.0f, 2.0f) );
  319. }
  320. TEST_CASE("floor", "[math][libm]")
  321. {
  322. REQUIRE( 13.0f == bx::floor( 13.89f) );
  323. REQUIRE(-14.0f == bx::floor(-13.89f) );
  324. }
  325. TEST_CASE("ceil", "[math][libm]")
  326. {
  327. REQUIRE( 14.0f == bx::ceil( 13.89f) );
  328. REQUIRE(-13.0f == bx::ceil( -13.89f) );
  329. }
  330. TEST_CASE("trunc", "[math][libm]")
  331. {
  332. REQUIRE( 13.0f == bx::trunc( 13.89f) );
  333. REQUIRE(-13.0f == bx::trunc(-13.89f) );
  334. }
  335. TEST_CASE("fract", "[math][libm]")
  336. {
  337. REQUIRE(bx::isEqual( 0.89f, bx::fract( 13.89f), 0.000001f) );
  338. REQUIRE(bx::isEqual(-0.89f, bx::fract(-13.89f), 0.000001f) );
  339. }
  340. TEST_CASE("ldexp", "[math][libm]")
  341. {
  342. bx::WriterI* writer = bx::getNullOut();
  343. bx::Error err;
  344. for (int32_t yy = -10; yy < 10; ++yy)
  345. {
  346. for (float xx = -100.0f; xx < 100.0f; xx += 0.1f)
  347. {
  348. bx::write(writer, &err, "ldexp(%f, %d) == %f (expected: %f)\n", xx, yy, bx::ldexp(xx, yy), ::ldexpf(xx, yy) );
  349. REQUIRE(bx::isEqual(bx::ldexp(xx, yy), ::ldexpf(xx, yy), 0.00001f) );
  350. }
  351. }
  352. }
  353. TEST_CASE("exp", "[math][libm]")
  354. {
  355. bx::WriterI* writer = bx::getNullOut();
  356. bx::Error err;
  357. for (float xx = -80.0f; xx < 80.0f; xx += 0.1f)
  358. {
  359. bx::write(writer, &err, "exp(%f) == %f (expected: %f)\n", xx, bx::exp(xx), ::expf(xx) );
  360. REQUIRE(err.isOk() );
  361. REQUIRE(bx::isEqual(bx::exp(xx), ::expf(xx), 0.00001f) );
  362. }
  363. }
  364. TEST_CASE("pow", "[math][libm]")
  365. {
  366. bx::WriterI* writer = bx::getNullOut();
  367. bx::Error err;
  368. for (float xx = -100.0f; xx < 100.0f; xx += 0.1f)
  369. {
  370. bx::write(writer, &err, "pow(1.389f, %f) == %f (expected: %f)\n", xx, bx::pow(1.389f, xx), ::powf(1.389f, xx) );
  371. REQUIRE(err.isOk() );
  372. REQUIRE(bx::isEqual(bx::pow(1.389f, xx), ::powf(1.389f, xx), 0.00001f) );
  373. }
  374. }
  375. TEST_CASE("asin", "[math][libm]")
  376. {
  377. bx::WriterI* writer = bx::getNullOut();
  378. bx::Error err;
  379. for (float xx = -1.0f; xx < 1.0f; xx += 0.001f)
  380. {
  381. bx::write(writer, &err, "asin(%f) == %f (expected: %f)\n", xx, bx::asin(xx), ::asinf(xx) );
  382. REQUIRE(err.isOk() );
  383. REQUIRE(bx::isEqual(bx::asin(xx), ::asinf(xx), 0.0001f) );
  384. }
  385. }
  386. TEST_CASE("sin", "[math][libm]")
  387. {
  388. bx::WriterI* writer = bx::getNullOut();
  389. bx::Error err;
  390. for (float xx = -100.0f; xx < 100.0f; xx += 0.1f)
  391. {
  392. bx::write(writer, &err, "sin(%f) == %f (expected: %f)\n", xx, bx::sin(xx), ::sinf(xx) );
  393. REQUIRE(err.isOk() );
  394. REQUIRE(bx::isEqual(bx::sin(xx), ::sinf(xx), 0.00001f) );
  395. }
  396. for (float xx = -bx::kPi2; xx < bx::kPi2; xx += 0.0001f)
  397. {
  398. bx::write(writer, &err, "sin(%f) == %f (expected: %f)\n", xx, bx::sin(xx), ::sinf(xx) );
  399. REQUIRE(err.isOk() );
  400. REQUIRE(bx::isEqual(bx::sin(xx), ::sinf(xx), 0.00001f) );
  401. }
  402. }
  403. TEST_CASE("sinCos", "[math][libm]")
  404. {
  405. bx::WriterI* writer = bx::getNullOut();
  406. bx::Error err;
  407. for (float xx = -100.0f; xx < 100.0f; xx += 0.1f)
  408. {
  409. float ss, cc;
  410. bx::sinCosApprox(ss, cc, xx);
  411. bx::write(writer, &err, "sinCos(%f) == sin %f (expected: %f)\n", xx, ss, ::sinf(xx) );
  412. bx::write(writer, &err, "sinCos(%f) == cos %f (expected: %f)\n", xx, cc, ::cosf(xx) );
  413. REQUIRE(err.isOk() );
  414. REQUIRE(bx::isEqual(ss, ::sinf(xx), 0.001f) );
  415. REQUIRE(bx::isEqual(cc, ::cosf(xx), 0.00001f) );
  416. }
  417. for (float xx = -bx::kPi2; xx < bx::kPi2; xx += 0.0001f)
  418. {
  419. float ss, cc;
  420. bx::sinCosApprox(ss, cc, xx);
  421. bx::write(writer, &err, "sinCos(%f) == sin %f (expected: %f)\n", xx, ss, ::sinf(xx) );
  422. bx::write(writer, &err, "sinCos(%f) == cos %f (expected: %f)\n", xx, cc, ::cosf(xx) );
  423. REQUIRE(err.isOk() );
  424. REQUIRE(bx::isEqual(ss, ::sinf(xx), 0.001f) );
  425. REQUIRE(bx::isEqual(cc, ::cosf(xx), 0.00001f) );
  426. }
  427. }
  428. TEST_CASE("sinh", "[math][libm]")
  429. {
  430. bx::WriterI* writer = bx::getNullOut();
  431. bx::Error err;
  432. for (float xx = -1.0f; xx < 1.0f; xx += 0.1f)
  433. {
  434. bx::write(writer, &err, "sinh(%f) == %f (expected: %f)\n", xx, bx::sinh(xx), ::sinhf(xx) );
  435. REQUIRE(err.isOk() );
  436. REQUIRE(bx::isEqual(bx::sinh(xx), ::sinhf(xx), 0.00001f) );
  437. }
  438. }
  439. TEST_CASE("acos", "[math][libm]")
  440. {
  441. bx::WriterI* writer = bx::getNullOut();
  442. bx::Error err;
  443. for (float xx = -1.0f; xx < 1.0f; xx += 0.001f)
  444. {
  445. bx::write(writer, &err, "acos(%f) == %f (expected: %f\n)", xx, bx::acos(xx), ::acosf(xx) );
  446. REQUIRE(err.isOk() );
  447. REQUIRE(bx::isEqual(bx::acos(xx), ::acosf(xx), 0.0001f) );
  448. }
  449. }
  450. TEST_CASE("cos", "[math][libm]")
  451. {
  452. bx::WriterI* writer = bx::getNullOut();
  453. bx::Error err;
  454. for (float xx = -100.0f; xx < 100.0f; xx += 0.1f)
  455. {
  456. bx::write(writer, &err, "cos(%f) == %f (expected: %f)\n", xx, bx::cos(xx), ::cosf(xx) );
  457. REQUIRE(err.isOk() );
  458. REQUIRE(bx::isEqual(bx::cos(xx), ::cosf(xx), 0.00001f) );
  459. }
  460. for (float xx = -bx::kPi2; xx < bx::kPi2; xx += 0.0001f)
  461. {
  462. bx::write(writer, &err, "cos(%f) == %f (expected: %f)\n", xx, bx::cos(xx), ::cosf(xx) );
  463. REQUIRE(err.isOk() );
  464. REQUIRE(bx::isEqual(bx::cos(xx), ::cosf(xx), 0.00001f) );
  465. }
  466. }
  467. TEST_CASE("tan", "[math][libm]")
  468. {
  469. bx::WriterI* writer = bx::getNullOut();
  470. bx::Error err;
  471. for (float xx = -100.0f; xx < 100.0f; xx += 0.1f)
  472. {
  473. bx::write(writer, &err, "tan(%f) == %f (expected: %f)\n", xx, bx::tan(xx), ::tanf(xx) );
  474. REQUIRE(err.isOk() );
  475. REQUIRE(bx::isEqual(bx::tan(xx), ::tanf(xx), 0.001f) );
  476. }
  477. }
  478. TEST_CASE("tanh", "[math][libm]")
  479. {
  480. bx::WriterI* writer = bx::getNullOut();
  481. bx::Error err;
  482. for (float xx = -1.0f; xx < 1.0f; xx += 0.1f)
  483. {
  484. bx::write(writer, &err, "tanh(%f) == %f (expected: %f\n", xx, bx::tanh(xx), ::tanhf(xx) );
  485. REQUIRE(err.isOk() );
  486. REQUIRE(bx::isEqual(bx::tanh(xx), ::tanhf(xx), 0.00001f) );
  487. }
  488. }
  489. TEST_CASE("atan", "[math][libm]")
  490. {
  491. bx::WriterI* writer = bx::getNullOut();
  492. bx::Error err;
  493. for (float xx = -100.0f; xx < 100.0f; xx += 0.1f)
  494. {
  495. bx::write(writer, &err, "atan(%f) == %f (expected: %f)\n", xx, bx::atan(xx), ::atanf(xx) );
  496. REQUIRE(err.isOk() );
  497. REQUIRE(bx::isEqual(bx::atan(xx), ::atanf(xx), 0.00001f) );
  498. }
  499. }
  500. TEST_CASE("atan2", "[math][libm]")
  501. {
  502. bx::WriterI* writer = bx::getNullOut();
  503. bx::Error err;
  504. REQUIRE(bx::isEqual(bx::atan2(0.0f, 0.0f), ::atan2f(0.0f, 0.0f), 0.00001f) );
  505. REQUIRE(bx::isEqual(bx::atan2(0.0f, 1.0f), ::atan2f(0.0f, 1.0f), 0.00001f) );
  506. REQUIRE(bx::isEqual(bx::atan2(0.0f, -1.0f), ::atan2f(0.0f, -1.0f), 0.00001f) );
  507. for (float yy = -100.0f; yy < 100.0f; yy += 0.1f)
  508. {
  509. for (float xx = -100.0f; xx < 100.0f; xx += 0.1f)
  510. {
  511. bx::write(writer, &err, "atan2(%f, %f) == %f (expected: %f)\n", yy, xx, bx::atan2(yy, xx), ::atan2f(yy, xx) );
  512. REQUIRE(err.isOk() );
  513. REQUIRE(bx::isEqual(bx::atan2(yy, xx), ::atan2f(yy, xx), 0.00001f) );
  514. }
  515. }
  516. }
  517. TEST_CASE("sign", "[math][libm]")
  518. {
  519. STATIC_REQUIRE(-1 == bx::sign(-0.1389f) );
  520. STATIC_REQUIRE( 0 == bx::sign( 0.0000f) );
  521. STATIC_REQUIRE( 1 == bx::sign( 0.1389f) );
  522. REQUIRE(-1 == bx::sign(-bx::kFloatInfinity) );
  523. REQUIRE( 1 == bx::sign( bx::kFloatInfinity) );
  524. }
  525. TEST_CASE("signBit", "[math][libm]")
  526. {
  527. STATIC_REQUIRE( bx::signBit(-0.1389f) );
  528. STATIC_REQUIRE(!bx::signBit( 0.0000f) );
  529. STATIC_REQUIRE(!bx::signBit( 0.1389f) );
  530. REQUIRE( bx::signBit(-bx::kFloatInfinity) );
  531. REQUIRE(!bx::signBit( bx::kFloatInfinity) );
  532. }
  533. TEST_CASE("copySign", "[math][libm]")
  534. {
  535. STATIC_REQUIRE( 0.1389f == bx::copySign(-0.1389f, +1389) );
  536. STATIC_REQUIRE(-0.0000f == bx::copySign( 0.0000f, -1389) );
  537. STATIC_REQUIRE(-0.1389f == bx::copySign( 0.1389f, -1389) );
  538. REQUIRE(-bx::kFloatInfinity == bx::copySign(bx::kFloatInfinity, -1389) );
  539. }
  540. TEST_CASE("bitsToFloat, floatToBits, bitsToDouble, doubleToBits", "[math]")
  541. {
  542. REQUIRE(UINT32_C(0x12345678) == bx::floatToBits( bx::bitsToFloat( UINT32_C(0x12345678) ) ) );
  543. REQUIRE(UINT64_C(0x123456789abcdef0) == bx::doubleToBits(bx::bitsToDouble(UINT32_C(0x123456789abcdef0) ) ) );
  544. }
  545. TEST_CASE("lerp", "[math]")
  546. {
  547. REQUIRE(1389.0f == bx::lerp(1389.0f, 1453.0f, 0.0f) );
  548. REQUIRE(1453.0f == bx::lerp(1389.0f, 1453.0f, 1.0f) );
  549. REQUIRE( 0.5f == bx::lerp( 0.0f, 1.0f, 0.5f) );
  550. REQUIRE( 0.0f == bx::lerp( 0.0f, 0.0f, 0.5f) );
  551. }
  552. void mtxCheck(const float* _a, const float* _b)
  553. {
  554. if (!bx::isEqual(_a, _b, 16, 0.01f) )
  555. {
  556. DBG("\n"
  557. "A:\n"
  558. "%10.4f %10.4f %10.4f %10.4f\n"
  559. "%10.4f %10.4f %10.4f %10.4f\n"
  560. "%10.4f %10.4f %10.4f %10.4f\n"
  561. "%10.4f %10.4f %10.4f %10.4f\n"
  562. "B:\n"
  563. "%10.4f %10.4f %10.4f %10.4f\n"
  564. "%10.4f %10.4f %10.4f %10.4f\n"
  565. "%10.4f %10.4f %10.4f %10.4f\n"
  566. "%10.4f %10.4f %10.4f %10.4f\n"
  567. , _a[ 0], _a[ 1], _a[ 2], _a[ 3]
  568. , _a[ 4], _a[ 5], _a[ 6], _a[ 7]
  569. , _a[ 8], _a[ 9], _a[10], _a[11]
  570. , _a[12], _a[13], _a[14], _a[15]
  571. , _b[ 0], _b[ 1], _b[ 2], _b[ 3]
  572. , _b[ 4], _b[ 5], _b[ 6], _b[ 7]
  573. , _b[ 8], _b[ 9], _b[10], _b[11]
  574. , _b[12], _b[13], _b[14], _b[15]
  575. );
  576. REQUIRE(false);
  577. }
  578. }
  579. TEST_CASE("vec3", "[math][vec3]")
  580. {
  581. REQUIRE(bx::isEqual({0.0f, 0.0f, 0.0f}, bx::normalize({0.0f, 0.0f, 0.0f}), 0.0f) );
  582. bx::Vec3 normalized = bx::normalize({0.0f, 1.0f, 0.0f});
  583. REQUIRE(bx::isEqual(normalized, {0.0f, 1.0f, 0.0f}, 0.00001f) );
  584. float length = bx::length(normalized);
  585. REQUIRE(bx::isEqual(length, 1.0f, 0.00001f) );
  586. }
  587. TEST_CASE("quaternion", "[math][quaternion]")
  588. {
  589. float mtxQ[16];
  590. float mtx[16];
  591. bx::Quaternion quat = bx::InitIdentity;
  592. bx::Quaternion q2 = bx::InitNone;
  593. bx::Vec3 axis = bx::InitNone;
  594. bx::Vec3 euler = bx::InitNone;
  595. float angle;
  596. bx::mtxFromQuaternion(mtxQ, quat);
  597. bx::mtxIdentity(mtx);
  598. mtxCheck(mtxQ, mtx);
  599. float ax = bx::kPi/27.0f;
  600. float ay = bx::kPi/13.0f;
  601. float az = bx::kPi/7.0f;
  602. { // x
  603. quat = bx::rotateX(ax);
  604. bx::mtxFromQuaternion(mtxQ, quat);
  605. bx::mtxRotateX(mtx, ax);
  606. mtxCheck(mtxQ, mtx);
  607. bx::toAxisAngle(axis, angle, quat);
  608. REQUIRE(bx::isEqual(axis, bx::Vec3{1.0f, 0.0f, 0.0f}, 0.01f) );
  609. REQUIRE(bx::isEqual(angle, ax, 0.01f) );
  610. euler = bx::toEuler(quat);
  611. REQUIRE(bx::isEqual(euler.x, ax, 0.001f) );
  612. q2 = bx::fromEuler(euler);
  613. REQUIRE(bx::isEqual(quat, q2, 0.001f) );
  614. }
  615. { // y
  616. quat = bx::rotateY(ay);
  617. bx::mtxFromQuaternion(mtxQ, quat);
  618. bx::mtxRotateY(mtx, ay);
  619. mtxCheck(mtxQ, mtx);
  620. bx::toAxisAngle(axis, angle, quat);
  621. REQUIRE(bx::isEqual(axis, bx::Vec3{0.0f, 1.0f, 0.0f}, 0.01f) );
  622. REQUIRE(bx::isEqual(angle, ay, 0.01f) );
  623. euler = bx::toEuler(quat);
  624. REQUIRE(bx::isEqual(euler.y, ay, 0.001f) );
  625. q2 = bx::fromEuler(euler);
  626. REQUIRE(bx::isEqual(quat, q2, 0.001f) );
  627. }
  628. { // z
  629. quat = bx::rotateZ(az);
  630. bx::mtxFromQuaternion(mtxQ, quat);
  631. bx::mtxRotateZ(mtx, az);
  632. mtxCheck(mtxQ, mtx);
  633. bx::toAxisAngle(axis, angle, quat);
  634. REQUIRE(bx::isEqual(axis, bx::Vec3{0.0f, 0.0f, 1.0f}, 0.01f) );
  635. REQUIRE(bx::isEqual(angle, az, 0.01f) );
  636. euler = bx::toEuler(quat);
  637. REQUIRE(bx::isEqual(euler.z, az, 0.001f) );
  638. q2 = bx::fromEuler(euler);
  639. REQUIRE(bx::isEqual(quat, q2, 0.001f) );
  640. }
  641. }
  642. TEST_CASE("limits", "[math]")
  643. {
  644. STATIC_REQUIRE(bx::LimitsT<int8_t>::min == INT8_MIN);
  645. STATIC_REQUIRE(bx::LimitsT<int8_t>::max == INT8_MAX);
  646. STATIC_REQUIRE(bx::LimitsT<signed char>::min == CHAR_MIN);
  647. STATIC_REQUIRE(bx::LimitsT<signed char>::max == CHAR_MAX);
  648. STATIC_REQUIRE(bx::LimitsT<unsigned char>::min == 0);
  649. STATIC_REQUIRE(bx::LimitsT<unsigned char>::max == UCHAR_MAX);
  650. STATIC_REQUIRE(bx::LimitsT<int16_t>::min == INT16_MIN);
  651. STATIC_REQUIRE(bx::LimitsT<int16_t>::max == INT16_MAX);
  652. STATIC_REQUIRE(bx::LimitsT<uint16_t>::min == 0);
  653. STATIC_REQUIRE(bx::LimitsT<uint16_t>::max == UINT16_MAX);
  654. STATIC_REQUIRE(bx::LimitsT<int32_t>::min == INT32_MIN);
  655. STATIC_REQUIRE(bx::LimitsT<int32_t>::max == INT32_MAX);
  656. STATIC_REQUIRE(bx::LimitsT<uint32_t>::min == 0);
  657. STATIC_REQUIRE(bx::LimitsT<uint32_t>::max == UINT32_MAX);
  658. STATIC_REQUIRE(bx::LimitsT<int64_t>::min == INT64_MIN);
  659. STATIC_REQUIRE(bx::LimitsT<int64_t>::max == INT64_MAX);
  660. STATIC_REQUIRE(bx::LimitsT<uint64_t>::min == 0);
  661. STATIC_REQUIRE(bx::LimitsT<uint64_t>::max == UINT64_MAX);
  662. STATIC_REQUIRE(bx::LimitsT<float>::min == std::numeric_limits<float>::lowest() );
  663. STATIC_REQUIRE(bx::LimitsT<float>::max == std::numeric_limits<float>::max() );
  664. STATIC_REQUIRE(bx::LimitsT<double>::min == std::numeric_limits<double>::lowest() );
  665. STATIC_REQUIRE(bx::LimitsT<double>::max == std::numeric_limits<double>::max() );
  666. STATIC_REQUIRE(bx::kFloatSmallest == std::numeric_limits<float>::min() );
  667. STATIC_REQUIRE(bx::kDoubleSmallest == std::numeric_limits<double>::min() );
  668. }