| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273 |
- #include "config.h"
- #include "alcomplex.h"
- #include <algorithm>
- #include <cmath>
- #include <cstddef>
- #include <utility>
- #include "math_defs.h"
- void complex_fft(const al::span<std::complex<double>> buffer, const double sign)
- {
- const size_t fftsize{buffer.size()};
- /* Bit-reversal permutation applied to a sequence of FFTSize items */
- for(size_t i{1u};i < fftsize-1;i++)
- {
- size_t j{0u};
- for(size_t mask{1u};mask < fftsize;mask <<= 1)
- {
- if((i&mask) != 0)
- j++;
- j <<= 1;
- }
- j >>= 1;
- if(i < j)
- std::swap(buffer[i], buffer[j]);
- }
- /* Iterative form of DanielsonLanczos lemma */
- size_t step{2u};
- for(size_t i{1u};i < fftsize;i<<=1, step<<=1)
- {
- const size_t step2{step >> 1};
- double arg{al::MathDefs<double>::Pi() / static_cast<double>(step2)};
- std::complex<double> w{std::cos(arg), std::sin(arg)*sign};
- std::complex<double> u{1.0, 0.0};
- for(size_t j{0};j < step2;j++)
- {
- for(size_t k{j};k < fftsize;k+=step)
- {
- std::complex<double> temp{buffer[k+step2] * u};
- buffer[k+step2] = buffer[k] - temp;
- buffer[k] += temp;
- }
- u *= w;
- }
- }
- }
- void complex_hilbert(const al::span<std::complex<double>> buffer)
- {
- complex_fft(buffer, 1.0);
- const double inverse_size = 1.0/static_cast<double>(buffer.size());
- auto bufiter = buffer.begin();
- const auto halfiter = bufiter + (buffer.size()>>1);
- *bufiter *= inverse_size; ++bufiter;
- bufiter = std::transform(bufiter, halfiter, bufiter,
- [inverse_size](const std::complex<double> &c) -> std::complex<double>
- { return c * (2.0*inverse_size); });
- *bufiter *= inverse_size; ++bufiter;
- std::fill(bufiter, buffer.end(), std::complex<double>{});
- complex_fft(buffer, -1.0);
- }
|