physics_resource.cpp 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824
  1. /*
  2. * Copyright (c) 2012-2015 Daniele Bartolini and individual contributors.
  3. * License: https://github.com/taylor001/crown/blob/master/LICENSE
  4. */
  5. #include "physics_resource.h"
  6. #include "physics_types.h"
  7. #include "filesystem.h"
  8. #include "json_parser.h"
  9. #include "string_utils.h"
  10. #include "dynamic_string.h"
  11. #include "map.h"
  12. #include "quaternion.h"
  13. #include "compile_options.h"
  14. #include <algorithm>
  15. namespace crown
  16. {
  17. namespace physics_resource
  18. {
  19. struct Shape
  20. {
  21. const char* name;
  22. ShapeType::Enum type;
  23. };
  24. static const Shape s_shape[ShapeType::COUNT] =
  25. {
  26. { "sphere", ShapeType::SPHERE },
  27. { "capsule", ShapeType::CAPSULE },
  28. { "box", ShapeType::BOX },
  29. { "plane", ShapeType::PLANE },
  30. { "convex_mesh", ShapeType::CONVEX_MESH }
  31. };
  32. struct Joint
  33. {
  34. const char* name;
  35. JointType::Enum type;
  36. };
  37. static const Joint s_joint[JointType::COUNT] =
  38. {
  39. { "fixed", JointType::FIXED },
  40. { "spherical", JointType::SPHERICAL },
  41. { "revolute", JointType::REVOLUTE },
  42. { "prismatic", JointType::PRISMATIC },
  43. { "distance", JointType::DISTANCE }
  44. };
  45. static uint32_t shape_type_to_enum(const char* type)
  46. {
  47. for (uint32_t i = 0; i < ShapeType::COUNT; i++)
  48. {
  49. if (strcmp(type, s_shape[i].name) == 0)
  50. return s_shape[i].type;
  51. }
  52. CE_FATAL("Bad shape type");
  53. return 0;
  54. }
  55. static uint32_t joint_type_to_enum(const char* type)
  56. {
  57. for (uint32_t i = 0; i < JointType::COUNT; i++)
  58. {
  59. if (strcmp(type, s_joint[i].name) == 0)
  60. return s_joint[i].type;
  61. }
  62. CE_FATAL("Bad joint type");
  63. return 0;
  64. }
  65. void parse_controller(JSONElement e, ControllerResource& controller)
  66. {
  67. controller.name = e.key("name").to_string_id();
  68. controller.height = e.key("height").to_float();
  69. controller.radius = e.key("radius").to_float();
  70. controller.slope_limit = e.key("slope_limit").to_float();
  71. controller.step_offset = e.key("step_offset").to_float();
  72. controller.contact_offset = e.key("contact_offset").to_float();
  73. controller.collision_filter = e.key("collision_filter").to_string_id();
  74. }
  75. void parse_shapes(JSONElement e, Array<ShapeResource>& shapes)
  76. {
  77. Vector<DynamicString> keys(default_allocator());
  78. e.to_keys(keys);
  79. for (uint32_t k = 0; k < vector::size(keys); k++)
  80. {
  81. JSONElement shape = e.key(keys[k].c_str());
  82. ShapeResource sr;
  83. sr.name = keys[k].to_string_id();
  84. sr.shape_class = shape.key("class").to_string_id();
  85. sr.material = shape.key("material").to_string_id();
  86. sr.position = shape.key("position").to_vector3();
  87. sr.rotation = shape.key("rotation").to_quaternion();
  88. DynamicString stype; shape.key("type").to_string(stype);
  89. sr.type = shape_type_to_enum(stype.c_str());
  90. switch (sr.type)
  91. {
  92. case ShapeType::SPHERE:
  93. {
  94. sr.data_0 = shape.key("radius").to_float();
  95. break;
  96. }
  97. case ShapeType::CAPSULE:
  98. {
  99. sr.data_0 = shape.key("radius").to_float();
  100. sr.data_1 = shape.key("half_height").to_float();
  101. break;
  102. }
  103. case ShapeType::BOX:
  104. {
  105. sr.data_0 = shape.key("half_x").to_float();
  106. sr.data_1 = shape.key("half_y").to_float();
  107. sr.data_2 = shape.key("half_z").to_float();
  108. break;
  109. }
  110. case ShapeType::PLANE:
  111. {
  112. sr.data_0 = shape.key("n_x").to_float();
  113. sr.data_1 = shape.key("n_y").to_float();
  114. sr.data_2 = shape.key("n_z").to_float();
  115. sr.data_3 = shape.key("distance").to_float();
  116. break;
  117. }
  118. }
  119. array::push_back(shapes, sr);
  120. }
  121. }
  122. void parse_actors(JSONElement e, Array<ActorResource>& actors, Array<ShapeResource>& actor_shapes, Array<uint32_t>& shape_indices)
  123. {
  124. Vector<DynamicString> keys(default_allocator());
  125. e.to_keys(keys);
  126. for (uint32_t k = 0; k < vector::size(keys); k++)
  127. {
  128. JSONElement actor = e.key(keys[k].c_str());
  129. ActorResource pa;
  130. pa.name = keys[k].to_string_id();
  131. pa.node = actor.key("node").to_string_id();
  132. pa.actor_class = actor.key("class").to_string_id();
  133. pa.mass = actor.key("mass").to_float();
  134. pa.num_shapes = actor.key("shapes").size();
  135. pa.flags = 0;
  136. pa.flags |= actor.key_or_nil("lock_translation_x").to_bool(false) ? ActorFlags::LOCK_TRANSLATION_X : 0;
  137. pa.flags |= actor.key_or_nil("lock_translation_y").to_bool(false) ? ActorFlags::LOCK_TRANSLATION_Y : 0;
  138. pa.flags |= actor.key_or_nil("lock_translation_z").to_bool(false) ? ActorFlags::LOCK_TRANSLATION_Z : 0;
  139. pa.flags |= actor.key_or_nil("lock_rotation_x").to_bool(false) ? ActorFlags::LOCK_ROTATION_X : 0;
  140. pa.flags |= actor.key_or_nil("lock_rotation_y").to_bool(false) ? ActorFlags::LOCK_ROTATION_Y : 0;
  141. pa.flags |= actor.key_or_nil("lock_rotation_z").to_bool(false) ? ActorFlags::LOCK_ROTATION_Z : 0;
  142. array::push_back(actors, pa);
  143. array::push_back(shape_indices, array::size(shape_indices));
  144. parse_shapes(actor.key("shapes"), actor_shapes);
  145. }
  146. }
  147. void parse_joints(JSONElement e, Array<JointResource>& joints)
  148. {
  149. Vector<DynamicString> keys(default_allocator());
  150. e.to_keys(keys);
  151. for (uint32_t k = 0; k < vector::size(keys); k++)
  152. {
  153. JSONElement joint = e.key(keys[k].c_str());
  154. JSONElement type = joint.key("type");
  155. JointResource pj;
  156. pj.name = keys[k].to_string_id();
  157. DynamicString jtype; type.to_string(jtype);
  158. pj.type = joint_type_to_enum(jtype.c_str());
  159. pj.actor_0 = joint.key("actor_0").to_string_id();
  160. pj.actor_1 = joint.key("actor_1").to_string_id();
  161. pj.anchor_0 = joint.key_or_nil("anchor_0").to_vector3(vector3::ZERO);
  162. pj.anchor_1 = joint.key_or_nil("anchor_1").to_vector3(vector3::ZERO);
  163. pj.restitution = joint.key_or_nil("restitution").to_float(0.5f);
  164. pj.spring = joint.key_or_nil("spring").to_float(100.0f);
  165. pj.damping = joint.key_or_nil("damping").to_float(0.0f);
  166. pj.distance = joint.key_or_nil("distance").to_float(1.0f);
  167. pj.breakable = joint.key_or_nil("breakable").to_bool(false);
  168. pj.break_force = joint.key_or_nil("break_force").to_float(3000.0f);
  169. pj.break_torque = joint.key_or_nil("break_torque").to_float(1000.0f);
  170. switch (pj.type)
  171. {
  172. case JointType::FIXED:
  173. {
  174. return;
  175. }
  176. case JointType::SPHERICAL:
  177. {
  178. pj.y_limit_angle = joint.key_or_nil("y_limit_angle").to_float(HALF_PI);
  179. pj.z_limit_angle = joint.key_or_nil("z_limit_angle").to_float(HALF_PI);
  180. pj.contact_dist = joint.key_or_nil("contact_dist").to_float(0.0f);
  181. break;
  182. }
  183. case JointType::REVOLUTE:
  184. case JointType::PRISMATIC:
  185. {
  186. pj.lower_limit = joint.key_or_nil("lower_limit").to_float(0.0f);
  187. pj.upper_limit = joint.key_or_nil("upper_limit").to_float(0.0f);
  188. pj.contact_dist = joint.key_or_nil("contact_dist").to_float(0.0f);
  189. break;
  190. }
  191. case JointType::DISTANCE:
  192. {
  193. pj.max_distance = joint.key_or_nil("max_distance").to_float(0.0f);
  194. break;
  195. }
  196. }
  197. array::push_back(joints, pj);
  198. }
  199. }
  200. void compile(const char* path, CompileOptions& opts)
  201. {
  202. static const uint32_t VERSION = 1;
  203. Buffer buf = opts.read(path);
  204. JSONParser json(array::begin(buf));
  205. JSONElement root = json.root();
  206. bool m_has_controller = false;
  207. ControllerResource m_controller;
  208. // Read controller
  209. JSONElement controller = root.key_or_nil("controller");
  210. if (controller.is_nil())
  211. {
  212. m_has_controller = false;
  213. }
  214. else
  215. {
  216. parse_controller(controller, m_controller);
  217. m_has_controller = true;
  218. }
  219. Array<ActorResource> m_actors(default_allocator());
  220. Array<uint32_t> m_shapes_indices(default_allocator());
  221. Array<ShapeResource> m_shapes(default_allocator());
  222. Array<JointResource> m_joints(default_allocator());
  223. if (root.has_key("actors")) parse_actors(root.key("actors"), m_actors, m_shapes, m_shapes_indices);
  224. if (root.has_key("joints")) parse_joints(root.key("joints"), m_joints);
  225. PhysicsResource pr;
  226. pr.version = VERSION;
  227. pr.num_controllers = m_has_controller ? 1 : 0;
  228. pr.num_actors = array::size(m_actors);
  229. pr.num_joints = array::size(m_joints);
  230. uint32_t offt = sizeof(PhysicsResource);
  231. pr.controller_offset = offt; offt += sizeof(ControllerResource) * pr.num_controllers;
  232. pr.actors_offset = offt; offt += sizeof(ActorResource) * pr.num_actors + sizeof(ShapeResource) * array::size(m_shapes);
  233. pr.joints_offset = offt;
  234. // Write all
  235. opts.write(pr.version);
  236. opts.write(pr.num_controllers);
  237. opts.write(pr.controller_offset);
  238. opts.write(pr.num_actors);
  239. opts.write(pr.actors_offset);
  240. opts.write(pr.num_joints);
  241. opts.write(pr.joints_offset);
  242. if (m_has_controller)
  243. {
  244. opts.write(m_controller.name);
  245. opts.write(m_controller.height);
  246. opts.write(m_controller.radius);
  247. opts.write(m_controller.slope_limit);
  248. opts.write(m_controller.step_offset);
  249. opts.write(m_controller.contact_offset);
  250. opts.write(m_controller.collision_filter);
  251. }
  252. for (uint32_t i = 0; i < array::size(m_actors); i++)
  253. {
  254. opts.write(m_actors[i].name);
  255. opts.write(m_actors[i].node);
  256. opts.write(m_actors[i].actor_class);
  257. opts.write(m_actors[i].mass);
  258. opts.write(m_actors[i].flags);
  259. opts.write(m_actors[i].num_shapes);
  260. for (uint32_t ss = 0; ss < m_actors[i].num_shapes; ++ss)
  261. {
  262. const uint32_t base = m_shapes_indices[i];
  263. opts.write(m_shapes[base + ss].name);
  264. opts.write(m_shapes[base + ss].shape_class);
  265. opts.write(m_shapes[base + ss].type);
  266. opts.write(m_shapes[base + ss].material);
  267. opts.write(m_shapes[base + ss].position);
  268. opts.write(m_shapes[base + ss].rotation);
  269. opts.write(m_shapes[base + ss].data_0);
  270. opts.write(m_shapes[base + ss].data_1);
  271. opts.write(m_shapes[base + ss].data_2);
  272. opts.write(m_shapes[base + ss].data_3);
  273. }
  274. }
  275. for (uint32_t i = 0; i < array::size(m_joints); i++)
  276. {
  277. opts.write(m_joints[i].name);
  278. opts.write(m_joints[i].type);
  279. opts.write(m_joints[i].actor_0);
  280. opts.write(m_joints[i].actor_1);
  281. opts.write(m_joints[i].anchor_0);
  282. opts.write(m_joints[i].anchor_1);
  283. opts.write(m_joints[i].breakable);
  284. opts.write(m_joints[i]._pad[0]);
  285. opts.write(m_joints[i]._pad[1]);
  286. opts.write(m_joints[i]._pad[2]);
  287. opts.write(m_joints[i].break_force);
  288. opts.write(m_joints[i].break_torque);
  289. opts.write(m_joints[i].lower_limit);
  290. opts.write(m_joints[i].upper_limit);
  291. opts.write(m_joints[i].y_limit_angle);
  292. opts.write(m_joints[i].z_limit_angle);
  293. opts.write(m_joints[i].max_distance);
  294. opts.write(m_joints[i].contact_dist);
  295. opts.write(m_joints[i].restitution);
  296. opts.write(m_joints[i].spring);
  297. opts.write(m_joints[i].damping);
  298. opts.write(m_joints[i].distance);
  299. }
  300. }
  301. void* load(File& file, Allocator& a)
  302. {
  303. const size_t file_size = file.size();
  304. void* res = a.allocate(file_size);
  305. file.read(res, file_size);
  306. return res;
  307. }
  308. void online(StringId64 /*id*/, ResourceManager& /*rm*/)
  309. {
  310. }
  311. void offline(StringId64 /*id*/, ResourceManager& /*rm*/)
  312. {
  313. }
  314. void unload(Allocator& allocator, void* resource)
  315. {
  316. allocator.deallocate(resource);
  317. }
  318. bool has_controller(const PhysicsResource* pr)
  319. {
  320. return pr->num_controllers == 1;
  321. }
  322. const ControllerResource* controller(const PhysicsResource* pr)
  323. {
  324. CE_ASSERT(has_controller(pr), "Controller does not exist");
  325. ControllerResource* controller = (ControllerResource*) ((char*)pr + pr->controller_offset);
  326. return controller;
  327. }
  328. uint32_t num_actors(const PhysicsResource* pr)
  329. {
  330. return pr->num_actors;
  331. }
  332. const ActorResource* actor(const PhysicsResource* pr, uint32_t i)
  333. {
  334. CE_ASSERT(i < num_actors(pr), "Index out of bounds");
  335. const ActorResource* curr = (ActorResource*) ((char*)pr + pr->actors_offset);
  336. for (uint32_t aa = 0; aa < i; ++aa)
  337. {
  338. const uint32_t sz = sizeof(ShapeResource)*curr->num_shapes + sizeof(ActorResource);
  339. curr = (ActorResource*)((char*)curr + sz);
  340. }
  341. return curr;
  342. }
  343. uint32_t num_joints(const PhysicsResource* pr)
  344. {
  345. return pr->num_joints;
  346. }
  347. const JointResource* joint(const PhysicsResource* pr, uint32_t i)
  348. {
  349. CE_ASSERT(i < num_joints(pr), "Index out of bounds");
  350. JointResource* joint = (JointResource*) ((char*)pr + pr->joints_offset);
  351. return &joint[i];
  352. }
  353. } // namespace physics_resource
  354. namespace actor_resource
  355. {
  356. uint32_t num_shapes(const ActorResource* ar)
  357. {
  358. return ar->num_shapes;
  359. }
  360. const ShapeResource* shape(const ActorResource* ar, uint32_t i)
  361. {
  362. CE_ASSERT(i < num_shapes(ar), "Index out of bounds");
  363. ShapeResource* shape = (ShapeResource*) (ar + 1);
  364. return &shape[i];
  365. }
  366. } // namespace actor_resource
  367. namespace physics_config_resource
  368. {
  369. static Map<DynamicString, uint32_t>* s_ftm = NULL;
  370. struct ObjectName
  371. {
  372. StringId32 name;
  373. uint32_t index;
  374. bool operator()(const ObjectName& a, const ObjectName& b)
  375. {
  376. return a.name < b.name;
  377. }
  378. };
  379. void parse_materials(JSONElement e, Array<ObjectName>& names, Array<PhysicsMaterial>& objects)
  380. {
  381. Vector<DynamicString> keys(default_allocator());
  382. e.to_keys(keys);
  383. for (uint32_t i = 0; i < vector::size(keys); i++)
  384. {
  385. JSONElement material = e.key(keys[i].c_str());
  386. // Read material name
  387. ObjectName mat_name;
  388. mat_name.name = keys[i].to_string_id();
  389. mat_name.index = i;
  390. // Read material object
  391. PhysicsMaterial mat;
  392. mat.static_friction = material.key("static_friction").to_float();
  393. mat.dynamic_friction = material.key("dynamic_friction").to_float();
  394. mat.restitution = material.key("restitution").to_float();
  395. array::push_back(names, mat_name);
  396. array::push_back(objects, mat);
  397. }
  398. }
  399. void parse_shapes(JSONElement e, Array<ObjectName>& names, Array<PhysicsShape2>& objects)
  400. {
  401. Vector<DynamicString> keys(default_allocator());
  402. e.to_keys(keys);
  403. for (uint32_t i = 0; i < vector::size(keys); i++)
  404. {
  405. JSONElement shape = e.key(keys[i].c_str());
  406. // Read shape name
  407. ObjectName shape_name;
  408. shape_name.name = keys[i].to_string_id();
  409. shape_name.index = i;
  410. // Read shape object
  411. PhysicsShape2 ps2;
  412. ps2.trigger = shape.key("trigger").to_bool();
  413. ps2.collision_filter = shape.key("collision_filter").to_string_id();
  414. array::push_back(names, shape_name);
  415. array::push_back(objects, ps2);
  416. }
  417. }
  418. void parse_actors(JSONElement e, Array<ObjectName>& names, Array<PhysicsActor2>& objects)
  419. {
  420. Vector<DynamicString> keys(default_allocator());
  421. e.to_keys(keys);
  422. for (uint32_t i = 0; i < vector::size(keys); i++)
  423. {
  424. JSONElement actor = e.key(keys[i].c_str());
  425. // Read actor name
  426. ObjectName actor_name;
  427. actor_name.name = keys[i].to_string_id();
  428. actor_name.index = i;
  429. // Read actor object
  430. PhysicsActor2 pa2;
  431. pa2.linear_damping = actor.key_or_nil("linear_damping").to_float(0.0f);
  432. pa2.angular_damping = actor.key_or_nil("angular_damping").to_float(0.05f);
  433. JSONElement dynamic = actor.key_or_nil("dynamic");
  434. JSONElement kinematic = actor.key_or_nil("kinematic");
  435. JSONElement disable_gravity = actor.key_or_nil("disable_gravity");
  436. pa2.flags = 0;
  437. if (!dynamic.is_nil())
  438. {
  439. pa2.flags |= dynamic.to_bool() ? 1 : 0;
  440. }
  441. if (!kinematic.is_nil())
  442. {
  443. pa2.flags |= kinematic.to_bool() ? PhysicsActor2::KINEMATIC : 0;
  444. }
  445. if (!disable_gravity.is_nil())
  446. {
  447. pa2.flags |= disable_gravity.to_bool() ? PhysicsActor2::DISABLE_GRAVITY : 0;
  448. }
  449. array::push_back(names, actor_name);
  450. array::push_back(objects, pa2);
  451. }
  452. }
  453. uint32_t new_filter_mask()
  454. {
  455. static uint32_t mask = 1;
  456. CE_ASSERT(mask != 0x80000000u, "Too many collision filters");
  457. uint32_t tmp = mask;
  458. mask = mask << 1;
  459. return tmp;
  460. }
  461. uint32_t filter_to_mask(const char* f)
  462. {
  463. if (map::has(*s_ftm, DynamicString(f)))
  464. return map::get(*s_ftm, DynamicString(f), 0u);
  465. uint32_t new_filter = new_filter_mask();
  466. map::set(*s_ftm, DynamicString(f), new_filter);
  467. return new_filter;
  468. }
  469. uint32_t collides_with_to_mask(const Vector<DynamicString>& coll_with)
  470. {
  471. uint32_t mask = 0;
  472. for (uint32_t i = 0; i < vector::size(coll_with); i++)
  473. {
  474. mask |= filter_to_mask(coll_with[i].c_str());
  475. }
  476. return mask;
  477. }
  478. void parse_collision_filters(JSONElement e, Array<ObjectName>& names, Array<PhysicsCollisionFilter>& objects)
  479. {
  480. Vector<DynamicString> keys(default_allocator());
  481. e.to_keys(keys);
  482. for (uint32_t i = 0; i < vector::size(keys); i++)
  483. {
  484. JSONElement filter = e.key(keys[i].c_str());
  485. JSONElement collides_with = filter.key("collides_with");
  486. // Read filter name
  487. ObjectName filter_name;
  488. filter_name.name = keys[i].to_string_id();
  489. filter_name.index = i;
  490. // Build mask
  491. Vector<DynamicString> collides_with_vector(default_allocator());
  492. collides_with.to_array(collides_with_vector);
  493. PhysicsCollisionFilter pcf;
  494. pcf.me = filter_to_mask(keys[i].c_str());
  495. pcf.mask = collides_with_to_mask(collides_with_vector);
  496. // printf("FILTER: %s (me = %X, mask = %X\n", keys[i].c_str(), pcf.me, pcf.mask);
  497. array::push_back(names, filter_name);
  498. array::push_back(objects, pcf);
  499. }
  500. }
  501. void compile(const char* path, CompileOptions& opts)
  502. {
  503. static const uint32_t VERSION = 1;
  504. Buffer buf = opts.read(path);
  505. JSONParser json(array::begin(buf));
  506. JSONElement root = json.root();
  507. typedef Map<DynamicString, uint32_t> FilterMap;
  508. s_ftm = CE_NEW(default_allocator(), FilterMap)(default_allocator());
  509. Array<ObjectName> material_names(default_allocator());
  510. Array<PhysicsMaterial> material_objects(default_allocator());
  511. Array<ObjectName> shape_names(default_allocator());
  512. Array<PhysicsShape2> shape_objects(default_allocator());
  513. Array<ObjectName> actor_names(default_allocator());
  514. Array<PhysicsActor2> actor_objects(default_allocator());
  515. Array<ObjectName> filter_names(default_allocator());
  516. Array<PhysicsCollisionFilter> filter_objects(default_allocator());
  517. // Parse materials
  518. if (root.has_key("collision_filters")) parse_collision_filters(root.key("collision_filters"), filter_names, filter_objects);
  519. if (root.has_key("materials")) parse_materials(root.key("materials"), material_names, material_objects);
  520. if (root.has_key("shapes")) parse_shapes(root.key("shapes"), shape_names, shape_objects);
  521. if (root.has_key("actors")) parse_actors(root.key("actors"), actor_names, actor_objects);
  522. // Sort objects by name
  523. std::sort(array::begin(material_names), array::end(material_names), ObjectName());
  524. std::sort(array::begin(shape_names), array::end(shape_names), ObjectName());
  525. std::sort(array::begin(actor_names), array::end(actor_names), ObjectName());
  526. std::sort(array::begin(filter_names), array::end(filter_names), ObjectName());
  527. // Setup struct for writing
  528. PhysicsConfigResource pcr;
  529. pcr.version = VERSION;
  530. pcr.num_materials = array::size(material_names);
  531. pcr.num_shapes = array::size(shape_names);
  532. pcr.num_actors = array::size(actor_names);
  533. pcr.num_filters = array::size(filter_names);
  534. uint32_t offt = sizeof(PhysicsConfigResource);
  535. pcr.materials_offset = offt;
  536. offt += sizeof(StringId32) * pcr.num_materials;
  537. offt += sizeof(PhysicsMaterial) * pcr.num_materials;
  538. pcr.shapes_offset = offt;
  539. offt += sizeof(StringId32) * pcr.num_shapes;
  540. offt += sizeof(PhysicsShape2) * pcr.num_shapes;
  541. pcr.actors_offset = offt;
  542. offt += sizeof(StringId32) * pcr.num_actors;
  543. offt += sizeof(PhysicsActor2) * pcr.num_actors;
  544. pcr.filters_offset = offt;
  545. offt += sizeof(StringId32) * pcr.num_filters;
  546. offt += sizeof(PhysicsCollisionFilter) * pcr.num_filters;
  547. // Write all
  548. opts.write(pcr.version);
  549. opts.write(pcr.num_materials);
  550. opts.write(pcr.materials_offset);
  551. opts.write(pcr.num_shapes);
  552. opts.write(pcr.shapes_offset);
  553. opts.write(pcr.num_actors);
  554. opts.write(pcr.actors_offset);
  555. opts.write(pcr.num_filters);
  556. opts.write(pcr.filters_offset);
  557. // Write material names
  558. for (uint32_t i = 0; i < pcr.num_materials; i++)
  559. {
  560. opts.write(material_names[i].name);
  561. }
  562. // Write material objects
  563. for (uint32_t i = 0; i < pcr.num_materials; i++)
  564. {
  565. opts.write(material_objects[material_names[i].index].static_friction);
  566. opts.write(material_objects[material_names[i].index].dynamic_friction);
  567. opts.write(material_objects[material_names[i].index].restitution);
  568. }
  569. // Write shape names
  570. for (uint32_t i = 0; i < pcr.num_shapes; i++)
  571. {
  572. opts.write(shape_names[i].name);
  573. }
  574. // Write material objects
  575. for (uint32_t i = 0; i < pcr.num_shapes; i++)
  576. {
  577. opts.write(shape_objects[shape_names[i].index].collision_filter);
  578. opts.write(shape_objects[shape_names[i].index].trigger);
  579. opts.write(shape_objects[shape_names[i].index]._pad[0]);
  580. opts.write(shape_objects[shape_names[i].index]._pad[1]);
  581. opts.write(shape_objects[shape_names[i].index]._pad[2]);
  582. }
  583. // Write actor names
  584. for (uint32_t i = 0; i < pcr.num_actors; i++)
  585. {
  586. opts.write(actor_names[i].name);
  587. }
  588. // Write actor objects
  589. for (uint32_t i = 0; i < pcr.num_actors; i++)
  590. {
  591. opts.write(actor_objects[actor_names[i].index].linear_damping);
  592. opts.write(actor_objects[actor_names[i].index].angular_damping);
  593. opts.write(actor_objects[actor_names[i].index].flags);
  594. }
  595. // Write filter names
  596. for (uint32_t i = 0; i < pcr.num_filters; i++)
  597. {
  598. opts.write(filter_names[i].name);
  599. }
  600. // Write filter objects
  601. for (uint32_t i = 0; i < pcr.num_filters; i++)
  602. {
  603. opts.write(filter_objects[filter_names[i].index].me);
  604. opts.write(filter_objects[filter_names[i].index].mask);
  605. }
  606. CE_DELETE(default_allocator(), s_ftm);
  607. }
  608. void* load(File& file, Allocator& a)
  609. {
  610. const size_t file_size = file.size();
  611. void* res = a.allocate(file_size);
  612. file.read(res, file_size);
  613. return res;
  614. }
  615. void online(StringId64 /*id*/, ResourceManager& /*rm*/)
  616. {
  617. }
  618. void offline(StringId64 /*id*/, ResourceManager& /*rm*/)
  619. {
  620. }
  621. void unload(Allocator& allocator, void* resource)
  622. {
  623. allocator.deallocate(resource);
  624. }
  625. uint32_t num_materials(const PhysicsConfigResource* pcr)
  626. {
  627. return pcr->num_materials;
  628. }
  629. /// Returns the material with the given @a name
  630. const PhysicsMaterial* material(const PhysicsConfigResource* pcr, StringId32 name)
  631. {
  632. StringId32* begin = (StringId32*) ((char*)pcr + pcr->materials_offset);
  633. StringId32* end = begin + num_materials(pcr);
  634. StringId32* id = std::find(begin, end, name);
  635. CE_ASSERT(id != end, "Material not found");
  636. return material_by_index(pcr, id - begin);
  637. }
  638. const PhysicsMaterial* material_by_index(const PhysicsConfigResource* pcr, uint32_t i)
  639. {
  640. CE_ASSERT(i < num_materials(pcr), "Index out of bounds");
  641. const PhysicsMaterial* base = (PhysicsMaterial*) ((char*)pcr + pcr->materials_offset + sizeof(StringId32) * num_materials(pcr));
  642. return &base[i];
  643. }
  644. uint32_t num_shapes(const PhysicsConfigResource* pcr)
  645. {
  646. return pcr->num_shapes;
  647. }
  648. const PhysicsShape2* shape(const PhysicsConfigResource* pcr, StringId32 name)
  649. {
  650. StringId32* begin = (StringId32*) ((char*)pcr + pcr->shapes_offset);
  651. StringId32* end = begin + num_shapes(pcr);
  652. StringId32* id = std::find(begin, end, name);
  653. CE_ASSERT(id != end, "Shape not found");
  654. return shape_by_index(pcr, id - begin);
  655. }
  656. const PhysicsShape2* shape_by_index(const PhysicsConfigResource* pcr, uint32_t i)
  657. {
  658. CE_ASSERT(i < num_shapes(pcr), "Index out of bounds");
  659. const PhysicsShape2* base = (PhysicsShape2*) ((char*)pcr + pcr->shapes_offset + sizeof(StringId32) * num_shapes(pcr));
  660. return &base[i];
  661. }
  662. uint32_t num_actors(const PhysicsConfigResource* pcr)
  663. {
  664. return pcr->num_actors;
  665. }
  666. /// Returns the actor with the given @a name
  667. const PhysicsActor2* actor(const PhysicsConfigResource* pcr, StringId32 name)
  668. {
  669. StringId32* begin = (StringId32*) ((char*)pcr + pcr->actors_offset);
  670. StringId32* end = begin + num_actors(pcr);
  671. StringId32* id = std::find(begin, end, name);
  672. CE_ASSERT(id != end, "Actor not found");
  673. return actor_by_index(pcr, id - begin);
  674. }
  675. const PhysicsActor2* actor_by_index(const PhysicsConfigResource* pcr, uint32_t i)
  676. {
  677. CE_ASSERT(i < num_actors(pcr), "Index out of bounds");
  678. const PhysicsActor2* base = (PhysicsActor2*) ((char*)pcr + pcr->actors_offset + sizeof(StringId32) * num_actors(pcr));
  679. return &base[i];
  680. }
  681. uint32_t num_filters(const PhysicsConfigResource* pcr)
  682. {
  683. return pcr->num_filters;
  684. }
  685. const PhysicsCollisionFilter* filter(const PhysicsConfigResource* pcr, StringId32 name)
  686. {
  687. StringId32* begin = (StringId32*) ((char*)pcr + pcr->filters_offset);
  688. StringId32* end = begin + num_filters(pcr);
  689. StringId32* id = std::find(begin, end, name);
  690. CE_ASSERT(id != end, "Filter not found");
  691. return filter_by_index(pcr, id - begin);
  692. }
  693. const PhysicsCollisionFilter* filter_by_index(const PhysicsConfigResource* pcr, uint32_t i)
  694. {
  695. CE_ASSERT(i < num_filters(pcr), "Index out of bounds");
  696. const PhysicsCollisionFilter* base = (PhysicsCollisionFilter*) ((char*)pcr + pcr->filters_offset + sizeof(StringId32) * num_filters(pcr));
  697. return &base[i];
  698. }
  699. } // namespace physics_config_resource
  700. } // namespace crown