/* Copyright (c) 2013 Daniele Bartolini, Michele Rossi Copyright (c) 2012 Daniele Bartolini, Simone Boscaratto Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #pragma once #include "Types.h" #include "List.h" #include "Allocator.h" #include "Assert.h" #include namespace crown { /// Circular buffer double-ended queue of POD items. /// @note /// Does not call constructors/destructors so it is not very suitable for non-POD items. template class Queue { public: Queue(Allocator& allocator); ~Queue(); /// Random access by index T& operator[](uint32_t index); /// Random access by index const T& operator[](uint32_t index) const; /// Returns whether the queue is empty. bool empty() const; /// Returns the number of items in the queue uint32_t size() const; /// Returns the number of items the queue can hold before /// a resize must occur. uint32_t space() const; /// Increase or decrease the capacity of the queue. /// @note /// Old items will be copied to the newly created queue. /// If the new @a capacity is smaller than the previous one, the /// queue will be truncated. void increase_capacity(uint32_t capacity); /// Grows the queue to contain at least @a min_capacity items. /// If @a min_capacity is set to 0, the queue automatically /// determines the new capacity based on its size at the /// time of call. void grow(uint32_t min_capacity); /// Adds an @a item to the back of the queue void push_back(const T& item); /// Removes the last item from the queue void pop_back(); /// Adds an @a item to the front of the queue void push_front(const T& item); /// Removes the first item from the queue void pop_front(); /// Clears the content of the queue. /// @note /// Does not free memory nor call destructors, it only zeroes /// the number of items in the queue for efficiency. void clear(); T* begin(); const T* begin() const; T* end(); const T* end() const; T& front(); const T& front() const; T& back(); const T& back() const; private: uint32_t m_read; uint32_t m_size; List m_queue; }; //----------------------------------------------------------------------------- template inline Queue::Queue(Allocator& allocator) : m_read(0), m_size(0), m_queue(allocator) { } //----------------------------------------------------------------------------- template inline Queue::~Queue() { } //----------------------------------------------------------------------------- template inline T& Queue::operator[](uint32_t index) { return m_queue[(m_read + index) % m_queue.size()]; } //----------------------------------------------------------------------------- template inline const T& Queue::operator[](uint32_t index) const { return m_queue[(m_read + index) % m_queue.size()]; } //----------------------------------------------------------------------------- template inline bool Queue::empty() const { return m_size == 0; } //----------------------------------------------------------------------------- template inline uint32_t Queue::size() const { return m_size; } //----------------------------------------------------------------------------- template inline uint32_t Queue::space() const { return m_queue.size() - m_size; } //----------------------------------------------------------------------------- template inline void Queue::increase_capacity(uint32_t capacity) { uint32_t old_size = m_queue.size(); m_queue.resize(capacity); if (m_read + m_size > old_size) { memmove(m_queue.begin() + capacity - (old_size - m_read), m_queue.begin() + m_read, (old_size - m_read) * sizeof(T)); m_read += (capacity - old_size); } } //----------------------------------------------------------------------------- template inline void Queue::grow(uint32_t min_capacity) { uint32_t new_capacity = m_queue.size() * 2 + 1; if (new_capacity < min_capacity) { new_capacity = min_capacity; } increase_capacity(new_capacity); } //----------------------------------------------------------------------------- template inline void Queue::push_back(const T& item) { if (space() == 0) { grow(0); } (*this)[m_size] = item; m_size++; } //----------------------------------------------------------------------------- template inline void Queue::pop_back() { CE_ASSERT(m_size > 0, "The queue is empty"); m_size--; } //----------------------------------------------------------------------------- template inline void Queue::push_front(const T& item) { if (space() == 0) { grow(0); } m_read = (m_read - 1 + m_queue.size()) % m_queue.size(); (*this)[0] = item; m_size++; } //----------------------------------------------------------------------------- template inline void Queue::pop_front() { CE_ASSERT(m_size > 0, "The queue is empty"); m_read = (m_read + 1) % m_queue.size(); m_size--; } //----------------------------------------------------------------------------- template inline void Queue::clear() { m_read = 0; m_size = 0; } //----------------------------------------------------------------------------- template inline T* Queue::begin() { return m_queue.begin() + m_read; } //----------------------------------------------------------------------------- template inline const T* Queue::begin() const { return m_queue.begin() + m_read; } //----------------------------------------------------------------------------- template inline T* Queue::end() { uint32_t end = m_read + m_size; return end >= m_queue.size() ? m_queue.end() : m_queue.begin() + end; } //----------------------------------------------------------------------------- template inline const T* Queue::end() const { uint32_t end = m_read + m_size; return end >= m_queue.size() ? m_queue.end() : m_queue.begin() + end; } //----------------------------------------------------------------------------- template inline T& Queue::front() { CE_ASSERT(m_size > 0, "The queue is empty"); return m_queue[m_read]; } //----------------------------------------------------------------------------- template inline const T& Queue::front() const { CE_ASSERT(m_size > 0, "The queue is empty"); return m_queue[m_read]; } //----------------------------------------------------------------------------- template inline T& Queue::back() { CE_ASSERT(m_size > 0, "The queue is empty"); return (*this)[m_size - 1]; } //----------------------------------------------------------------------------- template inline const T& Queue::back() const { CE_ASSERT(m_size > 0, "The queue is empty"); return (*this)[m_size - 1]; } } // namespace crown