| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472 |
- /*
- Copyright (c) 2013 Daniele Bartolini, Michele Rossi
- Copyright (c) 2012 Daniele Bartolini, Simone Boscaratto
- Permission is hereby granted, free of charge, to any person
- obtaining a copy of this software and associated documentation
- files (the "Software"), to deal in the Software without
- restriction, including without limitation the rights to use,
- copy, modify, merge, publish, distribute, sublicense, and/or sell
- copies of the Software, and to permit persons to whom the
- Software is furnished to do so, subject to the following
- conditions:
- The above copyright notice and this permission notice shall be
- included in all copies or substantial portions of the Software.
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
- EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
- OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
- NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
- HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
- WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
- FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
- OTHER DEALINGS IN THE SOFTWARE.
- */
- #pragma once
- #undef min
- #undef max
- #include <math.h>
- #include "Assert.h"
- #include "Types.h"
- #include "Allocator.h"
- namespace crown
- {
- /// Math utilities.
- ///
- /// @ingroup Math
- namespace math
- {
- // Constants
- const float PI = (float)3.1415926535897932;
- const float TWO_PI = PI * (float)2.0;
- const float HALF_PI = PI * (float)0.5;
- const float ONEFOURTH_PI = PI * (float)0.25;
- const float DEG_TO_RAD = PI / (float)180.0;
- const float RAD_TO_DEG = (float)1.0 / DEG_TO_RAD;
- const float FOUR_OVER_THREE = (float)(4.0 / 3.0);
- const float FOUR_OVER_THREE_TIMES_PI = FOUR_OVER_THREE * PI;
- const float ONE_OVER_THREE = (float)(1.0 / 3.0);
- const float ONE_OVER_FOUR = (float)(1.0 / 4.0);
- const float ONE_OVER_255 = (float)(1.0 / 255.0);
- const float FLOAT_PRECISION = (float)1.0e-7f;
- const double DOUBLE_PRECISION = (float)1.0e-9;
- //-----------------------------------------------------------------------------
- inline bool equals(float a, float b, float precision = FLOAT_PRECISION)
- {
- return ((b <= (a + precision)) && (b >= (a - precision)));
- }
- //-----------------------------------------------------------------------------
- inline bool equals(double a, double b, double precision = DOUBLE_PRECISION)
- {
- return ((b <= (a + precision)) && (b >= (a - precision)));
- }
- //-----------------------------------------------------------------------------
- template <typename T>
- inline T min(const T& a, const T& b)
- {
- return a < b ? a : b;
- }
- //-----------------------------------------------------------------------------
- template <typename T>
- inline T min(const T& a, const T& b, const T& c)
- {
- return math::min(math::min(a, b), math::min(a, c));
- }
- //-----------------------------------------------------------------------------
- template <typename T>
- inline T min(const T& a, const T& b, const T& c, const T& d)
- {
- return math::min(math::min(a, b, c), math::min(a, b, d), math::min(a, c, d));
- }
- //-----------------------------------------------------------------------------
- template <typename T>
- inline T max(const T& a, const T& b)
- {
- return a < b ? b : a;
- }
- //-----------------------------------------------------------------------------
- template <typename T>
- inline T max(const T& a, const T& b, const T& c)
- {
- return math::max(math::max(a, b), math::max(a, c));
- }
- //-----------------------------------------------------------------------------
- template <typename T>
- inline T max(const T& a, const T& b, const T& c, const T& d)
- {
- return math::max(math::max(a, b, c), math::max(a, b, d), math::max(a, c, d));
- }
- //-----------------------------------------------------------------------------
- template <typename T>
- inline T avg(const T& a, const T& b)
- {
- return (a + b) * 0.5;
- }
- //-----------------------------------------------------------------------------
- template <typename T>
- inline T avg(const T& a, const T& b, const T& c)
- {
- return (a + b + c) * ONE_OVER_THREE;
- }
- //-----------------------------------------------------------------------------
- template <typename T>
- inline T avg(const T& a, const T& b, const T& c, const T& d)
- {
- return (a + b + c + d) * ONE_OVER_FOUR;
- }
- //-----------------------------------------------------------------------------
- template <typename T>
- inline T clamp_to_range(const T& min, const T& max, const T& value)
- {
- CE_ASSERT(min < max, "Min must be < max");
- if (value > max)
- {
- return max;
- }
- if (value < min)
- {
- return min;
- }
- return value;
- }
- //-----------------------------------------------------------------------------
- template <typename T>
- inline void swap(T& a, T& b)
- {
- T tmp = a;
- a = b;
- b = tmp;
- }
- //-----------------------------------------------------------------------------
- inline float deg_to_rad(float deg)
- {
- return deg * DEG_TO_RAD;
- }
- //-----------------------------------------------------------------------------
- inline float rad_to_deg(float rad)
- {
- return rad * RAD_TO_DEG;
- }
- //-----------------------------------------------------------------------------
- inline uint32_t next_pow_2(uint32_t x)
- {
- x--;
- x = (x >> 1) | x;
- x = (x >> 2) | x;
- x = (x >> 4) | x;
- x = (x >> 8) | x;
- x = (x >> 16) | x;
- return ++x;
- }
- //-----------------------------------------------------------------------------
- inline bool is_pow_2(uint32_t x)
- {
- return !(x & (x - 1)) && x;
- }
- //-----------------------------------------------------------------------------
- inline float ceil(float x)
- {
- return ceilf(x);
- }
- //-----------------------------------------------------------------------------
- inline float floor(float x)
- {
- return floorf(x);
- }
- //-----------------------------------------------------------------------------
- inline float sqrt(float x)
- {
- return sqrtf(x);
- }
- //-----------------------------------------------------------------------------
- inline float inv_sqrt(float x)
- {
- return 1.0 / sqrt(x);
- }
- //-----------------------------------------------------------------------------
- inline float sin(float x)
- {
- return sinf(x);
- }
- //-----------------------------------------------------------------------------
- inline float cos(float x)
- {
- return cosf(x);
- }
- //-----------------------------------------------------------------------------
- inline float asin(float x)
- {
- return asinf(x);
- }
- //-----------------------------------------------------------------------------
- inline float acos(float x)
- {
- return acosf(x);
- }
- //-----------------------------------------------------------------------------
- inline float tan(float x)
- {
- return tanf(x);
- }
- //-----------------------------------------------------------------------------
- inline float atan2(float y, float x)
- {
- return atan2f(y, x);
- }
- //-----------------------------------------------------------------------------
- inline float abs(float x)
- {
- return fabs(x);
- }
- //-----------------------------------------------------------------------------
- inline float fmod(float n, float d)
- {
- return ::fmod(n, d);
- }
- //-----------------------------------------------------------------------------
- inline bool solve_quadratic_equation(float a, float b, float c, float& x1, float& x2)
- {
- float delta = (b * b) - (4.0 * a * c);
- // If the equation has no float solutions
- if (delta < 0.0)
- {
- return false;
- }
- x1 = (-b + sqrt(delta)) / (2.0 * a);
- x2 = (-b - sqrt(delta)) / (2.0 * a);
- if (x2 > x1)
- {
- swap(x1, x2);
- }
- return true;
- }
- /// Returns the linear interpolated value between @a p0 and @a p1 at time @a t
- template <typename T>
- inline T linear(const T& p0, const T& p1, float t)
- {
- return p0 + (t * (p1 - p0));
- }
- /// Returns the cosine interpolated value between @a p0 and @a p1 at time @a t
- template <typename T>
- inline T cosine(const T& p0, const T& p1, float t)
- {
- float f = t * math::PI;
- float g = (1.0 - math::cos(f)) * 0.5;
- return p0 + (g * (p1 - p0));
- }
- /// Returns the cubic interpolated value between @a p0 and @a p1 at time @a t
- template <typename T>
- inline T cubic(const T& p0, const T& p1, float t)
- {
- float tt = t * t;
- float ttt = tt * t;
- return p0 * (2.0 * ttt - 3.0 * tt + 1.0) + p1 * (3.0 * tt - 2.0 * ttt);
- }
- /// Bezier interpolation
- template <typename T>
- inline T bezier(const T& p0, const T& p1, const T& p2, const T& p3, float t)
- {
- float u = 1.0 - t;
- float tt = t * t ;
- float uu = u * u;
- float uuu = uu * u;
- float ttt = tt * t;
- T tmp = (uuu * p0) +
- (3 * uu * t * p1) +
- (3 * u * tt * p2) +
- (ttt * p3);
- return tmp;
- }
- /// Catmull-Rom interpolation
- template <typename T>
- inline T catmull_rom(const T& p0, const T& p1, const T& p2, const T& p3, float t)
- {
- float tt = t * t;
- float ttt = tt * t;
- T tmp = (2.0 * p1) +
- ((-p0 + p2) * t) +
- (((2.0 * p0) - (5.0 * p1) + (4.0 * p2) - p3) * tt) +
- ((-p0 + (3.0 * p1) + (-3.0 * p2) + p3) * ttt);
- return tmp * 0.5;
- }
- /// Returns the base64-encoded @a data.
- inline char* base64_encode(const unsigned char* data, size_t in_len, size_t* out_len)
- {
- const char encoding_table[] =
- {
- 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H',
- 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P',
- 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X',
- 'Y', 'Z', 'a', 'b', 'c', 'd', 'e', 'f',
- 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n',
- 'o', 'p', 'q', 'r', 's', 't', 'u', 'v',
- 'w', 'x', 'y', 'z', '0', '1', '2', '3',
- '4', '5', '6', '7', '8', '9', '+', '/'
- };
- const int mod_table[] = { 0, 2, 1 };
- *out_len = 4 * ((in_len + 2) / 3);
- char *encoded_data = (char*) default_allocator().allocate(*out_len);
- if (encoded_data == NULL) return NULL;
- for (size_t i = 0, j = 0; i < in_len;)
- {
- uint32_t octet_a = i < in_len ? (unsigned char)data[i++] : 0;
- uint32_t octet_b = i < in_len ? (unsigned char)data[i++] : 0;
- uint32_t octet_c = i < in_len ? (unsigned char)data[i++] : 0;
- uint32_t triple = (octet_a << 0x10) + (octet_b << 0x08) + octet_c;
- encoded_data[j++] = encoding_table[(triple >> 3 * 6) & 0x3F];
- encoded_data[j++] = encoding_table[(triple >> 2 * 6) & 0x3F];
- encoded_data[j++] = encoding_table[(triple >> 1 * 6) & 0x3F];
- encoded_data[j++] = encoding_table[(triple >> 0 * 6) & 0x3F];
- }
- for (int i = 0; i < mod_table[in_len % 3]; i++)
- {
- encoded_data[*out_len - 1 - i] = '=';
- }
- (*out_len) += 1;
- encoded_data[(*out_len) -1] = '\0';
- return encoded_data;
- }
- // Decodes the base64-encoded @a data.
- inline unsigned char* base64_decode(const char *data, size_t in_len, size_t* out_len)
- {
- CE_ASSERT(in_len % 4 == 0, "Input length not a multiple of 4");
- const unsigned char decoding_table[256] =
- {
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x3E, 0x00, 0x00, 0x00, 0x3F,
- 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B,
- 0x3C, 0x3D, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,
- 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E,
- 0x0F, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16,
- 0x17, 0x18, 0x19, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20,
- 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28,
- 0x29, 0x2A, 0x2B, 0x2C, 0x2D, 0x2E, 0x2F, 0x30,
- 0x31, 0x32, 0x33, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
- };
- *out_len = in_len / 4 * 3;
- if (data[in_len - 1] == '=') (*out_len)--;
- if (data[in_len - 2] == '=') (*out_len)--;
- unsigned char *decoded_data = (unsigned char*) default_allocator().allocate(*out_len);
- if (decoded_data == NULL) return NULL;
- for (size_t i = 0, j = 0; i < in_len;) {
- uint32_t sextet_a = data[i] == '=' ? 0 & i++ : decoding_table[(unsigned char) data[i++]];
- uint32_t sextet_b = data[i] == '=' ? 0 & i++ : decoding_table[(unsigned char) data[i++]];
- uint32_t sextet_c = data[i] == '=' ? 0 & i++ : decoding_table[(unsigned char) data[i++]];
- uint32_t sextet_d = data[i] == '=' ? 0 & i++ : decoding_table[(unsigned char) data[i++]];
- uint32_t triple = (sextet_a << 3 * 6)
- + (sextet_b << 2 * 6)
- + (sextet_c << 1 * 6)
- + (sextet_d << 0 * 6);
- if (j < *out_len) decoded_data[j++] = (triple >> 2 * 8) & 0xFF;
- if (j < *out_len) decoded_data[j++] = (triple >> 1 * 8) & 0xFF;
- if (j < *out_len) decoded_data[j++] = (triple >> 0 * 8) & 0xFF;
- }
- return decoded_data;
- }
- } // namespace math
- } // namespace crown
|