/* Copyright (c) 2013 Daniele Bartolini, Michele Rossi Copyright (c) 2012 Daniele Bartolini, Simone Boscaratto Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #pragma once #include #include "container_types.h" #include "array.h" #include "assert.h" namespace crown { /// Functions to manipulate Queue. /// /// @ingroup Containers namespace queue { /// Returns whether the queue is empty. template bool empty(const Queue& q); /// Returns the number of items in the queue template uint32_t size(const Queue& q); /// Returns the number of items the queue can hold before /// a resize must occur. template uint32_t space(const Queue& q); /// Increase or decrease the capacity of the queue. /// @note /// Old items will be copied to the newly created queue. /// If the new @a capacity is smaller than the previous one, the /// queue will be truncated. template void increase_capacity(Queue& q, uint32_t capacity); /// Grows the queue to contain at least @a min_capacity items. /// If @a min_capacity is set to 0, the queue automatically /// determines the new capacity based on its size at the /// time of call. template void grow(Queue& q, uint32_t min_capacity); /// Appends an @a item to the back of the queue template void push_back(Queue& q, const T& item); /// Removes the last item from the queue template void pop_back(Queue& q); /// Appends an @a item to the front of the queue template void push_front(Queue& q, const T& item); /// Removes the first item from the queue template void pop_front(Queue& q); /// Appends @a n @a items to the back of the queue template void push(Queue& q, const T *items, uint32_t n); /// Removes @a n items from the front of the queue template void pop(Queue& q, uint32_t n); /// Clears the content of the queue. /// @note /// Does not free memory nor call destructors, it only zeroes /// the number of items in the queue for efficiency. template void clear(Queue& q); template T* begin(Queue& q); template const T* begin(const Queue& q); template T* end(Queue& q); template const T* end(const Queue& q); template T& front(Queue& q); template const T& front(const Queue& q); template T& back(Queue& q); template const T& back(const Queue& q); } // namespace queue namespace queue { //----------------------------------------------------------------------------- template inline bool empty(const Queue& q) { return q.m_size == 0; } //----------------------------------------------------------------------------- template inline uint32_t size(const Queue& q) { return q.m_size; } //----------------------------------------------------------------------------- template inline uint32_t space(const Queue& q) { return array::size(q.m_queue) - q.m_size; } //----------------------------------------------------------------------------- template inline void increase_capacity(Queue& q, uint32_t capacity) { uint32_t old_size = array::size(q.m_queue); array::resize(q.m_queue, capacity); if (q.m_read + q.m_size > old_size) { memmove(array::begin(q.m_queue) + capacity - (old_size - q.m_read), array::begin(q.m_queue) + q.m_read, (old_size - q.m_read) * sizeof(T)); q.m_read += (capacity - old_size); } } //----------------------------------------------------------------------------- template inline void grow(Queue& q, uint32_t min_capacity) { uint32_t new_capacity = array::size(q.m_queue) * 2 + 1; if (new_capacity < min_capacity) { new_capacity = min_capacity; } increase_capacity(q, new_capacity); } //----------------------------------------------------------------------------- template inline void push_back(Queue& q, const T& item) { if (space(q) == 0) { grow(q, 0); } q[q.m_size] = item; q.m_size++; } //----------------------------------------------------------------------------- template inline void pop_back(Queue& q) { CE_ASSERT(q.m_size > 0, "The queue is empty"); q.m_size--; } //----------------------------------------------------------------------------- template inline void push_front(Queue& q, const T& item) { if (space(q) == 0) { grow(q, 0); } q.m_read = (q.m_read - 1 + array::size(q.m_queue)) % array::size(q.m_queue); q[0] = item; q.m_size++; } //----------------------------------------------------------------------------- template inline void pop_front(Queue& q) { CE_ASSERT(q.m_size > 0, "The queue is empty"); q.m_read = (q.m_read + 1) % array::size(q.m_queue); q.m_size--; } //----------------------------------------------------------------------------- template inline void push(Queue& q, const T *items, uint32_t n) { if (q.space() < n) { q.grow(q.size() + n); } const uint32_t size = array::size(q.m_queue); const uint32_t insert = (q.m_read + q.m_size) % size; uint32_t to_insert = n; if (insert + to_insert > size) { to_insert = size - insert; } memcpy(array::begin(q.m_queue) + insert, items, to_insert * sizeof(T)); q.m_size += to_insert; items += to_insert; n -= to_insert; memcpy(array::begin(q.m_queue), items, n * sizeof(T)); q.m_size += n; } //----------------------------------------------------------------------------- template inline void pop(Queue& q, uint32_t n) { CE_ASSERT(q.m_size > 0, "The queue is empty"); q.m_read = (q.m_read + n) % array::size(q.m_queue); q.m_size -= n; } //----------------------------------------------------------------------------- template inline void clear(Queue& q) { q.m_read = 0; q.m_size = 0; } //----------------------------------------------------------------------------- template inline T* begin(Queue& q) { return array::begin(q.m_queue) + q.m_read; } //----------------------------------------------------------------------------- template inline const T* begin(const Queue& q) { return array::begin(q.m_queue) + q.m_read; } //----------------------------------------------------------------------------- template inline T* end(Queue& q) { uint32_t end = q.m_read + q.m_size; return end >= array::size(q.m_queue) ? array::end(q.m_queue) : array::begin(q.m_queue) + end; } //----------------------------------------------------------------------------- template inline const T* end(const Queue& q) { uint32_t end = q.m_read + q.m_size; return end >= array::size(q.m_queue) ? array::end(q.m_queue) : array::begin(q.m_queue) + end; } //----------------------------------------------------------------------------- template inline T& front(Queue& q) { CE_ASSERT(q.m_size > 0, "The queue is empty"); return q.m_queue[q.m_read]; } //----------------------------------------------------------------------------- template inline const T& front(const Queue& q) { CE_ASSERT(q.m_size > 0, "The queue is empty"); return q.m_queue[q.m_read]; } //----------------------------------------------------------------------------- template inline T& back(Queue& q) { CE_ASSERT(q.m_size > 0, "The queue is empty"); return q[q.m_size - 1]; } //----------------------------------------------------------------------------- template inline const T& back(const Queue& q) { CE_ASSERT(q.m_size > 0, "The queue is empty"); return q[q.m_size - 1]; } } // namespace queue //----------------------------------------------------------------------------- template inline Queue::Queue(Allocator& allocator) : m_read(0) , m_size(0) , m_queue(allocator) { } //----------------------------------------------------------------------------- template inline T& Queue::operator[](uint32_t index) { return m_queue[(m_read + index) % array::size(m_queue)]; } //----------------------------------------------------------------------------- template inline const T& Queue::operator[](uint32_t index) const { return m_queue[(m_read + index) % array::size(m_queue)]; } } // namespace crown