physics_resource.cpp 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839
  1. /*
  2. * Copyright (c) 2012-2014 Daniele Bartolini and individual contributors.
  3. * License: https://github.com/taylor001/crown/blob/master/LICENSE
  4. */
  5. #include "filesystem.h"
  6. #include "string_utils.h"
  7. #include "json_parser.h"
  8. #include "physics_resource.h"
  9. #include "string_utils.h"
  10. #include "dynamic_string.h"
  11. #include "map.h"
  12. #include "quaternion.h"
  13. #include "compile_options.h"
  14. #include <algorithm>
  15. namespace crown
  16. {
  17. namespace physics_resource
  18. {
  19. struct Shape
  20. {
  21. const char* name;
  22. PhysicsShapeType::Enum type;
  23. };
  24. static const Shape s_shape[PhysicsShapeType::COUNT] =
  25. {
  26. { "sphere", PhysicsShapeType::SPHERE },
  27. { "capsule", PhysicsShapeType::CAPSULE },
  28. { "box", PhysicsShapeType::BOX },
  29. { "plane", PhysicsShapeType::PLANE }
  30. };
  31. struct Joint
  32. {
  33. const char* name;
  34. PhysicsJointType::Enum type;
  35. };
  36. static const Joint s_joint[PhysicsJointType::COUNT] =
  37. {
  38. { "fixed", PhysicsJointType::FIXED },
  39. { "spherical", PhysicsJointType::SPHERICAL },
  40. { "revolute", PhysicsJointType::REVOLUTE },
  41. { "prismatic", PhysicsJointType::PRISMATIC },
  42. { "distance", PhysicsJointType::DISTANCE },
  43. { "d6", PhysicsJointType::D6 }
  44. };
  45. static uint32_t shape_type_to_enum(const char* type)
  46. {
  47. for (uint32_t i = 0; i < PhysicsShapeType::COUNT; i++)
  48. {
  49. if (strcmp(type, s_shape[i].name) == 0)
  50. return s_shape[i].type;
  51. }
  52. CE_FATAL("Bad shape type");
  53. return 0;
  54. }
  55. static uint32_t joint_type_to_enum(const char* type)
  56. {
  57. for (uint32_t i = 0; i < PhysicsJointType::COUNT; i++)
  58. {
  59. if (strcmp(type, s_joint[i].name) == 0)
  60. return s_joint[i].type;
  61. }
  62. CE_FATAL("Bad joint type");
  63. return 0;
  64. }
  65. void parse_controller(JSONElement e, PhysicsController& controller)
  66. {
  67. controller.name = e.key("name").to_string_id();
  68. controller.height = e.key("height").to_float();
  69. controller.radius = e.key("radius").to_float();
  70. controller.slope_limit = e.key("slope_limit").to_float();
  71. controller.step_offset = e.key("step_offset").to_float();
  72. controller.contact_offset = e.key("contact_offset").to_float();
  73. controller.collision_filter = e.key("collision_filter").to_string_id();
  74. }
  75. void parse_shapes(JSONElement e, Array<PhysicsShape>& shapes)
  76. {
  77. Vector<DynamicString> keys(default_allocator());
  78. e.to_keys(keys);
  79. for (uint32_t k = 0; k < vector::size(keys); k++)
  80. {
  81. JSONElement shape = e.key(keys[k].c_str());
  82. PhysicsShape ps;
  83. ps.name = keys[k].to_string_id();
  84. ps.shape_class = shape.key("class").to_string_id();
  85. ps.material = shape.key("material").to_string_id();
  86. ps.position = shape.key("position").to_vector3();
  87. ps.rotation = shape.key("rotation").to_quaternion();
  88. DynamicString stype; shape.key("type").to_string(stype);
  89. ps.type = shape_type_to_enum(stype.c_str());
  90. switch (ps.type)
  91. {
  92. case PhysicsShapeType::SPHERE:
  93. {
  94. ps.data_0 = shape.key("radius").to_float();
  95. break;
  96. }
  97. case PhysicsShapeType::CAPSULE:
  98. {
  99. ps.data_0 = shape.key("radius").to_float();
  100. ps.data_1 = shape.key("half_height").to_float();
  101. break;
  102. }
  103. case PhysicsShapeType::BOX:
  104. {
  105. ps.data_0 = shape.key("half_x").to_float();
  106. ps.data_1 = shape.key("half_y").to_float();
  107. ps.data_2 = shape.key("half_z").to_float();
  108. break;
  109. }
  110. case PhysicsShapeType::PLANE:
  111. {
  112. ps.data_0 = shape.key("n_x").to_float();
  113. ps.data_1 = shape.key("n_y").to_float();
  114. ps.data_2 = shape.key("n_z").to_float();
  115. ps.data_3 = shape.key("distance").to_float();
  116. break;
  117. }
  118. case PhysicsShapeType::CONVEX_MESH:
  119. {
  120. ps.resource = shape.key("mesh").to_resource_id("mesh");
  121. break;
  122. }
  123. }
  124. array::push_back(shapes, ps);
  125. }
  126. }
  127. void parse_actors(JSONElement e, Array<PhysicsActor>& actors, Array<PhysicsShape>& actor_shapes, Array<uint32_t>& shape_indices)
  128. {
  129. Vector<DynamicString> keys(default_allocator());
  130. e.to_keys(keys);
  131. for (uint32_t k = 0; k < vector::size(keys); k++)
  132. {
  133. JSONElement actor = e.key(keys[k].c_str());
  134. PhysicsActor pa;
  135. pa.name = keys[k].to_string_id();
  136. pa.node = actor.key("node").to_string_id();
  137. pa.actor_class = actor.key("class").to_string_id();
  138. pa.mass = actor.key("mass").to_float();
  139. pa.num_shapes = actor.key("shapes").size();
  140. array::push_back(actors, pa);
  141. array::push_back(shape_indices, array::size(shape_indices));
  142. parse_shapes(actor.key("shapes"), actor_shapes);
  143. }
  144. }
  145. void parse_joints(JSONElement e, Array<PhysicsJoint>& joints)
  146. {
  147. Vector<DynamicString> keys(default_allocator());
  148. e.to_keys(keys);
  149. for (uint32_t k = 0; k < vector::size(keys); k++)
  150. {
  151. JSONElement joint = e.key(keys[k].c_str());
  152. JSONElement type = joint.key("type");
  153. PhysicsJoint pj;
  154. pj.name = keys[k].to_string_id();
  155. DynamicString jtype; type.to_string(jtype);
  156. pj.type = joint_type_to_enum(jtype.c_str());
  157. pj.actor_0 = joint.key("actor_0").to_string_id();
  158. pj.actor_1 = joint.key("actor_1").to_string_id();
  159. pj.anchor_0 = joint.key("anchor_0").to_vector3();
  160. pj.anchor_1 = joint.key("anchor_1").to_vector3();
  161. pj.restitution = joint.key_or_nil("restitution").to_float(0.5f);
  162. pj.spring = joint.key_or_nil("spring").to_float(100.0f);
  163. pj.damping = joint.key_or_nil("damping").to_float(0.0f);
  164. pj.distance = joint.key_or_nil("distance").to_float(1.0f);
  165. pj.breakable = joint.key_or_nil("breakable").to_bool(false);
  166. pj.break_force = joint.key_or_nil("break_force").to_float(3000.0f);
  167. pj.break_torque = joint.key_or_nil("break_torque").to_float(1000.0f);
  168. switch (pj.type)
  169. {
  170. case PhysicsJointType::FIXED:
  171. {
  172. return;
  173. }
  174. case PhysicsJointType::SPHERICAL:
  175. {
  176. pj.y_limit_angle = joint.key_or_nil("y_limit_angle").to_float(HALF_PI);
  177. pj.z_limit_angle = joint.key_or_nil("z_limit_angle").to_float(HALF_PI);
  178. pj.contact_dist = joint.key_or_nil("contact_dist").to_float(0.0f);
  179. break;
  180. }
  181. case PhysicsJointType::REVOLUTE:
  182. case PhysicsJointType::PRISMATIC:
  183. {
  184. pj.lower_limit = joint.key_or_nil("lower_limit").to_float(0.0f);
  185. pj.upper_limit = joint.key_or_nil("upper_limit").to_float(0.0f);
  186. pj.contact_dist = joint.key_or_nil("contact_dist").to_float(0.0f);
  187. break;
  188. }
  189. case PhysicsJointType::DISTANCE:
  190. {
  191. pj.max_distance = joint.key_or_nil("max_distance").to_float(0.0f);
  192. break;
  193. }
  194. case PhysicsJointType::D6:
  195. {
  196. CE_FATAL("Not implemented");
  197. break;
  198. }
  199. }
  200. array::push_back(joints, pj);
  201. }
  202. }
  203. void compile(const char* path, CompileOptions& opts)
  204. {
  205. static const uint32_t VERSION = 1;
  206. Buffer buf = opts.read(path);
  207. JSONParser json(array::begin(buf));
  208. JSONElement root = json.root();
  209. bool m_has_controller = false;
  210. PhysicsController m_controller;
  211. // Read controller
  212. JSONElement controller = root.key_or_nil("controller");
  213. if (controller.is_nil())
  214. {
  215. m_has_controller = false;
  216. }
  217. else
  218. {
  219. parse_controller(controller, m_controller);
  220. m_has_controller = true;
  221. }
  222. Array<PhysicsActor> m_actors(default_allocator());
  223. Array<uint32_t> m_shapes_indices(default_allocator());
  224. Array<PhysicsShape> m_shapes(default_allocator());
  225. Array<PhysicsJoint> m_joints(default_allocator());
  226. if (root.has_key("actors")) parse_actors(root.key("actors"), m_actors, m_shapes, m_shapes_indices);
  227. if (root.has_key("joints")) parse_joints(root.key("joints"), m_joints);
  228. PhysicsResource pr;
  229. pr.version = VERSION;
  230. pr.num_controllers = m_has_controller ? 1 : 0;
  231. pr.num_actors = array::size(m_actors);
  232. pr.num_shapes_indices = array::size(m_shapes_indices);
  233. pr.num_shapes = array::size(m_shapes);
  234. pr.num_joints = array::size(m_joints);
  235. uint32_t offt = sizeof(PhysicsResource);
  236. pr.controller_offset = offt; offt += sizeof(PhysicsController) * pr.num_controllers;
  237. pr.actors_offset = offt; offt += sizeof(PhysicsActor) * pr.num_actors;
  238. pr.shapes_indices_offset = offt; offt += sizeof(uint32_t) * pr.num_shapes_indices;
  239. pr.shapes_offset = offt; offt += sizeof(PhysicsShape) * pr.num_shapes;
  240. pr.joints_offset = offt;
  241. // Write all
  242. opts.write(pr.version);
  243. opts.write(pr.num_controllers);
  244. opts.write(pr.controller_offset);
  245. opts.write(pr.num_actors);
  246. opts.write(pr.actors_offset);
  247. opts.write(pr.num_shapes_indices);
  248. opts.write(pr.shapes_indices_offset);
  249. opts.write(pr.num_shapes);
  250. opts.write(pr.shapes_offset);
  251. opts.write(pr.num_joints);
  252. opts.write(pr.joints_offset);
  253. if (m_has_controller)
  254. {
  255. opts.write(m_controller.name);
  256. opts.write(m_controller.height);
  257. opts.write(m_controller.radius);
  258. opts.write(m_controller.slope_limit);
  259. opts.write(m_controller.step_offset);
  260. opts.write(m_controller.contact_offset);
  261. opts.write(m_controller.collision_filter);
  262. }
  263. for (uint32_t i = 0; i < array::size(m_actors); i++)
  264. {
  265. opts.write(m_actors[i].name);
  266. opts.write(m_actors[i].node);
  267. opts.write(m_actors[i].actor_class);
  268. opts.write(m_actors[i].mass);
  269. opts.write(m_actors[i].num_shapes);
  270. }
  271. for (uint32_t i = 0; i < array::size(m_shapes_indices); i++)
  272. {
  273. opts.write(m_shapes_indices[i]);
  274. }
  275. for (uint32_t i = 0; i < array::size(m_shapes); i++)
  276. {
  277. opts.write(m_shapes[i].name);
  278. opts.write(m_shapes[i].shape_class);
  279. opts.write(m_shapes[i].type);
  280. opts.write(m_shapes[i].material);
  281. opts.write(m_shapes[i].resource);
  282. opts.write(m_shapes[i].position);
  283. opts.write(m_shapes[i].rotation);
  284. opts.write(m_shapes[i].data_0);
  285. opts.write(m_shapes[i].data_1);
  286. opts.write(m_shapes[i].data_2);
  287. opts.write(m_shapes[i].data_3);
  288. }
  289. for (uint32_t i = 0; i < array::size(m_joints); i++)
  290. {
  291. opts.write(m_joints[i].name);
  292. opts.write(m_joints[i].type);
  293. opts.write(m_joints[i].actor_0);
  294. opts.write(m_joints[i].actor_1);
  295. opts.write(m_joints[i].anchor_0);
  296. opts.write(m_joints[i].anchor_1);
  297. opts.write(m_joints[i].breakable);
  298. opts.write(m_joints[i]._pad[0]);
  299. opts.write(m_joints[i]._pad[1]);
  300. opts.write(m_joints[i]._pad[2]);
  301. opts.write(m_joints[i].break_force);
  302. opts.write(m_joints[i].break_torque);
  303. opts.write(m_joints[i].lower_limit);
  304. opts.write(m_joints[i].upper_limit);
  305. opts.write(m_joints[i].y_limit_angle);
  306. opts.write(m_joints[i].z_limit_angle);
  307. opts.write(m_joints[i].max_distance);
  308. opts.write(m_joints[i].contact_dist);
  309. opts.write(m_joints[i].restitution);
  310. opts.write(m_joints[i].spring);
  311. opts.write(m_joints[i].damping);
  312. opts.write(m_joints[i].distance);
  313. }
  314. }
  315. void* load(File& file, Allocator& a)
  316. {
  317. const size_t file_size = file.size();
  318. void* res = a.allocate(file_size);
  319. file.read(res, file_size);
  320. return res;
  321. }
  322. void online(StringId64 /*id*/, ResourceManager& /*rm*/)
  323. {
  324. }
  325. void offline(StringId64 /*id*/, ResourceManager& /*rm*/)
  326. {
  327. }
  328. void unload(Allocator& allocator, void* resource)
  329. {
  330. allocator.deallocate(resource);
  331. }
  332. bool has_controller(const PhysicsResource* pr)
  333. {
  334. return pr->num_controllers == 1;
  335. }
  336. const PhysicsController* controller(const PhysicsResource* pr)
  337. {
  338. CE_ASSERT(has_controller(pr), "Controller does not exist");
  339. PhysicsController* controller = (PhysicsController*) ((char*)pr + pr->controller_offset);
  340. return controller;
  341. }
  342. uint32_t num_actors(const PhysicsResource* pr)
  343. {
  344. return pr->num_actors;
  345. }
  346. const PhysicsActor* actor(const PhysicsResource* pr, uint32_t i)
  347. {
  348. CE_ASSERT(i < num_actors(pr), "Index out of bounds");
  349. PhysicsActor* actor = (PhysicsActor*) ((char*)pr + pr->actors_offset);
  350. return &actor[i];
  351. }
  352. uint32_t num_shapes_indices(const PhysicsResource* pr)
  353. {
  354. return pr->num_shapes_indices;
  355. }
  356. uint32_t shape_index(const PhysicsResource* pr, uint32_t i)
  357. {
  358. CE_ASSERT(i < num_shapes_indices(pr), "Index out of bounds");
  359. uint32_t* index = (uint32_t*) ((char*)pr + pr->shapes_indices_offset);
  360. return index[i];
  361. }
  362. uint32_t num_shapes(const PhysicsResource* pr)
  363. {
  364. return pr->num_shapes;
  365. }
  366. const PhysicsShape* shape(const PhysicsResource* pr, uint32_t i)
  367. {
  368. CE_ASSERT(i < num_shapes(pr), "Index out of bounds");
  369. PhysicsShape* shape = (PhysicsShape*) ((char*)pr + pr->shapes_offset);
  370. return &shape[i];
  371. }
  372. uint32_t num_joints(const PhysicsResource* pr)
  373. {
  374. return pr->num_joints;
  375. }
  376. const PhysicsJoint* joint(const PhysicsResource* pr, uint32_t i)
  377. {
  378. CE_ASSERT(i < num_joints(pr), "Index out of bounds");
  379. PhysicsJoint* joint = (PhysicsJoint*) ((char*)pr + pr->joints_offset);
  380. return &joint[i];
  381. }
  382. } // namespace physics_resource
  383. namespace physics_config_resource
  384. {
  385. static Map<DynamicString, uint32_t>* s_ftm = NULL;
  386. struct ObjectName
  387. {
  388. StringId32 name;
  389. uint32_t index;
  390. bool operator()(const ObjectName& a, const ObjectName& b)
  391. {
  392. return a.name < b.name;
  393. }
  394. };
  395. void parse_materials(JSONElement e, Array<ObjectName>& names, Array<PhysicsMaterial>& objects)
  396. {
  397. Vector<DynamicString> keys(default_allocator());
  398. e.to_keys(keys);
  399. for (uint32_t i = 0; i < vector::size(keys); i++)
  400. {
  401. JSONElement material = e.key(keys[i].c_str());
  402. // Read material name
  403. ObjectName mat_name;
  404. mat_name.name = keys[i].to_string_id();
  405. mat_name.index = i;
  406. // Read material object
  407. PhysicsMaterial mat;
  408. mat.static_friction = material.key("static_friction").to_float();
  409. mat.dynamic_friction = material.key("dynamic_friction").to_float();
  410. mat.restitution = material.key("restitution").to_float();
  411. array::push_back(names, mat_name);
  412. array::push_back(objects, mat);
  413. }
  414. }
  415. void parse_shapes(JSONElement e, Array<ObjectName>& names, Array<PhysicsShape2>& objects)
  416. {
  417. Vector<DynamicString> keys(default_allocator());
  418. e.to_keys(keys);
  419. for (uint32_t i = 0; i < vector::size(keys); i++)
  420. {
  421. JSONElement shape = e.key(keys[i].c_str());
  422. // Read shape name
  423. ObjectName shape_name;
  424. shape_name.name = keys[i].to_string_id();
  425. shape_name.index = i;
  426. // Read shape object
  427. PhysicsShape2 ps2;
  428. ps2.trigger = shape.key("trigger").to_bool();
  429. ps2.collision_filter = shape.key("collision_filter").to_string_id();
  430. array::push_back(names, shape_name);
  431. array::push_back(objects, ps2);
  432. }
  433. }
  434. void parse_actors(JSONElement e, Array<ObjectName>& names, Array<PhysicsActor2>& objects)
  435. {
  436. Vector<DynamicString> keys(default_allocator());
  437. e.to_keys(keys);
  438. for (uint32_t i = 0; i < vector::size(keys); i++)
  439. {
  440. JSONElement actor = e.key(keys[i].c_str());
  441. // Read actor name
  442. ObjectName actor_name;
  443. actor_name.name = keys[i].to_string_id();
  444. actor_name.index = i;
  445. // Read actor object
  446. PhysicsActor2 pa2;
  447. pa2.linear_damping = actor.key_or_nil("linear_damping").to_float(0.0f);
  448. pa2.angular_damping = actor.key_or_nil("angular_damping").to_float(0.05f);
  449. JSONElement dynamic = actor.key_or_nil("dynamic");
  450. JSONElement kinematic = actor.key_or_nil("kinematic");
  451. JSONElement disable_gravity = actor.key_or_nil("disable_gravity");
  452. pa2.flags = 0;
  453. if (!dynamic.is_nil())
  454. {
  455. pa2.flags |= dynamic.to_bool() ? 1 : 0;
  456. }
  457. if (!kinematic.is_nil())
  458. {
  459. pa2.flags |= kinematic.to_bool() ? PhysicsActor2::KINEMATIC : 0;
  460. }
  461. if (!disable_gravity.is_nil())
  462. {
  463. pa2.flags |= disable_gravity.to_bool() ? PhysicsActor2::DISABLE_GRAVITY : 0;
  464. }
  465. array::push_back(names, actor_name);
  466. array::push_back(objects, pa2);
  467. }
  468. }
  469. uint32_t new_filter_mask()
  470. {
  471. static uint32_t mask = 1;
  472. CE_ASSERT(mask != 0x80000000u, "Too many collision filters");
  473. uint32_t tmp = mask;
  474. mask = mask << 1;
  475. return tmp;
  476. }
  477. uint32_t filter_to_mask(const char* f)
  478. {
  479. if (map::has(*s_ftm, DynamicString(f)))
  480. return map::get(*s_ftm, DynamicString(f), 0u);
  481. uint32_t new_filter = new_filter_mask();
  482. map::set(*s_ftm, DynamicString(f), new_filter);
  483. return new_filter;
  484. }
  485. uint32_t collides_with_to_mask(const Vector<DynamicString>& coll_with)
  486. {
  487. uint32_t mask = 0;
  488. for (uint32_t i = 0; i < vector::size(coll_with); i++)
  489. {
  490. mask |= filter_to_mask(coll_with[i].c_str());
  491. }
  492. return mask;
  493. }
  494. void parse_collision_filters(JSONElement e, Array<ObjectName>& names, Array<PhysicsCollisionFilter>& objects)
  495. {
  496. Vector<DynamicString> keys(default_allocator());
  497. e.to_keys(keys);
  498. for (uint32_t i = 0; i < vector::size(keys); i++)
  499. {
  500. JSONElement filter = e.key(keys[i].c_str());
  501. JSONElement collides_with = filter.key("collides_with");
  502. // Read filter name
  503. ObjectName filter_name;
  504. filter_name.name = keys[i].to_string_id();
  505. filter_name.index = i;
  506. // Build mask
  507. Vector<DynamicString> collides_with_vector(default_allocator());
  508. collides_with.to_array(collides_with_vector);
  509. PhysicsCollisionFilter pcf;
  510. pcf.me = filter_to_mask(keys[i].c_str());
  511. pcf.mask = collides_with_to_mask(collides_with_vector);
  512. // printf("FILTER: %s (me = %X, mask = %X\n", keys[i].c_str(), pcf.me, pcf.mask);
  513. array::push_back(names, filter_name);
  514. array::push_back(objects, pcf);
  515. }
  516. }
  517. void compile(const char* path, CompileOptions& opts)
  518. {
  519. static const uint32_t VERSION = 1;
  520. Buffer buf = opts.read(path);
  521. JSONParser json(array::begin(buf));
  522. JSONElement root = json.root();
  523. typedef Map<DynamicString, uint32_t> FilterMap;
  524. s_ftm = CE_NEW(default_allocator(), FilterMap)(default_allocator());
  525. Array<ObjectName> material_names(default_allocator());
  526. Array<PhysicsMaterial> material_objects(default_allocator());
  527. Array<ObjectName> shape_names(default_allocator());
  528. Array<PhysicsShape2> shape_objects(default_allocator());
  529. Array<ObjectName> actor_names(default_allocator());
  530. Array<PhysicsActor2> actor_objects(default_allocator());
  531. Array<ObjectName> filter_names(default_allocator());
  532. Array<PhysicsCollisionFilter> filter_objects(default_allocator());
  533. // Parse materials
  534. if (root.has_key("collision_filters")) parse_collision_filters(root.key("collision_filters"), filter_names, filter_objects);
  535. if (root.has_key("materials")) parse_materials(root.key("materials"), material_names, material_objects);
  536. if (root.has_key("shapes")) parse_shapes(root.key("shapes"), shape_names, shape_objects);
  537. if (root.has_key("actors")) parse_actors(root.key("actors"), actor_names, actor_objects);
  538. // Sort objects by name
  539. std::sort(array::begin(material_names), array::end(material_names), ObjectName());
  540. std::sort(array::begin(shape_names), array::end(shape_names), ObjectName());
  541. std::sort(array::begin(actor_names), array::end(actor_names), ObjectName());
  542. std::sort(array::begin(filter_names), array::end(filter_names), ObjectName());
  543. // Setup struct for writing
  544. PhysicsConfigResource pcr;
  545. pcr.version = VERSION;
  546. pcr.num_materials = array::size(material_names);
  547. pcr.num_shapes = array::size(shape_names);
  548. pcr.num_actors = array::size(actor_names);
  549. pcr.num_filters = array::size(filter_names);
  550. uint32_t offt = sizeof(PhysicsConfigResource);
  551. pcr.materials_offset = offt;
  552. offt += sizeof(StringId32) * pcr.num_materials;
  553. offt += sizeof(PhysicsMaterial) * pcr.num_materials;
  554. pcr.shapes_offset = offt;
  555. offt += sizeof(StringId32) * pcr.num_shapes;
  556. offt += sizeof(PhysicsShape2) * pcr.num_shapes;
  557. pcr.actors_offset = offt;
  558. offt += sizeof(StringId32) * pcr.num_actors;
  559. offt += sizeof(PhysicsActor2) * pcr.num_actors;
  560. pcr.filters_offset = offt;
  561. offt += sizeof(StringId32) * pcr.num_filters;
  562. offt += sizeof(PhysicsCollisionFilter) * pcr.num_filters;
  563. // Write all
  564. opts.write(pcr.version);
  565. opts.write(pcr.num_materials);
  566. opts.write(pcr.materials_offset);
  567. opts.write(pcr.num_shapes);
  568. opts.write(pcr.shapes_offset);
  569. opts.write(pcr.num_actors);
  570. opts.write(pcr.actors_offset);
  571. opts.write(pcr.num_filters);
  572. opts.write(pcr.filters_offset);
  573. // Write material names
  574. for (uint32_t i = 0; i < pcr.num_materials; i++)
  575. {
  576. opts.write(material_names[i].name);
  577. }
  578. // Write material objects
  579. for (uint32_t i = 0; i < pcr.num_materials; i++)
  580. {
  581. opts.write(material_objects[material_names[i].index].static_friction);
  582. opts.write(material_objects[material_names[i].index].dynamic_friction);
  583. opts.write(material_objects[material_names[i].index].restitution);
  584. }
  585. // Write shape names
  586. for (uint32_t i = 0; i < pcr.num_shapes; i++)
  587. {
  588. opts.write(shape_names[i].name);
  589. }
  590. // Write material objects
  591. for (uint32_t i = 0; i < pcr.num_shapes; i++)
  592. {
  593. opts.write(shape_objects[shape_names[i].index].collision_filter);
  594. opts.write(shape_objects[shape_names[i].index].trigger);
  595. opts.write(shape_objects[shape_names[i].index]._pad[0]);
  596. opts.write(shape_objects[shape_names[i].index]._pad[1]);
  597. opts.write(shape_objects[shape_names[i].index]._pad[2]);
  598. }
  599. // Write actor names
  600. for (uint32_t i = 0; i < pcr.num_actors; i++)
  601. {
  602. opts.write(actor_names[i].name);
  603. }
  604. // Write actor objects
  605. for (uint32_t i = 0; i < pcr.num_actors; i++)
  606. {
  607. opts.write(actor_objects[actor_names[i].index].linear_damping);
  608. opts.write(actor_objects[actor_names[i].index].angular_damping);
  609. opts.write(actor_objects[actor_names[i].index].flags);
  610. }
  611. // Write filter names
  612. for (uint32_t i = 0; i < pcr.num_filters; i++)
  613. {
  614. opts.write(filter_names[i].name);
  615. }
  616. // Write filter objects
  617. for (uint32_t i = 0; i < pcr.num_filters; i++)
  618. {
  619. opts.write(filter_objects[filter_names[i].index].me);
  620. opts.write(filter_objects[filter_names[i].index].mask);
  621. }
  622. CE_DELETE(default_allocator(), s_ftm);
  623. }
  624. void* load(File& file, Allocator& a)
  625. {
  626. const size_t file_size = file.size();
  627. void* res = a.allocate(file_size);
  628. file.read(res, file_size);
  629. return res;
  630. }
  631. void online(StringId64 /*id*/, ResourceManager& /*rm*/)
  632. {
  633. }
  634. void offline(StringId64 /*id*/, ResourceManager& /*rm*/)
  635. {
  636. }
  637. void unload(Allocator& allocator, void* resource)
  638. {
  639. allocator.deallocate(resource);
  640. }
  641. uint32_t num_materials(const PhysicsConfigResource* pcr)
  642. {
  643. return pcr->num_materials;
  644. }
  645. /// Returns the material with the given @a name
  646. const PhysicsMaterial* material(const PhysicsConfigResource* pcr, StringId32 name)
  647. {
  648. StringId32* begin = (StringId32*) ((char*)pcr + pcr->materials_offset);
  649. StringId32* end = begin + num_materials(pcr);
  650. StringId32* id = std::find(begin, end, name);
  651. CE_ASSERT(id != end, "Material not found");
  652. return material_by_index(pcr, id - begin);
  653. }
  654. const PhysicsMaterial* material_by_index(const PhysicsConfigResource* pcr, uint32_t i)
  655. {
  656. CE_ASSERT(i < num_materials(pcr), "Index out of bounds");
  657. const PhysicsMaterial* base = (PhysicsMaterial*) ((char*)pcr + pcr->materials_offset + sizeof(StringId32) * num_materials(pcr));
  658. return &base[i];
  659. }
  660. uint32_t num_shapes(const PhysicsConfigResource* pcr)
  661. {
  662. return pcr->num_shapes;
  663. }
  664. const PhysicsShape2* shape(const PhysicsConfigResource* pcr, StringId32 name)
  665. {
  666. StringId32* begin = (StringId32*) ((char*)pcr + pcr->shapes_offset);
  667. StringId32* end = begin + num_shapes(pcr);
  668. StringId32* id = std::find(begin, end, name);
  669. CE_ASSERT(id != end, "Shape not found");
  670. return shape_by_index(pcr, id - begin);
  671. }
  672. const PhysicsShape2* shape_by_index(const PhysicsConfigResource* pcr, uint32_t i)
  673. {
  674. CE_ASSERT(i < num_shapes(pcr), "Index out of bounds");
  675. const PhysicsShape2* base = (PhysicsShape2*) ((char*)pcr + pcr->shapes_offset + sizeof(StringId32) * num_shapes(pcr));
  676. return &base[i];
  677. }
  678. uint32_t num_actors(const PhysicsConfigResource* pcr)
  679. {
  680. return pcr->num_actors;
  681. }
  682. /// Returns the actor with the given @a name
  683. const PhysicsActor2* actor(const PhysicsConfigResource* pcr, StringId32 name)
  684. {
  685. StringId32* begin = (StringId32*) ((char*)pcr + pcr->actors_offset);
  686. StringId32* end = begin + num_actors(pcr);
  687. StringId32* id = std::find(begin, end, name);
  688. CE_ASSERT(id != end, "Actor not found");
  689. return actor_by_index(pcr, id - begin);
  690. }
  691. const PhysicsActor2* actor_by_index(const PhysicsConfigResource* pcr, uint32_t i)
  692. {
  693. CE_ASSERT(i < num_actors(pcr), "Index out of bounds");
  694. const PhysicsActor2* base = (PhysicsActor2*) ((char*)pcr + pcr->actors_offset + sizeof(StringId32) * num_actors(pcr));
  695. return &base[i];
  696. }
  697. uint32_t num_filters(const PhysicsConfigResource* pcr)
  698. {
  699. return pcr->num_filters;
  700. }
  701. const PhysicsCollisionFilter* filter(const PhysicsConfigResource* pcr, StringId32 name)
  702. {
  703. StringId32* begin = (StringId32*) ((char*)pcr + pcr->filters_offset);
  704. StringId32* end = begin + num_filters(pcr);
  705. StringId32* id = std::find(begin, end, name);
  706. CE_ASSERT(id != end, "Filter not found");
  707. return filter_by_index(pcr, id - begin);
  708. }
  709. const PhysicsCollisionFilter* filter_by_index(const PhysicsConfigResource* pcr, uint32_t i)
  710. {
  711. CE_ASSERT(i < num_filters(pcr), "Index out of bounds");
  712. const PhysicsCollisionFilter* base = (PhysicsCollisionFilter*) ((char*)pcr + pcr->filters_offset + sizeof(StringId32) * num_filters(pcr));
  713. return &base[i];
  714. }
  715. } // namespace physics_config_resource
  716. } // namespace crown