| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297 |
- #include "config.h"
- #include <xmmintrin.h>
- #include <limits>
- #include "AL/al.h"
- #include "AL/alc.h"
- #include "alcmain.h"
- #include "alu.h"
- #include "defs.h"
- #include "hrtfbase.h"
- namespace {
- inline void ApplyCoeffs(float2 *RESTRICT Values, const ALuint IrSize, const HrirArray &Coeffs,
- const float left, const float right)
- {
- const __m128 lrlr{_mm_setr_ps(left, right, left, right)};
- ASSUME(IrSize >= 4);
- /* This isn't technically correct to test alignment, but it's true for
- * systems that support SSE, which is the only one that needs to know the
- * alignment of Values (which alternates between 8- and 16-byte aligned).
- */
- if(reinterpret_cast<intptr_t>(Values)&0x8)
- {
- __m128 imp0, imp1;
- __m128 coeffs{_mm_load_ps(&Coeffs[0][0])};
- __m128 vals{_mm_loadl_pi(_mm_setzero_ps(), reinterpret_cast<__m64*>(&Values[0][0]))};
- imp0 = _mm_mul_ps(lrlr, coeffs);
- vals = _mm_add_ps(imp0, vals);
- _mm_storel_pi(reinterpret_cast<__m64*>(&Values[0][0]), vals);
- ALuint i{1};
- for(;i < IrSize-1;i += 2)
- {
- coeffs = _mm_load_ps(&Coeffs[i+1][0]);
- vals = _mm_load_ps(&Values[i][0]);
- imp1 = _mm_mul_ps(lrlr, coeffs);
- imp0 = _mm_shuffle_ps(imp0, imp1, _MM_SHUFFLE(1, 0, 3, 2));
- vals = _mm_add_ps(imp0, vals);
- _mm_store_ps(&Values[i][0], vals);
- imp0 = imp1;
- }
- vals = _mm_loadl_pi(vals, reinterpret_cast<__m64*>(&Values[i][0]));
- imp0 = _mm_movehl_ps(imp0, imp0);
- vals = _mm_add_ps(imp0, vals);
- _mm_storel_pi(reinterpret_cast<__m64*>(&Values[i][0]), vals);
- }
- else
- {
- for(ALuint i{0};i < IrSize;i += 2)
- {
- __m128 coeffs{_mm_load_ps(&Coeffs[i][0])};
- __m128 vals{_mm_load_ps(&Values[i][0])};
- vals = _mm_add_ps(vals, _mm_mul_ps(lrlr, coeffs));
- _mm_store_ps(&Values[i][0], vals);
- }
- }
- }
- } // namespace
- template<>
- const ALfloat *Resample_<BSincTag,SSETag>(const InterpState *state, const ALfloat *RESTRICT src,
- ALuint frac, ALuint increment, const al::span<float> dst)
- {
- const float *const filter{state->bsinc.filter};
- const __m128 sf4{_mm_set1_ps(state->bsinc.sf)};
- const size_t m{state->bsinc.m};
- src -= state->bsinc.l;
- for(float &out_sample : dst)
- {
- // Calculate the phase index and factor.
- #define FRAC_PHASE_BITDIFF (FRACTIONBITS-BSINC_PHASE_BITS)
- const ALuint pi{frac >> FRAC_PHASE_BITDIFF};
- const float pf{static_cast<float>(frac & ((1<<FRAC_PHASE_BITDIFF)-1)) *
- (1.0f/(1<<FRAC_PHASE_BITDIFF))};
- #undef FRAC_PHASE_BITDIFF
- // Apply the scale and phase interpolated filter.
- __m128 r4{_mm_setzero_ps()};
- {
- const __m128 pf4{_mm_set1_ps(pf)};
- const float *fil{filter + m*pi*4};
- const float *phd{fil + m};
- const float *scd{phd + m};
- const float *spd{scd + m};
- size_t td{m >> 2};
- size_t j{0u};
- #define MLA4(x, y, z) _mm_add_ps(x, _mm_mul_ps(y, z))
- do {
- /* f = ((fil + sf*scd) + pf*(phd + sf*spd)) */
- const __m128 f4 = MLA4(
- MLA4(_mm_load_ps(fil), sf4, _mm_load_ps(scd)),
- pf4, MLA4(_mm_load_ps(phd), sf4, _mm_load_ps(spd)));
- fil += 4; scd += 4; phd += 4; spd += 4;
- /* r += f*src */
- r4 = MLA4(r4, f4, _mm_loadu_ps(&src[j]));
- j += 4;
- } while(--td);
- #undef MLA4
- }
- r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3)));
- r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4));
- out_sample = _mm_cvtss_f32(r4);
- frac += increment;
- src += frac>>FRACTIONBITS;
- frac &= FRACTIONMASK;
- }
- return dst.begin();
- }
- template<>
- const ALfloat *Resample_<FastBSincTag,SSETag>(const InterpState *state,
- const ALfloat *RESTRICT src, ALuint frac, ALuint increment, const al::span<float> dst)
- {
- const float *const filter{state->bsinc.filter};
- const size_t m{state->bsinc.m};
- src -= state->bsinc.l;
- for(float &out_sample : dst)
- {
- // Calculate the phase index and factor.
- #define FRAC_PHASE_BITDIFF (FRACTIONBITS-BSINC_PHASE_BITS)
- const ALuint pi{frac >> FRAC_PHASE_BITDIFF};
- const float pf{static_cast<float>(frac & ((1<<FRAC_PHASE_BITDIFF)-1)) *
- (1.0f/(1<<FRAC_PHASE_BITDIFF))};
- #undef FRAC_PHASE_BITDIFF
- // Apply the phase interpolated filter.
- __m128 r4{_mm_setzero_ps()};
- {
- const __m128 pf4{_mm_set1_ps(pf)};
- const float *fil{filter + m*pi*4};
- const float *phd{fil + m};
- size_t td{m >> 2};
- size_t j{0u};
- #define MLA4(x, y, z) _mm_add_ps(x, _mm_mul_ps(y, z))
- do {
- /* f = fil + pf*phd */
- const __m128 f4 = MLA4(_mm_load_ps(fil), pf4, _mm_load_ps(phd));
- /* r += f*src */
- r4 = MLA4(r4, f4, _mm_loadu_ps(&src[j]));
- fil += 4; phd += 4; j += 4;
- } while(--td);
- #undef MLA4
- }
- r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3)));
- r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4));
- out_sample = _mm_cvtss_f32(r4);
- frac += increment;
- src += frac>>FRACTIONBITS;
- frac &= FRACTIONMASK;
- }
- return dst.begin();
- }
- template<>
- void MixHrtf_<SSETag>(const float *InSamples, float2 *AccumSamples, const ALuint IrSize,
- MixHrtfFilter *hrtfparams, const size_t BufferSize)
- { MixHrtfBase<ApplyCoeffs>(InSamples, AccumSamples, IrSize, hrtfparams, BufferSize); }
- template<>
- void MixHrtfBlend_<SSETag>(const float *InSamples, float2 *AccumSamples, const ALuint IrSize,
- const HrtfFilter *oldparams, MixHrtfFilter *newparams, const size_t BufferSize)
- {
- MixHrtfBlendBase<ApplyCoeffs>(InSamples, AccumSamples, IrSize, oldparams, newparams,
- BufferSize);
- }
- template<>
- void MixDirectHrtf_<SSETag>(FloatBufferLine &LeftOut, FloatBufferLine &RightOut,
- const al::span<const FloatBufferLine> InSamples, float2 *AccumSamples, DirectHrtfState *State,
- const size_t BufferSize)
- { MixDirectHrtfBase<ApplyCoeffs>(LeftOut, RightOut, InSamples, AccumSamples, State, BufferSize); }
- template<>
- void Mix_<SSETag>(const al::span<const float> InSamples, const al::span<FloatBufferLine> OutBuffer,
- float *CurrentGains, const float *TargetGains, const size_t Counter, const size_t OutPos)
- {
- const ALfloat delta{(Counter > 0) ? 1.0f / static_cast<ALfloat>(Counter) : 0.0f};
- const bool reached_target{InSamples.size() >= Counter};
- const auto min_end = reached_target ? InSamples.begin() + Counter : InSamples.end();
- const auto aligned_end = minz(static_cast<uintptr_t>(min_end-InSamples.begin()+3) & ~3u,
- InSamples.size()) + InSamples.begin();
- for(FloatBufferLine &output : OutBuffer)
- {
- ALfloat *RESTRICT dst{al::assume_aligned<16>(output.data()+OutPos)};
- ALfloat gain{*CurrentGains};
- const ALfloat diff{*TargetGains - gain};
- auto in_iter = InSamples.begin();
- if(std::fabs(diff) > std::numeric_limits<float>::epsilon())
- {
- const ALfloat step{diff * delta};
- ALfloat step_count{0.0f};
- /* Mix with applying gain steps in aligned multiples of 4. */
- if(ptrdiff_t todo{(min_end-in_iter) >> 2})
- {
- const __m128 four4{_mm_set1_ps(4.0f)};
- const __m128 step4{_mm_set1_ps(step)};
- const __m128 gain4{_mm_set1_ps(gain)};
- __m128 step_count4{_mm_setr_ps(0.0f, 1.0f, 2.0f, 3.0f)};
- do {
- const __m128 val4{_mm_load_ps(in_iter)};
- __m128 dry4{_mm_load_ps(dst)};
- #define MLA4(x, y, z) _mm_add_ps(x, _mm_mul_ps(y, z))
- /* dry += val * (gain + step*step_count) */
- dry4 = MLA4(dry4, val4, MLA4(gain4, step4, step_count4));
- #undef MLA4
- _mm_store_ps(dst, dry4);
- step_count4 = _mm_add_ps(step_count4, four4);
- in_iter += 4; dst += 4;
- } while(--todo);
- /* NOTE: step_count4 now represents the next four counts after
- * the last four mixed samples, so the lowest element
- * represents the next step count to apply.
- */
- step_count = _mm_cvtss_f32(step_count4);
- }
- /* Mix with applying left over gain steps that aren't aligned multiples of 4. */
- while(in_iter != min_end)
- {
- *(dst++) += *(in_iter++) * (gain + step*step_count);
- step_count += 1.0f;
- }
- if(reached_target)
- gain = *TargetGains;
- else
- gain += step*step_count;
- *CurrentGains = gain;
- /* Mix until pos is aligned with 4 or the mix is done. */
- while(in_iter != aligned_end)
- *(dst++) += *(in_iter++) * gain;
- }
- ++CurrentGains;
- ++TargetGains;
- if(!(std::fabs(gain) > GAIN_SILENCE_THRESHOLD))
- continue;
- if(ptrdiff_t todo{(InSamples.end()-in_iter) >> 2})
- {
- const __m128 gain4{_mm_set1_ps(gain)};
- do {
- const __m128 val4{_mm_load_ps(in_iter)};
- __m128 dry4{_mm_load_ps(dst)};
- dry4 = _mm_add_ps(dry4, _mm_mul_ps(val4, gain4));
- _mm_store_ps(dst, dry4);
- in_iter += 4; dst += 4;
- } while(--todo);
- }
- while(in_iter != InSamples.end())
- *(dst++) += *(in_iter++) * gain;
- }
- }
- template<>
- void MixRow_<SSETag>(const al::span<float> OutBuffer, const al::span<const float> Gains,
- const float *InSamples, const size_t InStride)
- {
- for(const float gain : Gains)
- {
- const float *RESTRICT input{InSamples};
- InSamples += InStride;
- if(!(std::fabs(gain) > GAIN_SILENCE_THRESHOLD))
- continue;
- auto out_iter = OutBuffer.begin();
- if(size_t todo{OutBuffer.size() >> 2})
- {
- const __m128 gain4 = _mm_set1_ps(gain);
- do {
- const __m128 val4{_mm_load_ps(input)};
- __m128 dry4{_mm_load_ps(out_iter)};
- dry4 = _mm_add_ps(dry4, _mm_mul_ps(val4, gain4));
- _mm_store_ps(out_iter, dry4);
- out_iter += 4; input += 4;
- } while(--todo);
- }
- auto do_mix = [gain](const float cur, const float src) noexcept -> float
- { return cur + src*gain; };
- std::transform(out_iter, OutBuffer.end(), input, out_iter, do_mix);
- }
- }
|