physics_resource.cpp 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819
  1. /*
  2. * Copyright (c) 2012-2014 Daniele Bartolini and individual contributors.
  3. * License: https://github.com/taylor001/crown/blob/master/LICENSE
  4. */
  5. #include "physics_resource.h"
  6. #include "physics_types.h"
  7. #include "filesystem.h"
  8. #include "json_parser.h"
  9. #include "string_utils.h"
  10. #include "dynamic_string.h"
  11. #include "map.h"
  12. #include "quaternion.h"
  13. #include "compile_options.h"
  14. #include <algorithm>
  15. namespace crown
  16. {
  17. namespace physics_resource
  18. {
  19. struct Shape
  20. {
  21. const char* name;
  22. ShapeType::Enum type;
  23. };
  24. static const Shape s_shape[ShapeType::COUNT] =
  25. {
  26. { "sphere", ShapeType::SPHERE },
  27. { "capsule", ShapeType::CAPSULE },
  28. { "box", ShapeType::BOX },
  29. { "plane", ShapeType::PLANE }
  30. };
  31. struct Joint
  32. {
  33. const char* name;
  34. JointType::Enum type;
  35. };
  36. static const Joint s_joint[JointType::COUNT] =
  37. {
  38. { "fixed", JointType::FIXED },
  39. { "spherical", JointType::SPHERICAL },
  40. { "revolute", JointType::REVOLUTE },
  41. { "prismatic", JointType::PRISMATIC },
  42. { "distance", JointType::DISTANCE },
  43. { "d6", JointType::D6 }
  44. };
  45. static uint32_t shape_type_to_enum(const char* type)
  46. {
  47. for (uint32_t i = 0; i < ShapeType::COUNT; i++)
  48. {
  49. if (strcmp(type, s_shape[i].name) == 0)
  50. return s_shape[i].type;
  51. }
  52. CE_FATAL("Bad shape type");
  53. return 0;
  54. }
  55. static uint32_t joint_type_to_enum(const char* type)
  56. {
  57. for (uint32_t i = 0; i < JointType::COUNT; i++)
  58. {
  59. if (strcmp(type, s_joint[i].name) == 0)
  60. return s_joint[i].type;
  61. }
  62. CE_FATAL("Bad joint type");
  63. return 0;
  64. }
  65. void parse_controller(JSONElement e, ControllerResource& controller)
  66. {
  67. controller.name = e.key("name").to_string_id();
  68. controller.height = e.key("height").to_float();
  69. controller.radius = e.key("radius").to_float();
  70. controller.slope_limit = e.key("slope_limit").to_float();
  71. controller.step_offset = e.key("step_offset").to_float();
  72. controller.contact_offset = e.key("contact_offset").to_float();
  73. controller.collision_filter = e.key("collision_filter").to_string_id();
  74. }
  75. void parse_shapes(JSONElement e, Array<ShapeResource>& shapes)
  76. {
  77. Vector<DynamicString> keys(default_allocator());
  78. e.to_keys(keys);
  79. for (uint32_t k = 0; k < vector::size(keys); k++)
  80. {
  81. JSONElement shape = e.key(keys[k].c_str());
  82. ShapeResource sr;
  83. sr.name = keys[k].to_string_id();
  84. sr.shape_class = shape.key("class").to_string_id();
  85. sr.material = shape.key("material").to_string_id();
  86. sr.position = shape.key("position").to_vector3();
  87. sr.rotation = shape.key("rotation").to_quaternion();
  88. DynamicString stype; shape.key("type").to_string(stype);
  89. sr.type = shape_type_to_enum(stype.c_str());
  90. switch (sr.type)
  91. {
  92. case ShapeType::SPHERE:
  93. {
  94. sr.data_0 = shape.key("radius").to_float();
  95. break;
  96. }
  97. case ShapeType::CAPSULE:
  98. {
  99. sr.data_0 = shape.key("radius").to_float();
  100. sr.data_1 = shape.key("half_height").to_float();
  101. break;
  102. }
  103. case ShapeType::BOX:
  104. {
  105. sr.data_0 = shape.key("half_x").to_float();
  106. sr.data_1 = shape.key("half_y").to_float();
  107. sr.data_2 = shape.key("half_z").to_float();
  108. break;
  109. }
  110. case ShapeType::PLANE:
  111. {
  112. sr.data_0 = shape.key("n_x").to_float();
  113. sr.data_1 = shape.key("n_y").to_float();
  114. sr.data_2 = shape.key("n_z").to_float();
  115. sr.data_3 = shape.key("distance").to_float();
  116. break;
  117. }
  118. case ShapeType::CONVEX_MESH:
  119. {
  120. sr.resource = shape.key("mesh").to_resource_id("mesh");
  121. break;
  122. }
  123. }
  124. array::push_back(shapes, sr);
  125. }
  126. }
  127. void parse_actors(JSONElement e, Array<ActorResource>& actors, Array<ShapeResource>& actor_shapes, Array<uint32_t>& shape_indices)
  128. {
  129. Vector<DynamicString> keys(default_allocator());
  130. e.to_keys(keys);
  131. for (uint32_t k = 0; k < vector::size(keys); k++)
  132. {
  133. JSONElement actor = e.key(keys[k].c_str());
  134. ActorResource pa;
  135. pa.name = keys[k].to_string_id();
  136. pa.node = actor.key("node").to_string_id();
  137. pa.actor_class = actor.key("class").to_string_id();
  138. pa.mass = actor.key("mass").to_float();
  139. pa.num_shapes = actor.key("shapes").size();
  140. array::push_back(actors, pa);
  141. array::push_back(shape_indices, array::size(shape_indices));
  142. parse_shapes(actor.key("shapes"), actor_shapes);
  143. }
  144. }
  145. void parse_joints(JSONElement e, Array<JointResource>& joints)
  146. {
  147. Vector<DynamicString> keys(default_allocator());
  148. e.to_keys(keys);
  149. for (uint32_t k = 0; k < vector::size(keys); k++)
  150. {
  151. JSONElement joint = e.key(keys[k].c_str());
  152. JSONElement type = joint.key("type");
  153. JointResource pj;
  154. pj.name = keys[k].to_string_id();
  155. DynamicString jtype; type.to_string(jtype);
  156. pj.type = joint_type_to_enum(jtype.c_str());
  157. pj.actor_0 = joint.key("actor_0").to_string_id();
  158. pj.actor_1 = joint.key("actor_1").to_string_id();
  159. pj.anchor_0 = joint.key("anchor_0").to_vector3();
  160. pj.anchor_1 = joint.key("anchor_1").to_vector3();
  161. pj.restitution = joint.key_or_nil("restitution").to_float(0.5f);
  162. pj.spring = joint.key_or_nil("spring").to_float(100.0f);
  163. pj.damping = joint.key_or_nil("damping").to_float(0.0f);
  164. pj.distance = joint.key_or_nil("distance").to_float(1.0f);
  165. pj.breakable = joint.key_or_nil("breakable").to_bool(false);
  166. pj.break_force = joint.key_or_nil("break_force").to_float(3000.0f);
  167. pj.break_torque = joint.key_or_nil("break_torque").to_float(1000.0f);
  168. switch (pj.type)
  169. {
  170. case JointType::FIXED:
  171. {
  172. return;
  173. }
  174. case JointType::SPHERICAL:
  175. {
  176. pj.y_limit_angle = joint.key_or_nil("y_limit_angle").to_float(HALF_PI);
  177. pj.z_limit_angle = joint.key_or_nil("z_limit_angle").to_float(HALF_PI);
  178. pj.contact_dist = joint.key_or_nil("contact_dist").to_float(0.0f);
  179. break;
  180. }
  181. case JointType::REVOLUTE:
  182. case JointType::PRISMATIC:
  183. {
  184. pj.lower_limit = joint.key_or_nil("lower_limit").to_float(0.0f);
  185. pj.upper_limit = joint.key_or_nil("upper_limit").to_float(0.0f);
  186. pj.contact_dist = joint.key_or_nil("contact_dist").to_float(0.0f);
  187. break;
  188. }
  189. case JointType::DISTANCE:
  190. {
  191. pj.max_distance = joint.key_or_nil("max_distance").to_float(0.0f);
  192. break;
  193. }
  194. case JointType::D6:
  195. {
  196. CE_FATAL("Not implemented");
  197. break;
  198. }
  199. }
  200. array::push_back(joints, pj);
  201. }
  202. }
  203. void compile(const char* path, CompileOptions& opts)
  204. {
  205. static const uint32_t VERSION = 1;
  206. Buffer buf = opts.read(path);
  207. JSONParser json(array::begin(buf));
  208. JSONElement root = json.root();
  209. bool m_has_controller = false;
  210. ControllerResource m_controller;
  211. // Read controller
  212. JSONElement controller = root.key_or_nil("controller");
  213. if (controller.is_nil())
  214. {
  215. m_has_controller = false;
  216. }
  217. else
  218. {
  219. parse_controller(controller, m_controller);
  220. m_has_controller = true;
  221. }
  222. Array<ActorResource> m_actors(default_allocator());
  223. Array<uint32_t> m_shapes_indices(default_allocator());
  224. Array<ShapeResource> m_shapes(default_allocator());
  225. Array<JointResource> m_joints(default_allocator());
  226. if (root.has_key("actors")) parse_actors(root.key("actors"), m_actors, m_shapes, m_shapes_indices);
  227. if (root.has_key("joints")) parse_joints(root.key("joints"), m_joints);
  228. PhysicsResource pr;
  229. pr.version = VERSION;
  230. pr.num_controllers = m_has_controller ? 1 : 0;
  231. pr.num_actors = array::size(m_actors);
  232. pr.num_joints = array::size(m_joints);
  233. uint32_t offt = sizeof(PhysicsResource);
  234. pr.controller_offset = offt; offt += sizeof(ControllerResource) * pr.num_controllers;
  235. pr.actors_offset = offt; offt += sizeof(ActorResource) * pr.num_actors;
  236. pr.joints_offset = offt;
  237. // Write all
  238. opts.write(pr.version);
  239. opts.write(pr.num_controllers);
  240. opts.write(pr.controller_offset);
  241. opts.write(pr.num_actors);
  242. opts.write(pr.actors_offset);
  243. opts.write(pr.num_joints);
  244. opts.write(pr.joints_offset);
  245. if (m_has_controller)
  246. {
  247. opts.write(m_controller.name);
  248. opts.write(m_controller.height);
  249. opts.write(m_controller.radius);
  250. opts.write(m_controller.slope_limit);
  251. opts.write(m_controller.step_offset);
  252. opts.write(m_controller.contact_offset);
  253. opts.write(m_controller.collision_filter);
  254. }
  255. for (uint32_t i = 0; i < array::size(m_actors); i++)
  256. {
  257. opts.write(m_actors[i].name);
  258. opts.write(m_actors[i].node);
  259. opts.write(m_actors[i].actor_class);
  260. opts.write(m_actors[i].mass);
  261. opts.write(m_actors[i].num_shapes);
  262. for (uint32_t ss = 0; ss < m_actors[i].num_shapes; ++ss)
  263. {
  264. const uint32_t base = m_shapes_indices[i];
  265. opts.write(m_shapes[base + ss].name);
  266. opts.write(m_shapes[base + ss].shape_class);
  267. opts.write(m_shapes[base + ss].type);
  268. opts.write(m_shapes[base + ss].material);
  269. opts.write(m_shapes[base + ss].resource);
  270. opts.write(m_shapes[base + ss].position);
  271. opts.write(m_shapes[base + ss].rotation);
  272. opts.write(m_shapes[base + ss].data_0);
  273. opts.write(m_shapes[base + ss].data_1);
  274. opts.write(m_shapes[base + ss].data_2);
  275. opts.write(m_shapes[base + ss].data_3);
  276. }
  277. }
  278. for (uint32_t i = 0; i < array::size(m_joints); i++)
  279. {
  280. opts.write(m_joints[i].name);
  281. opts.write(m_joints[i].type);
  282. opts.write(m_joints[i].actor_0);
  283. opts.write(m_joints[i].actor_1);
  284. opts.write(m_joints[i].anchor_0);
  285. opts.write(m_joints[i].anchor_1);
  286. opts.write(m_joints[i].breakable);
  287. opts.write(m_joints[i]._pad[0]);
  288. opts.write(m_joints[i]._pad[1]);
  289. opts.write(m_joints[i]._pad[2]);
  290. opts.write(m_joints[i].break_force);
  291. opts.write(m_joints[i].break_torque);
  292. opts.write(m_joints[i].lower_limit);
  293. opts.write(m_joints[i].upper_limit);
  294. opts.write(m_joints[i].y_limit_angle);
  295. opts.write(m_joints[i].z_limit_angle);
  296. opts.write(m_joints[i].max_distance);
  297. opts.write(m_joints[i].contact_dist);
  298. opts.write(m_joints[i].restitution);
  299. opts.write(m_joints[i].spring);
  300. opts.write(m_joints[i].damping);
  301. opts.write(m_joints[i].distance);
  302. }
  303. }
  304. void* load(File& file, Allocator& a)
  305. {
  306. const size_t file_size = file.size();
  307. void* res = a.allocate(file_size);
  308. file.read(res, file_size);
  309. return res;
  310. }
  311. void online(StringId64 /*id*/, ResourceManager& /*rm*/)
  312. {
  313. }
  314. void offline(StringId64 /*id*/, ResourceManager& /*rm*/)
  315. {
  316. }
  317. void unload(Allocator& allocator, void* resource)
  318. {
  319. allocator.deallocate(resource);
  320. }
  321. bool has_controller(const PhysicsResource* pr)
  322. {
  323. return pr->num_controllers == 1;
  324. }
  325. const ControllerResource* controller(const PhysicsResource* pr)
  326. {
  327. CE_ASSERT(has_controller(pr), "Controller does not exist");
  328. ControllerResource* controller = (ControllerResource*) ((char*)pr + pr->controller_offset);
  329. return controller;
  330. }
  331. uint32_t num_actors(const PhysicsResource* pr)
  332. {
  333. return pr->num_actors;
  334. }
  335. const ActorResource* actor(const PhysicsResource* pr, uint32_t i)
  336. {
  337. CE_ASSERT(i < num_actors(pr), "Index out of bounds");
  338. ActorResource* actor = (ActorResource*) ((char*)pr + pr->actors_offset);
  339. return &actor[i];
  340. }
  341. uint32_t num_joints(const PhysicsResource* pr)
  342. {
  343. return pr->num_joints;
  344. }
  345. const JointResource* joint(const PhysicsResource* pr, uint32_t i)
  346. {
  347. CE_ASSERT(i < num_joints(pr), "Index out of bounds");
  348. JointResource* joint = (JointResource*) ((char*)pr + pr->joints_offset);
  349. return &joint[i];
  350. }
  351. } // namespace physics_resource
  352. namespace actor_resource
  353. {
  354. uint32_t num_shapes(const ActorResource* ar)
  355. {
  356. return ar->num_shapes;
  357. }
  358. const ShapeResource* shape(const ActorResource* ar, uint32_t i)
  359. {
  360. CE_ASSERT(i < num_shapes(ar), "Index out of bounds");
  361. ShapeResource* shape = (ShapeResource*) (ar + 1);
  362. return &shape[i];
  363. }
  364. } // namespace actor_resource
  365. namespace physics_config_resource
  366. {
  367. static Map<DynamicString, uint32_t>* s_ftm = NULL;
  368. struct ObjectName
  369. {
  370. StringId32 name;
  371. uint32_t index;
  372. bool operator()(const ObjectName& a, const ObjectName& b)
  373. {
  374. return a.name < b.name;
  375. }
  376. };
  377. void parse_materials(JSONElement e, Array<ObjectName>& names, Array<PhysicsMaterial>& objects)
  378. {
  379. Vector<DynamicString> keys(default_allocator());
  380. e.to_keys(keys);
  381. for (uint32_t i = 0; i < vector::size(keys); i++)
  382. {
  383. JSONElement material = e.key(keys[i].c_str());
  384. // Read material name
  385. ObjectName mat_name;
  386. mat_name.name = keys[i].to_string_id();
  387. mat_name.index = i;
  388. // Read material object
  389. PhysicsMaterial mat;
  390. mat.static_friction = material.key("static_friction").to_float();
  391. mat.dynamic_friction = material.key("dynamic_friction").to_float();
  392. mat.restitution = material.key("restitution").to_float();
  393. array::push_back(names, mat_name);
  394. array::push_back(objects, mat);
  395. }
  396. }
  397. void parse_shapes(JSONElement e, Array<ObjectName>& names, Array<PhysicsShape2>& objects)
  398. {
  399. Vector<DynamicString> keys(default_allocator());
  400. e.to_keys(keys);
  401. for (uint32_t i = 0; i < vector::size(keys); i++)
  402. {
  403. JSONElement shape = e.key(keys[i].c_str());
  404. // Read shape name
  405. ObjectName shape_name;
  406. shape_name.name = keys[i].to_string_id();
  407. shape_name.index = i;
  408. // Read shape object
  409. PhysicsShape2 ps2;
  410. ps2.trigger = shape.key("trigger").to_bool();
  411. ps2.collision_filter = shape.key("collision_filter").to_string_id();
  412. array::push_back(names, shape_name);
  413. array::push_back(objects, ps2);
  414. }
  415. }
  416. void parse_actors(JSONElement e, Array<ObjectName>& names, Array<PhysicsActor2>& objects)
  417. {
  418. Vector<DynamicString> keys(default_allocator());
  419. e.to_keys(keys);
  420. for (uint32_t i = 0; i < vector::size(keys); i++)
  421. {
  422. JSONElement actor = e.key(keys[i].c_str());
  423. // Read actor name
  424. ObjectName actor_name;
  425. actor_name.name = keys[i].to_string_id();
  426. actor_name.index = i;
  427. // Read actor object
  428. PhysicsActor2 pa2;
  429. pa2.linear_damping = actor.key_or_nil("linear_damping").to_float(0.0f);
  430. pa2.angular_damping = actor.key_or_nil("angular_damping").to_float(0.05f);
  431. JSONElement dynamic = actor.key_or_nil("dynamic");
  432. JSONElement kinematic = actor.key_or_nil("kinematic");
  433. JSONElement disable_gravity = actor.key_or_nil("disable_gravity");
  434. pa2.flags = 0;
  435. if (!dynamic.is_nil())
  436. {
  437. pa2.flags |= dynamic.to_bool() ? 1 : 0;
  438. }
  439. if (!kinematic.is_nil())
  440. {
  441. pa2.flags |= kinematic.to_bool() ? PhysicsActor2::KINEMATIC : 0;
  442. }
  443. if (!disable_gravity.is_nil())
  444. {
  445. pa2.flags |= disable_gravity.to_bool() ? PhysicsActor2::DISABLE_GRAVITY : 0;
  446. }
  447. array::push_back(names, actor_name);
  448. array::push_back(objects, pa2);
  449. }
  450. }
  451. uint32_t new_filter_mask()
  452. {
  453. static uint32_t mask = 1;
  454. CE_ASSERT(mask != 0x80000000u, "Too many collision filters");
  455. uint32_t tmp = mask;
  456. mask = mask << 1;
  457. return tmp;
  458. }
  459. uint32_t filter_to_mask(const char* f)
  460. {
  461. if (map::has(*s_ftm, DynamicString(f)))
  462. return map::get(*s_ftm, DynamicString(f), 0u);
  463. uint32_t new_filter = new_filter_mask();
  464. map::set(*s_ftm, DynamicString(f), new_filter);
  465. return new_filter;
  466. }
  467. uint32_t collides_with_to_mask(const Vector<DynamicString>& coll_with)
  468. {
  469. uint32_t mask = 0;
  470. for (uint32_t i = 0; i < vector::size(coll_with); i++)
  471. {
  472. mask |= filter_to_mask(coll_with[i].c_str());
  473. }
  474. return mask;
  475. }
  476. void parse_collision_filters(JSONElement e, Array<ObjectName>& names, Array<PhysicsCollisionFilter>& objects)
  477. {
  478. Vector<DynamicString> keys(default_allocator());
  479. e.to_keys(keys);
  480. for (uint32_t i = 0; i < vector::size(keys); i++)
  481. {
  482. JSONElement filter = e.key(keys[i].c_str());
  483. JSONElement collides_with = filter.key("collides_with");
  484. // Read filter name
  485. ObjectName filter_name;
  486. filter_name.name = keys[i].to_string_id();
  487. filter_name.index = i;
  488. // Build mask
  489. Vector<DynamicString> collides_with_vector(default_allocator());
  490. collides_with.to_array(collides_with_vector);
  491. PhysicsCollisionFilter pcf;
  492. pcf.me = filter_to_mask(keys[i].c_str());
  493. pcf.mask = collides_with_to_mask(collides_with_vector);
  494. // printf("FILTER: %s (me = %X, mask = %X\n", keys[i].c_str(), pcf.me, pcf.mask);
  495. array::push_back(names, filter_name);
  496. array::push_back(objects, pcf);
  497. }
  498. }
  499. void compile(const char* path, CompileOptions& opts)
  500. {
  501. static const uint32_t VERSION = 1;
  502. Buffer buf = opts.read(path);
  503. JSONParser json(array::begin(buf));
  504. JSONElement root = json.root();
  505. typedef Map<DynamicString, uint32_t> FilterMap;
  506. s_ftm = CE_NEW(default_allocator(), FilterMap)(default_allocator());
  507. Array<ObjectName> material_names(default_allocator());
  508. Array<PhysicsMaterial> material_objects(default_allocator());
  509. Array<ObjectName> shape_names(default_allocator());
  510. Array<PhysicsShape2> shape_objects(default_allocator());
  511. Array<ObjectName> actor_names(default_allocator());
  512. Array<PhysicsActor2> actor_objects(default_allocator());
  513. Array<ObjectName> filter_names(default_allocator());
  514. Array<PhysicsCollisionFilter> filter_objects(default_allocator());
  515. // Parse materials
  516. if (root.has_key("collision_filters")) parse_collision_filters(root.key("collision_filters"), filter_names, filter_objects);
  517. if (root.has_key("materials")) parse_materials(root.key("materials"), material_names, material_objects);
  518. if (root.has_key("shapes")) parse_shapes(root.key("shapes"), shape_names, shape_objects);
  519. if (root.has_key("actors")) parse_actors(root.key("actors"), actor_names, actor_objects);
  520. // Sort objects by name
  521. std::sort(array::begin(material_names), array::end(material_names), ObjectName());
  522. std::sort(array::begin(shape_names), array::end(shape_names), ObjectName());
  523. std::sort(array::begin(actor_names), array::end(actor_names), ObjectName());
  524. std::sort(array::begin(filter_names), array::end(filter_names), ObjectName());
  525. // Setup struct for writing
  526. PhysicsConfigResource pcr;
  527. pcr.version = VERSION;
  528. pcr.num_materials = array::size(material_names);
  529. pcr.num_shapes = array::size(shape_names);
  530. pcr.num_actors = array::size(actor_names);
  531. pcr.num_filters = array::size(filter_names);
  532. uint32_t offt = sizeof(PhysicsConfigResource);
  533. pcr.materials_offset = offt;
  534. offt += sizeof(StringId32) * pcr.num_materials;
  535. offt += sizeof(PhysicsMaterial) * pcr.num_materials;
  536. pcr.shapes_offset = offt;
  537. offt += sizeof(StringId32) * pcr.num_shapes;
  538. offt += sizeof(PhysicsShape2) * pcr.num_shapes;
  539. pcr.actors_offset = offt;
  540. offt += sizeof(StringId32) * pcr.num_actors;
  541. offt += sizeof(PhysicsActor2) * pcr.num_actors;
  542. pcr.filters_offset = offt;
  543. offt += sizeof(StringId32) * pcr.num_filters;
  544. offt += sizeof(PhysicsCollisionFilter) * pcr.num_filters;
  545. // Write all
  546. opts.write(pcr.version);
  547. opts.write(pcr.num_materials);
  548. opts.write(pcr.materials_offset);
  549. opts.write(pcr.num_shapes);
  550. opts.write(pcr.shapes_offset);
  551. opts.write(pcr.num_actors);
  552. opts.write(pcr.actors_offset);
  553. opts.write(pcr.num_filters);
  554. opts.write(pcr.filters_offset);
  555. // Write material names
  556. for (uint32_t i = 0; i < pcr.num_materials; i++)
  557. {
  558. opts.write(material_names[i].name);
  559. }
  560. // Write material objects
  561. for (uint32_t i = 0; i < pcr.num_materials; i++)
  562. {
  563. opts.write(material_objects[material_names[i].index].static_friction);
  564. opts.write(material_objects[material_names[i].index].dynamic_friction);
  565. opts.write(material_objects[material_names[i].index].restitution);
  566. }
  567. // Write shape names
  568. for (uint32_t i = 0; i < pcr.num_shapes; i++)
  569. {
  570. opts.write(shape_names[i].name);
  571. }
  572. // Write material objects
  573. for (uint32_t i = 0; i < pcr.num_shapes; i++)
  574. {
  575. opts.write(shape_objects[shape_names[i].index].collision_filter);
  576. opts.write(shape_objects[shape_names[i].index].trigger);
  577. opts.write(shape_objects[shape_names[i].index]._pad[0]);
  578. opts.write(shape_objects[shape_names[i].index]._pad[1]);
  579. opts.write(shape_objects[shape_names[i].index]._pad[2]);
  580. }
  581. // Write actor names
  582. for (uint32_t i = 0; i < pcr.num_actors; i++)
  583. {
  584. opts.write(actor_names[i].name);
  585. }
  586. // Write actor objects
  587. for (uint32_t i = 0; i < pcr.num_actors; i++)
  588. {
  589. opts.write(actor_objects[actor_names[i].index].linear_damping);
  590. opts.write(actor_objects[actor_names[i].index].angular_damping);
  591. opts.write(actor_objects[actor_names[i].index].flags);
  592. }
  593. // Write filter names
  594. for (uint32_t i = 0; i < pcr.num_filters; i++)
  595. {
  596. opts.write(filter_names[i].name);
  597. }
  598. // Write filter objects
  599. for (uint32_t i = 0; i < pcr.num_filters; i++)
  600. {
  601. opts.write(filter_objects[filter_names[i].index].me);
  602. opts.write(filter_objects[filter_names[i].index].mask);
  603. }
  604. CE_DELETE(default_allocator(), s_ftm);
  605. }
  606. void* load(File& file, Allocator& a)
  607. {
  608. const size_t file_size = file.size();
  609. void* res = a.allocate(file_size);
  610. file.read(res, file_size);
  611. return res;
  612. }
  613. void online(StringId64 /*id*/, ResourceManager& /*rm*/)
  614. {
  615. }
  616. void offline(StringId64 /*id*/, ResourceManager& /*rm*/)
  617. {
  618. }
  619. void unload(Allocator& allocator, void* resource)
  620. {
  621. allocator.deallocate(resource);
  622. }
  623. uint32_t num_materials(const PhysicsConfigResource* pcr)
  624. {
  625. return pcr->num_materials;
  626. }
  627. /// Returns the material with the given @a name
  628. const PhysicsMaterial* material(const PhysicsConfigResource* pcr, StringId32 name)
  629. {
  630. StringId32* begin = (StringId32*) ((char*)pcr + pcr->materials_offset);
  631. StringId32* end = begin + num_materials(pcr);
  632. StringId32* id = std::find(begin, end, name);
  633. CE_ASSERT(id != end, "Material not found");
  634. return material_by_index(pcr, id - begin);
  635. }
  636. const PhysicsMaterial* material_by_index(const PhysicsConfigResource* pcr, uint32_t i)
  637. {
  638. CE_ASSERT(i < num_materials(pcr), "Index out of bounds");
  639. const PhysicsMaterial* base = (PhysicsMaterial*) ((char*)pcr + pcr->materials_offset + sizeof(StringId32) * num_materials(pcr));
  640. return &base[i];
  641. }
  642. uint32_t num_shapes(const PhysicsConfigResource* pcr)
  643. {
  644. return pcr->num_shapes;
  645. }
  646. const PhysicsShape2* shape(const PhysicsConfigResource* pcr, StringId32 name)
  647. {
  648. StringId32* begin = (StringId32*) ((char*)pcr + pcr->shapes_offset);
  649. StringId32* end = begin + num_shapes(pcr);
  650. StringId32* id = std::find(begin, end, name);
  651. CE_ASSERT(id != end, "Shape not found");
  652. return shape_by_index(pcr, id - begin);
  653. }
  654. const PhysicsShape2* shape_by_index(const PhysicsConfigResource* pcr, uint32_t i)
  655. {
  656. CE_ASSERT(i < num_shapes(pcr), "Index out of bounds");
  657. const PhysicsShape2* base = (PhysicsShape2*) ((char*)pcr + pcr->shapes_offset + sizeof(StringId32) * num_shapes(pcr));
  658. return &base[i];
  659. }
  660. uint32_t num_actors(const PhysicsConfigResource* pcr)
  661. {
  662. return pcr->num_actors;
  663. }
  664. /// Returns the actor with the given @a name
  665. const PhysicsActor2* actor(const PhysicsConfigResource* pcr, StringId32 name)
  666. {
  667. StringId32* begin = (StringId32*) ((char*)pcr + pcr->actors_offset);
  668. StringId32* end = begin + num_actors(pcr);
  669. StringId32* id = std::find(begin, end, name);
  670. CE_ASSERT(id != end, "Actor not found");
  671. return actor_by_index(pcr, id - begin);
  672. }
  673. const PhysicsActor2* actor_by_index(const PhysicsConfigResource* pcr, uint32_t i)
  674. {
  675. CE_ASSERT(i < num_actors(pcr), "Index out of bounds");
  676. const PhysicsActor2* base = (PhysicsActor2*) ((char*)pcr + pcr->actors_offset + sizeof(StringId32) * num_actors(pcr));
  677. return &base[i];
  678. }
  679. uint32_t num_filters(const PhysicsConfigResource* pcr)
  680. {
  681. return pcr->num_filters;
  682. }
  683. const PhysicsCollisionFilter* filter(const PhysicsConfigResource* pcr, StringId32 name)
  684. {
  685. StringId32* begin = (StringId32*) ((char*)pcr + pcr->filters_offset);
  686. StringId32* end = begin + num_filters(pcr);
  687. StringId32* id = std::find(begin, end, name);
  688. CE_ASSERT(id != end, "Filter not found");
  689. return filter_by_index(pcr, id - begin);
  690. }
  691. const PhysicsCollisionFilter* filter_by_index(const PhysicsConfigResource* pcr, uint32_t i)
  692. {
  693. CE_ASSERT(i < num_filters(pcr), "Index out of bounds");
  694. const PhysicsCollisionFilter* base = (PhysicsCollisionFilter*) ((char*)pcr + pcr->filters_offset + sizeof(StringId32) * num_filters(pcr));
  695. return &base[i];
  696. }
  697. } // namespace physics_config_resource
  698. } // namespace crown