Crown Code Conventions (rev 1.2)

. File names

1.1 File suffixes
1.2 Common file names
1.3 Text file type

. File organization

2.1 Source files

2.1.1 Beginning comments
2.1.2 #pragma once directive
2.1.3 Include statements
2.1.4 Class declarations

. Indentation

3.1 Line width
3.2 Wrapping lines

. Comments

4.1 Implementation comment format
4.1.1 Block comments

4.1.2 Single-line comments

4.1.3 Trailing comments

4.1.4 End-line comments

4.2 Documentation comments

. Declarations

5.1 Number per line
5.2 Initialization

5.3 Placement

5.4 Class declarations

Statements

6.1 Simple statements

6.2 Compound statements

6.3 return Statements

6.4 if, if-else, if else-if else Statements
6.5 for Statements

6.6 while Statements

6.7 do-while Statements

6.8 switch Statements

6.9 try-catch Statements

. White space
7.1 Blank lines
7.2 Blank spaces

. Naming conventions

. Programming practices
9.1 Providing access to instance and class variables

9.2 Referring to class variables and methods
9.3 Constants
9.4 Variable assignments
9.5 Miscellaneus practices
9.5.1 Parentheses
9.5.2 Returning values
9.5.3 Expressions before '?' in the conditional operator
9.5.4 Special comments
10. Code examples
10.1 Crown source file example
11. List of changes

1 File Names

This section lists commonly used file suffixes and names.

1.1 File Suffixes

Crown uses the following file suffixes:

File type File suffix
Source files .cpp
Header files h

1.2 Common File Names

Frequently used file names include:

Makefile The preferred name for makefiles.

README The preferred name for the file that summarizes
the contents of a particular directory.

TODO The preferred name for the file that summarizes
tasks to be accomplished.

1.3 Text File Type

Format for text files is the Unix one (i.e. lines end only with a line-feed character). Adjust your
favourite editor in order to save in that format.

2 File Organization

A file consists of sections that should be separated by blank lines and an optional comment identifying
each section.

Files longer than 2000 lines are cumbersome and should be avoided.

2.1 Source Files

Each Crown source file contains a single class. The file name must exactly match the name of the
class it contains except rare cases where it is not possible due to pratical reasons. (Conflicting file
names, compiler troubles etc.)

Crown source files have the following ordering:

* Beginning comments

» #ifndef - #define - #endif statements (only for header files)
* Include statements

* Namespace statements

* Forward declarations

* C(lass declarations

* Blank line

2.1.1 Beginning Comments
TODO

2.1.2 #pragma once directive

In order to avoid any linking-related error, every header file must exlude itself from multiple inclusions
through the #pragma once directive. It is non-standard but widely supported.and offers several
advantages over #include guards.

#pragma once

2.1.3 Include Statements

The first non-comment line of most Crown source files is a #include statement. Absolute include
paths come before relative ones. After that, other #1nc lude statements can follow in alphabetic order.
At the end of #include list comes namespace statements and then forward declarations in alphabetic
order. For example:

#include <GL/glew.h>
#include “Config.h”
#include “Vec2.h”
#include “Vec3.h”

namespace Crown

{

class Mat3;
class Mat4;
class Quat;

} // namespace Crown

2.1.4 Class Declarations

The following table describes the parts of a class declaration, in the order that they should appear.

Part of Class Declaration

Notes

Class documentation
comment (/**...*/)

class statement

Class implementation
comment (/*...*/), if
necessary

This comment should contain any class-wide information that
wasn't appropriate for the class documentation comment.

Utils typedefs

Often when using templated classes such as List<Type> or
Dictionary<Type>, a list of private typedefs prevents typing
injuries and simplifies code reading/maintenance. Use whenever
template classes come in play.

Example:

typedef List<Entity*> EntityList;
typedef Dictionary<Foo, Bar> FooBarDict;

Constructors

Methods

These methods should be grouped by functionality rather than by
scope or accessibility. For example, a private class method can be
in between two public instance methods. The goal is to make
reading and understanding the code easier.

Static methods

Instance variables

First public, then protected, and then private.

Static instance variables

Friend classes

3 Indentation

Four spaces should be used as the unit of indentation. Use only tabs for indentation.

3.1 Line Length

Avoid lines longer than 130 characters.

3.2 Wrapping Lines
When an expression will not fit on a single line, break it according to these general principles:

e Break after a comma.
* Break before an operator.
» Prefer higher-level breaks to lower-level breaks.

* Align the new line with the beginning of the expression at the same level on the previous line
using tabs.

Here are some examples of breaking method calls:

someMethod (longExpressionl, longExpression2, longExpression3,
longExpression4, longExpression5);

var = someMethodl(longExpressionl,
someMethod2 (longExpression2,
longExpression3));

Following are two examples of breaking an arithmetic expression. The first is preferred, since the break
occurs outside the parenthesized expression, which is at a higher level.

longNamel = longName2 * (longName3 + longName4 — longName5)
+ 4 * longname6; // PREFER
longNamel = longName2 * (longName3 + longName4

- longName5) + 4 * longname6; // AVOID

Here is an example of method indentation:

// CONVENTIONAL INDENTATION

SomeMethod(int anArg, Object anotherArg, String yetAnotherArg,
Object andStillAnother)

{

}

4 Comments

Crown source files can have two kinds of comments: implementation comments and documentation
comments. Implementation comments are those found in C++, which are delimited by /*...*/, and //.
Documentation comments are those found in Doxygen documentation. :D

Implementation comments are meant for commenting out code or for comments about the particular
implementation. Documentation comments are meant to describe the specification of the code, from an
implementation-free perspective. to be read by developers who might not necessarily have the source
code at hand.

Comments should be used to give overviews of code and provide additional information that is not
readily available in the code itself. Comments should contain only information that is relevant to
reading and understanding the program.

Discussion of nontrivial or nonobvious design decisions is appropriate, but avoid duplicating
information that is present in (and clear from) the code. It is too easy for redundant comments to get out
of date. In general, avoid any comments that are likely to get out of date as the code evolves.

Note: The frequency of comments sometimes reflects poor quality of code. When you feel compelled
to add a comment, consider rewriting the code to make it clearer.

Comments should not be enclosed in large boxes drawn with asterisks or other characters.
Comments should never include special characters such as form-feed and backspace.

4.1 Implementation Comment Formats

Programs can have four styles of implementation comments: block, single-line, trailing, and end-of-
line.

4.1.1 Block Comments

Block comments are used to provide descriptions of files, methods, data structures and algorithms.
Block comments may be used at the beginning of each file and before each method. They can also be
used in other places, such as within methods. Block comments inside a function or method should be
indented to the same level as the code they describe.

A block comment should be preceded by a blank line to set it apart from the rest of the code.

/*
* Here is a block comment.
*/

4.1.2 Single-Line Comments

Short comments can appear on a single line indented to the level of the code that follows. If a comment
can't be written in a single line, it should follow the block comment format (see section 4.1.1). A single-
line comment should be preceded by a blank line. Here's an example of a single-line comment in
Crown:

if (condition)
{

/* Handle the condition. */

}

4.1.3 Trailing Comments

Very short comments can appear on the same line as the code they describe, but should be shifted far
enough to separate them from the statements. If more than one short comment appears in a chunk of
code, they should all be indented to the same tab setting.

Here's an example of a trailing comment in Crown's code:

if (a == 2)
{
return TRUE; /* special case */
}
else
{
return IsPrime(a); /* works only for odd a */

4.1.4 End-Of-Line Comments

The // comment delimiter can comment out a complete line or only a partial line. It shouldn't be used
on consecutive multiple lines for text comments; however, it can be used in consecutive multiple lines
for commenting out sections of code. Examples of all three styles follow:

if (foo > 1)

{
// Do a double-flip.

return false; // Explain why here.

}
//if (bar > 1)

//{
// // Do a triple-flip.

//

//}
//else

//{
// return false;

//}

4.2 Documentation Comments
TODO

5 Declarations

5.1 Number Per Line

One declaration per line is recommended since it encourages commenting. In other words,

int level; // indentation level
int size; // size of table

is preferred over

int level, size;

Do not put different types on the same line. Example:

int foo, fooarray[]; /WRONG!
Note: The examples above use one space between the type and the identifier. Another acceptable
alternative is to use tabs, e.g.:

int level; // indentation level
int size; // size of table
Object currentEntry; // currently selected table entry

5.2 Initialization

Try to initialize local variables where they're declared. The only reason not to initialize a variable
where it's declared is if the initial value depends on some computation occurring first.

5.3 Placement

Put declarations only at the beginning of blocks. (A block is any code surrounded by curly braces "{"
and "}".) Don't wait to declare variables until their first use; it can confuse the unwary programmer and
hamper code portability within the scope.

void myMethod()

t int intl = 0; // beginning of method block
if (condition)
{ int int2 = 0; // beginning of "if" block
) -

}

The one exception to the rule is indexes of Tor loops, which in C++ can be declared in the for
statement:

for (int 1 = 0; i < maxLoops; i++) { ... }

Avoid local declarations that hide declarations at higher levels. For example, do not declare the
same variable name in an inner block:

int count;
myMethod ()
{
if (condition)
{
int count = 0; // AVOID!
}

3
5.4 Class Declarations

When coding Crown classes, the following formatting rules should be followed:

* No space between a method name and the parenthesis "(" starting its parameter list

* Open brace "{" appears at the very next line after the declaration statement

* Closing brace "} " starts a line by itself indented to match its corresponding opening statement,
except when it is a null statement the "}" should appear immediately after the " {"

class Sample : public Object
{

public:

Sample(int i, int j)
{

i;

ii

ivarl
ivar2

}
int emptyMethod() {}

private:
int ivarl;
int ivar2;
}

* Methods are separated by a blank line

6 Statements

6.1 Simple Statements

Each line should contain at most one statement. Example:

argv++; // Correct
argc--; // Correct
argv++; argc--; // AVOID!

6.2 Compound Statements

Compound statements are statements that contain lists of statements enclosed in braces "
{ statements }". See the following sections for examples.

* The enclosed statements should be indented one more level than the compound statement.

* The opening brace should be at the end of the line that begins the compound statement; the
closing brace should begin a line and be indented to the beginning of the compound statement.

» Braces are used around all statements, even single statements, when they are part of a control
structure, such as a 1T -else or for statement. This makes it easier to add statements without
accidentally introducing bugs due to forgetting to add braces.

6.3 return Statements

A return statement with a value should not use parentheses unless they make the return value more
obvious in some way. Example:

return;
return MyDisk.GetSize();

return (size ? size : defaultSize);

6.4 if, if-else, if else-if else Statements

The 1f-else class of statements should have the following form:

// if
if (condition)
{
statements;
}
// if-else
if (condition)
{
statements;
}
else
{
statements;
}

// if-else-if
if (condition)

{
statements;
}
else if (condition)
{
statements;
}
else
{
statements;
}
Note: 1T statements always use braces {}. Avoid the following error-prone form:
if (condition) //AVOID! THIS OMITS THE BRACES {}!
Statement;

6.5 for Statements

A for statement should have the following form

for (initialization; condition; update)

{
}

statements;

An empty Tor statement (one in which all the work is done in the initialization, condition, and
update clauses) should have the following form:

for (initialization; condition; update) ;

When using the comma operator in the initialization or update clause of a for statement, avoid the
complexity of using more than three variables. If needed, use separate statements before the for loop
(for the initialization clause) or at the end of the loop (for the update clause).

6.6 while Statements

A while statement should have the following form:

while (condition)

{
}

statements;

An empty while statement should have the following form:

while (condition) ;

6.7 do-while Statements

A do-while statement should have the following form:

do
{

statements;

while (condition);

6.8 swith Statements

A switch statement should have the following form:

switch (condition)

{
case ABC:

statements;
/* falls through */

case DEF:

statements;
break;

case XYZ:

statements;
break;

default:

statements;
break;

Every time a case falls through (doesn't include a break statement), add a comment where the break
statement would normally be. This is shown in the preceding code example with the / * falls
through */ comment.

Every switch statement should include a default case. The break in the default case is redundant,
but it prevents a fall-through error if later another case is added.

6.9 try-catch Statements

A try-catch statement should have the following format:

try
{
statements;
}
catch (ExceptionClass e)
{
Sstatements;
}

7 White Space

7.1 Blank Lines

Blank lines improve readability by setting off sections of code that are logically related.
Two blank lines should always be used in the following circumstances:

e Between sections of a source file
¢ Between class and interface definitions

One blank line should always be used in the following circumstances:

* Between methods

* Between the local variables in a method and its first statement

* Before a block (see section 4.1.1) or single-line (see section 4.1.2) comment
* Between logical sections inside a method to improve readability

* At the end of every source file

7.2 Blank Spaces

Blank spaces should be used in the following circumstances:

* Akeyword followed by a parenthesis should be separated by a space. Example:
while (true)

{
}

Note that a blank space should not be used between a method name and its opening parenthesis. This
helps to distinguish keywords from method calls.

* Ablank space should appear after commas in argument lists.

* All binary operators except . should be separated from their operands by spaces. Blank spaces
should never separate unary operators such as unary minus, increment ("++"), and decrement
("--") from their operands. Example:

a+=c + d;
a=(a+b)/ (c*d);

while (d++ = s++)

{

}

n++;

PrintSize("size is " + foo + "\n");

* The expressions in a Tor statement should be separated by blank spaces. Example:

for (exprl; expr2; expr3)

* Casts should be followed by a blank space. Examples:

myMethod ((byte) aNum,
myMethod((int)

(Object) x);
(cp +5), ((int) (1 + 3)) + 1);

8 Naming Conventions

Naming conventions make programs more understandable by making them easier to read. They can

also give information about the function of the identifier-for example, whether it's a constant, package,

or class-which can be helpful in understanding the code.

letter. Internal words start with capital letters. Variable
names should not start with underscore .

Variable names should be short yet meaningful. The
choice of a variable name should be mnemonic- that is,
designed to indicate to the casual observer the intent of
its use. One-character variable names should be
avoided except for temporary "throwaway" variables.
Common names for temporary variables are 1, j, k, m,

Identifier | Rules of Naming Examples
Type
Classes | Class names should be nouns, in mixed case with the | class Device;
first letter of each internal word capitalized. Try to class RenderWindow;
keep your class names simple and descriptive. Use
whole words-avoid acronyms and abbreviations
(unless the abbreviation is much more widely used
than the long form, such as URL or HTML).
Methods | Methods should be verbs, in mixed case with the first |[Run();
letter uppercase, with the first letter of each internal GetMatrix();
word capitalized. _EndUsersShouldNotUseMe();
Every method not intended to end-user usage (i.e. that |
only engine classes should use internally) must start | *Nt ImReadOnly() const;
with underscore .
Every read-only method (i.e. every method that will
not change the value of its class members) must be
flagged as const.
Variables |Except for variables, all instance, class, and class int i;
constants are in mixed case with a lowercase first char c;

float myWidth;

class Camera

{
public:

private:

and n for integers; C, d, and e for characters. float mAspect;
) o) float mFOV;
All variable names inside a class must start with 'm'

character. };

Constants | The names of variables declared class constants and of | const int MIN_WIDTH = 4;
ANSI constants should be all uppercase with words static const int MAX_WIDTH;
separated by underscores (" "). (ANSI constants
should be avoided, for ease of debugging.)

Enums Class names should be nouns, in mixed case with the |enum PixelFormat
first letter of each internal word capitalized. Try to PE RGBS = 0
keep your class names simple and descriptive. Use PF RGB A87 !
whole words-avoid acronyms and abbreviations -

(unless the abbreviation is much more widely used };

than the long form, such as URL or HTML).

Because of Enums are collections of constants, their
elements' names follow Constants' rules except the fact
they must start with a word made up of all capitalized
letter in Enum's name.

9 Programming practices

9.1 Providing Access to Instance and Class Variables

Don't make any instance or class variable public without good reason. Often, instance variables don't
need to be explicitly set or gotten-often that happens as a side effect of method calls.

One example of appropriate public instance variables is the case where the class is essentially a data
structure, with no behavior. In other words, if you would have used a St ruct instead of a class, then
it's appropriate to make the class's instance variables public.

9.2 Referring to Class Variables and Methods

Avoid using an object to access a class (static) variable or method. Use a class name instead. For
example:

ClassMethod(); //0K
AClass::ClassMethod(); //0K
anObject.ClassMethod(); //AVOID!

9.3 Constants

Numerical constants (literals) should not be coded directly, except for -1, 0, and 1, which can appear in
a Tor loop as counter values.

9.4 Variable Assignments

Avoid assigning several variables to the same value in a single statement. It is hard to read. Example:
fooBar.fChar = barFoo.lchar = 'c'; // AVOID!

Do not use the assignment operator in a place where it can be easily confused with the equality
operator. Example:

if (c++ = d++) // AVOID!
{

}

should be written as

if ((c++ = d++) = 0)
{

}

Do not use embedded assignments in an attempt to improve run-time performance. This is the job
of the compiler. Example:

d=(a=b+<c) + r; // AVOID!

should be written as

a b+ c;
d=a+r;

9.5 Miscellaneous Practices

9.5.1 Parentheses

It is generally a good idea to use parentheses liberally in expressions involving mixed
operators to avoid operator precedence problems. Even if the operator precedence seems
clear to you, it might not be to others-you shouldn't assume that other programmers know
precedence as well as you do.

if (a == b & c == d) // AVOID!
if ((a == b) && (c == d)) // RIGHT

9.5.2 Returning Values

Try to make the structure of your program match the intent. Example:

if (booleanExpression)

{
}

return true;

else

{
}

return false;

should instead be written as
return booleanExpression;
Similarly,

if (condition)

{
}

return Xx;

return y;

should be written as

return (condition ? x : y);

9.5.3 Expressions before “?' in the Conditional Operator

If an expression containing a binary operator appears before the ? in the ternary ?:
operator, it should be parenthesized. Example:

(x >=0) ? x : -x;

9.5.4 Special Comments

Use XXX in a comment to flag something that is bogus but works. Use FIXME to flag
something that is bogus and broken. Use TODO to flag something that is partially or not
already ready to use.

10. Code Examples

10.1 Crown Source File Example

#pragma once

#include "EventDispatcher.h"
#include "Renderer.h"
#include "RenderWindow.h"
#include "List.h"

namespace Crown

{

class SomeClass : public Foo

typedef List<Renderer*> RendererList;
public:

//! Constructor
SomeClass();

//' Destructor
~SomeClass();

//!' Returns whether is visible
void IsVisible() const;

//! Sets whether is visible
void SetVisible();

//' Returns value of blah
float GetBlah() const;

//! Sets value of blah
void SetBlah();

//' System method
void EndUsersShouldNotUseMe();

//! Returns something
int ImReadOnly() const;

//! Returns the static integer's value
static int* GetStaticInteger();

private:

bool mVisible;
float mBlah;

static int mStaticInteger;

friend class Bar;

+

} // namespace Crown

11 List Of Changes

Changes since 1.0:
Changed curly bracket style.
Changes since 1.1:

Use #pragma once instead of #include guards.

	1 File Names
	1.1 File Suffixes
	1.2 Common File Names
	1.3 Text File Type
	2 File Organization
	2.1 Source Files
	2.1.1 Beginning Comments
	2.1.2 #pragma once directive
	2.1.3 Include Statements
	2.1.4 Class Declarations
	3 Indentation
	3.1 Line Length
	3.2 Wrapping Lines
	4 Comments
	4.1 Implementation Comment Formats
	4.1.1 Block Comments
	4.1.2 Single-Line Comments
	4.1.3 Trailing Comments
	4.1.4 End-Of-Line Comments
	4.2 Documentation Comments
	5 Declarations
	5.1 Number Per Line
	5.2 Initialization
	5.3 Placement
	5.4 Class Declarations
	6 Statements
	6.1 Simple Statements
	6.2 Compound Statements
	6.3 return Statements
	6.4 if, if-else, if else-if else Statements
	6.5 for Statements
	6.6 while Statements
	6.7 do-while Statements
	6.8 swith Statements
	6.9 try-catch Statements
	7 White Space
	7.1 Blank Lines
	7.2 Blank Spaces
	8 Naming Conventions
	9 Programming practices
	9.1 Providing Access to Instance and Class Variables
	9.2 Referring to Class Variables and Methods
	9.3 Constants
	9.4 Variable Assignments
	9.5 Miscellaneous Practices
	9.5.1 Parentheses
	9.5.2 Returning Values
	9.5.3 Expressions before `?' in the Conditional Operator
	9.5.4 Special Comments
	10. Code Examples
	10.1 Crown Source File Example
	11 List Of Changes

