| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219 |
- #include "config.h"
- #include <cassert>
- #include <limits>
- #include "alcmain.h"
- #include "alu.h"
- #include "defs.h"
- #include "hrtfbase.h"
- namespace {
- inline float do_point(const InterpState&, const float *RESTRICT vals, const ALuint)
- { return vals[0]; }
- inline float do_lerp(const InterpState&, const float *RESTRICT vals, const ALuint frac)
- { return lerp(vals[0], vals[1], static_cast<float>(frac)*(1.0f/FRACTIONONE)); }
- inline float do_cubic(const InterpState&, const float *RESTRICT vals, const ALuint frac)
- { return cubic(vals[0], vals[1], vals[2], vals[3], static_cast<float>(frac)*(1.0f/FRACTIONONE)); }
- inline float do_bsinc(const InterpState &istate, const float *RESTRICT vals, const ALuint frac)
- {
- const size_t m{istate.bsinc.m};
- // Calculate the phase index and factor.
- #define FRAC_PHASE_BITDIFF (FRACTIONBITS-BSINC_PHASE_BITS)
- const ALuint pi{frac >> FRAC_PHASE_BITDIFF};
- const float pf{static_cast<float>(frac & ((1<<FRAC_PHASE_BITDIFF)-1)) *
- (1.0f/(1<<FRAC_PHASE_BITDIFF))};
- #undef FRAC_PHASE_BITDIFF
- const float *fil{istate.bsinc.filter + m*pi*4};
- const float *phd{fil + m};
- const float *scd{phd + m};
- const float *spd{scd + m};
- // Apply the scale and phase interpolated filter.
- float r{0.0f};
- for(size_t j_f{0};j_f < m;j_f++)
- r += (fil[j_f] + istate.bsinc.sf*scd[j_f] + pf*(phd[j_f] + istate.bsinc.sf*spd[j_f])) * vals[j_f];
- return r;
- }
- inline float do_fastbsinc(const InterpState &istate, const float *RESTRICT vals, const ALuint frac)
- {
- const size_t m{istate.bsinc.m};
- // Calculate the phase index and factor.
- #define FRAC_PHASE_BITDIFF (FRACTIONBITS-BSINC_PHASE_BITS)
- const ALuint pi{frac >> FRAC_PHASE_BITDIFF};
- const float pf{static_cast<float>(frac & ((1<<FRAC_PHASE_BITDIFF)-1)) *
- (1.0f/(1<<FRAC_PHASE_BITDIFF))};
- #undef FRAC_PHASE_BITDIFF
- const float *fil{istate.bsinc.filter + m*pi*4};
- const float *phd{fil + m};
- // Apply the phase interpolated filter.
- float r{0.0f};
- for(size_t j_f{0};j_f < m;j_f++)
- r += (fil[j_f] + pf*phd[j_f]) * vals[j_f];
- return r;
- }
- using SamplerT = float(&)(const InterpState&, const float*RESTRICT, const ALuint);
- template<SamplerT Sampler>
- const float *DoResample(const InterpState *state, const float *RESTRICT src, ALuint frac,
- ALuint increment, const al::span<float> dst)
- {
- const InterpState istate{*state};
- auto proc_sample = [&src,&frac,istate,increment]() -> float
- {
- const float ret{Sampler(istate, src, frac)};
- frac += increment;
- src += frac>>FRACTIONBITS;
- frac &= FRACTIONMASK;
- return ret;
- };
- std::generate(dst.begin(), dst.end(), proc_sample);
- return dst.begin();
- }
- inline void ApplyCoeffs(float2 *RESTRICT Values, const ALuint IrSize, const HrirArray &Coeffs,
- const float left, const float right)
- {
- ASSUME(IrSize >= 4);
- for(ALuint c{0};c < IrSize;++c)
- {
- Values[c][0] += Coeffs[c][0] * left;
- Values[c][1] += Coeffs[c][1] * right;
- }
- }
- } // namespace
- template<>
- const ALfloat *Resample_<CopyTag,CTag>(const InterpState*, const ALfloat *RESTRICT src, ALuint,
- ALuint, const al::span<float> dst)
- {
- #if defined(HAVE_SSE) || defined(HAVE_NEON)
- /* Avoid copying the source data if it's aligned like the destination. */
- if((reinterpret_cast<intptr_t>(src)&15) == (reinterpret_cast<intptr_t>(dst.data())&15))
- return src;
- #endif
- std::copy_n(src, dst.size(), dst.begin());
- return dst.begin();
- }
- template<>
- const ALfloat *Resample_<PointTag,CTag>(const InterpState *state, const ALfloat *RESTRICT src,
- ALuint frac, ALuint increment, const al::span<float> dst)
- { return DoResample<do_point>(state, src, frac, increment, dst); }
- template<>
- const ALfloat *Resample_<LerpTag,CTag>(const InterpState *state, const ALfloat *RESTRICT src,
- ALuint frac, ALuint increment, const al::span<float> dst)
- { return DoResample<do_lerp>(state, src, frac, increment, dst); }
- template<>
- const ALfloat *Resample_<CubicTag,CTag>(const InterpState *state, const ALfloat *RESTRICT src,
- ALuint frac, ALuint increment, const al::span<float> dst)
- { return DoResample<do_cubic>(state, src-1, frac, increment, dst); }
- template<>
- const ALfloat *Resample_<BSincTag,CTag>(const InterpState *state, const ALfloat *RESTRICT src,
- ALuint frac, ALuint increment, const al::span<float> dst)
- { return DoResample<do_bsinc>(state, src-state->bsinc.l, frac, increment, dst); }
- template<>
- const ALfloat *Resample_<FastBSincTag,CTag>(const InterpState *state, const ALfloat *RESTRICT src,
- ALuint frac, ALuint increment, const al::span<float> dst)
- { return DoResample<do_fastbsinc>(state, src-state->bsinc.l, frac, increment, dst); }
- template<>
- void MixHrtf_<CTag>(const float *InSamples, float2 *AccumSamples, const ALuint IrSize,
- MixHrtfFilter *hrtfparams, const size_t BufferSize)
- { MixHrtfBase<ApplyCoeffs>(InSamples, AccumSamples, IrSize, hrtfparams, BufferSize); }
- template<>
- void MixHrtfBlend_<CTag>(const float *InSamples, float2 *AccumSamples, const ALuint IrSize,
- const HrtfFilter *oldparams, MixHrtfFilter *newparams, const size_t BufferSize)
- {
- MixHrtfBlendBase<ApplyCoeffs>(InSamples, AccumSamples, IrSize, oldparams, newparams,
- BufferSize);
- }
- template<>
- void MixDirectHrtf_<CTag>(FloatBufferLine &LeftOut, FloatBufferLine &RightOut,
- const al::span<const FloatBufferLine> InSamples, float2 *AccumSamples, DirectHrtfState *State,
- const size_t BufferSize)
- { MixDirectHrtfBase<ApplyCoeffs>(LeftOut, RightOut, InSamples, AccumSamples, State, BufferSize); }
- template<>
- void Mix_<CTag>(const al::span<const float> InSamples, const al::span<FloatBufferLine> OutBuffer,
- float *CurrentGains, const float *TargetGains, const size_t Counter, const size_t OutPos)
- {
- const ALfloat delta{(Counter > 0) ? 1.0f / static_cast<ALfloat>(Counter) : 0.0f};
- const bool reached_target{InSamples.size() >= Counter};
- const auto min_end = reached_target ? InSamples.begin() + Counter : InSamples.end();
- for(FloatBufferLine &output : OutBuffer)
- {
- ALfloat *RESTRICT dst{al::assume_aligned<16>(output.data()+OutPos)};
- ALfloat gain{*CurrentGains};
- const ALfloat diff{*TargetGains - gain};
- auto in_iter = InSamples.begin();
- if(std::fabs(diff) > std::numeric_limits<float>::epsilon())
- {
- const ALfloat step{diff * delta};
- ALfloat step_count{0.0f};
- while(in_iter != min_end)
- {
- *(dst++) += *(in_iter++) * (gain + step*step_count);
- step_count += 1.0f;
- }
- if(reached_target)
- gain = *TargetGains;
- else
- gain += step*step_count;
- *CurrentGains = gain;
- }
- ++CurrentGains;
- ++TargetGains;
- if(!(std::fabs(gain) > GAIN_SILENCE_THRESHOLD))
- continue;
- while(in_iter != InSamples.end())
- *(dst++) += *(in_iter++) * gain;
- }
- }
- /* Basically the inverse of the above. Rather than one input going to multiple
- * outputs (each with its own gain), it's multiple inputs (each with its own
- * gain) going to one output. This applies one row (vs one column) of a matrix
- * transform. And as the matrices are more or less static once set up, no
- * stepping is necessary.
- */
- template<>
- void MixRow_<CTag>(const al::span<float> OutBuffer, const al::span<const float> Gains,
- const float *InSamples, const size_t InStride)
- {
- for(const float gain : Gains)
- {
- const float *RESTRICT input{InSamples};
- InSamples += InStride;
- if(!(std::fabs(gain) > GAIN_SILENCE_THRESHOLD))
- continue;
- auto do_mix = [gain](const float cur, const float src) noexcept -> float
- { return cur + src*gain; };
- std::transform(OutBuffer.begin(), OutBuffer.end(), input, OutBuffer.begin(), do_mix);
- }
- }
|