mixer_c.cpp 7.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219
  1. #include "config.h"
  2. #include <cassert>
  3. #include <limits>
  4. #include "alcmain.h"
  5. #include "alu.h"
  6. #include "defs.h"
  7. #include "hrtfbase.h"
  8. namespace {
  9. inline float do_point(const InterpState&, const float *RESTRICT vals, const ALuint)
  10. { return vals[0]; }
  11. inline float do_lerp(const InterpState&, const float *RESTRICT vals, const ALuint frac)
  12. { return lerp(vals[0], vals[1], static_cast<float>(frac)*(1.0f/FRACTIONONE)); }
  13. inline float do_cubic(const InterpState&, const float *RESTRICT vals, const ALuint frac)
  14. { return cubic(vals[0], vals[1], vals[2], vals[3], static_cast<float>(frac)*(1.0f/FRACTIONONE)); }
  15. inline float do_bsinc(const InterpState &istate, const float *RESTRICT vals, const ALuint frac)
  16. {
  17. const size_t m{istate.bsinc.m};
  18. // Calculate the phase index and factor.
  19. #define FRAC_PHASE_BITDIFF (FRACTIONBITS-BSINC_PHASE_BITS)
  20. const ALuint pi{frac >> FRAC_PHASE_BITDIFF};
  21. const float pf{static_cast<float>(frac & ((1<<FRAC_PHASE_BITDIFF)-1)) *
  22. (1.0f/(1<<FRAC_PHASE_BITDIFF))};
  23. #undef FRAC_PHASE_BITDIFF
  24. const float *fil{istate.bsinc.filter + m*pi*4};
  25. const float *phd{fil + m};
  26. const float *scd{phd + m};
  27. const float *spd{scd + m};
  28. // Apply the scale and phase interpolated filter.
  29. float r{0.0f};
  30. for(size_t j_f{0};j_f < m;j_f++)
  31. r += (fil[j_f] + istate.bsinc.sf*scd[j_f] + pf*(phd[j_f] + istate.bsinc.sf*spd[j_f])) * vals[j_f];
  32. return r;
  33. }
  34. inline float do_fastbsinc(const InterpState &istate, const float *RESTRICT vals, const ALuint frac)
  35. {
  36. const size_t m{istate.bsinc.m};
  37. // Calculate the phase index and factor.
  38. #define FRAC_PHASE_BITDIFF (FRACTIONBITS-BSINC_PHASE_BITS)
  39. const ALuint pi{frac >> FRAC_PHASE_BITDIFF};
  40. const float pf{static_cast<float>(frac & ((1<<FRAC_PHASE_BITDIFF)-1)) *
  41. (1.0f/(1<<FRAC_PHASE_BITDIFF))};
  42. #undef FRAC_PHASE_BITDIFF
  43. const float *fil{istate.bsinc.filter + m*pi*4};
  44. const float *phd{fil + m};
  45. // Apply the phase interpolated filter.
  46. float r{0.0f};
  47. for(size_t j_f{0};j_f < m;j_f++)
  48. r += (fil[j_f] + pf*phd[j_f]) * vals[j_f];
  49. return r;
  50. }
  51. using SamplerT = float(&)(const InterpState&, const float*RESTRICT, const ALuint);
  52. template<SamplerT Sampler>
  53. const float *DoResample(const InterpState *state, const float *RESTRICT src, ALuint frac,
  54. ALuint increment, const al::span<float> dst)
  55. {
  56. const InterpState istate{*state};
  57. auto proc_sample = [&src,&frac,istate,increment]() -> float
  58. {
  59. const float ret{Sampler(istate, src, frac)};
  60. frac += increment;
  61. src += frac>>FRACTIONBITS;
  62. frac &= FRACTIONMASK;
  63. return ret;
  64. };
  65. std::generate(dst.begin(), dst.end(), proc_sample);
  66. return dst.begin();
  67. }
  68. inline void ApplyCoeffs(float2 *RESTRICT Values, const ALuint IrSize, const HrirArray &Coeffs,
  69. const float left, const float right)
  70. {
  71. ASSUME(IrSize >= 4);
  72. for(ALuint c{0};c < IrSize;++c)
  73. {
  74. Values[c][0] += Coeffs[c][0] * left;
  75. Values[c][1] += Coeffs[c][1] * right;
  76. }
  77. }
  78. } // namespace
  79. template<>
  80. const ALfloat *Resample_<CopyTag,CTag>(const InterpState*, const ALfloat *RESTRICT src, ALuint,
  81. ALuint, const al::span<float> dst)
  82. {
  83. #if defined(HAVE_SSE) || defined(HAVE_NEON)
  84. /* Avoid copying the source data if it's aligned like the destination. */
  85. if((reinterpret_cast<intptr_t>(src)&15) == (reinterpret_cast<intptr_t>(dst.data())&15))
  86. return src;
  87. #endif
  88. std::copy_n(src, dst.size(), dst.begin());
  89. return dst.begin();
  90. }
  91. template<>
  92. const ALfloat *Resample_<PointTag,CTag>(const InterpState *state, const ALfloat *RESTRICT src,
  93. ALuint frac, ALuint increment, const al::span<float> dst)
  94. { return DoResample<do_point>(state, src, frac, increment, dst); }
  95. template<>
  96. const ALfloat *Resample_<LerpTag,CTag>(const InterpState *state, const ALfloat *RESTRICT src,
  97. ALuint frac, ALuint increment, const al::span<float> dst)
  98. { return DoResample<do_lerp>(state, src, frac, increment, dst); }
  99. template<>
  100. const ALfloat *Resample_<CubicTag,CTag>(const InterpState *state, const ALfloat *RESTRICT src,
  101. ALuint frac, ALuint increment, const al::span<float> dst)
  102. { return DoResample<do_cubic>(state, src-1, frac, increment, dst); }
  103. template<>
  104. const ALfloat *Resample_<BSincTag,CTag>(const InterpState *state, const ALfloat *RESTRICT src,
  105. ALuint frac, ALuint increment, const al::span<float> dst)
  106. { return DoResample<do_bsinc>(state, src-state->bsinc.l, frac, increment, dst); }
  107. template<>
  108. const ALfloat *Resample_<FastBSincTag,CTag>(const InterpState *state, const ALfloat *RESTRICT src,
  109. ALuint frac, ALuint increment, const al::span<float> dst)
  110. { return DoResample<do_fastbsinc>(state, src-state->bsinc.l, frac, increment, dst); }
  111. template<>
  112. void MixHrtf_<CTag>(const float *InSamples, float2 *AccumSamples, const ALuint IrSize,
  113. MixHrtfFilter *hrtfparams, const size_t BufferSize)
  114. { MixHrtfBase<ApplyCoeffs>(InSamples, AccumSamples, IrSize, hrtfparams, BufferSize); }
  115. template<>
  116. void MixHrtfBlend_<CTag>(const float *InSamples, float2 *AccumSamples, const ALuint IrSize,
  117. const HrtfFilter *oldparams, MixHrtfFilter *newparams, const size_t BufferSize)
  118. {
  119. MixHrtfBlendBase<ApplyCoeffs>(InSamples, AccumSamples, IrSize, oldparams, newparams,
  120. BufferSize);
  121. }
  122. template<>
  123. void MixDirectHrtf_<CTag>(FloatBufferLine &LeftOut, FloatBufferLine &RightOut,
  124. const al::span<const FloatBufferLine> InSamples, float2 *AccumSamples, DirectHrtfState *State,
  125. const size_t BufferSize)
  126. { MixDirectHrtfBase<ApplyCoeffs>(LeftOut, RightOut, InSamples, AccumSamples, State, BufferSize); }
  127. template<>
  128. void Mix_<CTag>(const al::span<const float> InSamples, const al::span<FloatBufferLine> OutBuffer,
  129. float *CurrentGains, const float *TargetGains, const size_t Counter, const size_t OutPos)
  130. {
  131. const ALfloat delta{(Counter > 0) ? 1.0f / static_cast<ALfloat>(Counter) : 0.0f};
  132. const bool reached_target{InSamples.size() >= Counter};
  133. const auto min_end = reached_target ? InSamples.begin() + Counter : InSamples.end();
  134. for(FloatBufferLine &output : OutBuffer)
  135. {
  136. ALfloat *RESTRICT dst{al::assume_aligned<16>(output.data()+OutPos)};
  137. ALfloat gain{*CurrentGains};
  138. const ALfloat diff{*TargetGains - gain};
  139. auto in_iter = InSamples.begin();
  140. if(std::fabs(diff) > std::numeric_limits<float>::epsilon())
  141. {
  142. const ALfloat step{diff * delta};
  143. ALfloat step_count{0.0f};
  144. while(in_iter != min_end)
  145. {
  146. *(dst++) += *(in_iter++) * (gain + step*step_count);
  147. step_count += 1.0f;
  148. }
  149. if(reached_target)
  150. gain = *TargetGains;
  151. else
  152. gain += step*step_count;
  153. *CurrentGains = gain;
  154. }
  155. ++CurrentGains;
  156. ++TargetGains;
  157. if(!(std::fabs(gain) > GAIN_SILENCE_THRESHOLD))
  158. continue;
  159. while(in_iter != InSamples.end())
  160. *(dst++) += *(in_iter++) * gain;
  161. }
  162. }
  163. /* Basically the inverse of the above. Rather than one input going to multiple
  164. * outputs (each with its own gain), it's multiple inputs (each with its own
  165. * gain) going to one output. This applies one row (vs one column) of a matrix
  166. * transform. And as the matrices are more or less static once set up, no
  167. * stepping is necessary.
  168. */
  169. template<>
  170. void MixRow_<CTag>(const al::span<float> OutBuffer, const al::span<const float> Gains,
  171. const float *InSamples, const size_t InStride)
  172. {
  173. for(const float gain : Gains)
  174. {
  175. const float *RESTRICT input{InSamples};
  176. InSamples += InStride;
  177. if(!(std::fabs(gain) > GAIN_SILENCE_THRESHOLD))
  178. continue;
  179. auto do_mix = [gain](const float cur, const float src) noexcept -> float
  180. { return cur + src*gain; };
  181. std::transform(OutBuffer.begin(), OutBuffer.end(), input, OutBuffer.begin(), do_mix);
  182. }
  183. }