|
|
@@ -36,20 +36,20 @@ namespace glm
|
|
|
tvec3<T, P> const & b,
|
|
|
T ascl, T bscl)
|
|
|
{
|
|
|
- return (a * ascl) + (b * bscl);
|
|
|
+ return (a * ascl) + (b * bscl);
|
|
|
}
|
|
|
|
|
|
template <typename T, precision P>
|
|
|
- GLM_FUNC_QUALIFIER void v3Scale(tvec3<T, P> & v, T desiredLength)
|
|
|
+ GLM_FUNC_QUALIFIER void v3Scale(tvec3<T, P> & v, T desiredLength)
|
|
|
{
|
|
|
- T len = glm::length(v);
|
|
|
- if(len != 0)
|
|
|
- {
|
|
|
- T l = desiredLength / len;
|
|
|
- v[0] *= l;
|
|
|
- v[1] *= l;
|
|
|
- v[2] *= l;
|
|
|
- }
|
|
|
+ T len = glm::length(v);
|
|
|
+ if(len != 0)
|
|
|
+ {
|
|
|
+ T l = desiredLength / len;
|
|
|
+ v[0] *= l;
|
|
|
+ v[1] *= l;
|
|
|
+ v[2] *= l;
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
/**
|
|
|
@@ -64,29 +64,29 @@ namespace glm
|
|
|
{
|
|
|
tmat4x4<T, P> LocalMatrix(ModelMatrix);
|
|
|
|
|
|
- // Normalize the matrix.
|
|
|
- if(LocalMatrix[3][3] == static_cast<T>(0))
|
|
|
- return false;
|
|
|
+ // Normalize the matrix.
|
|
|
+ if(LocalMatrix[3][3] == static_cast<T>(0))
|
|
|
+ return false;
|
|
|
|
|
|
- for(length_t i = 0; i < 4; i++)
|
|
|
- for(length_t j = 0; j < 4; j++)
|
|
|
+ for(length_t i = 0; i < 4; ++i)
|
|
|
+ for(length_t j = 0; j < 4; ++j)
|
|
|
LocalMatrix[i][j] /= LocalMatrix[3][3];
|
|
|
|
|
|
// perspectiveMatrix is used to solve for perspective, but it also provides
|
|
|
// an easy way to test for singularity of the upper 3x3 component.
|
|
|
tmat4x4<T, P> PerspectiveMatrix(LocalMatrix);
|
|
|
|
|
|
- for(length_t i = 0; i < 3; i++)
|
|
|
- PerspectiveMatrix[i][3] = 0;
|
|
|
- PerspectiveMatrix[3][3] = 1;
|
|
|
+ for(length_t i = 0; i < 3; i++)
|
|
|
+ PerspectiveMatrix[i][3] = 0;
|
|
|
+ PerspectiveMatrix[3][3] = 1;
|
|
|
|
|
|
- /// TODO: Fixme!
|
|
|
- if(determinant(PerspectiveMatrix) == static_cast<T>(0))
|
|
|
- return false;
|
|
|
+ /// TODO: Fixme!
|
|
|
+ if(determinant(PerspectiveMatrix) == static_cast<T>(0))
|
|
|
+ return false;
|
|
|
|
|
|
- // First, isolate perspective. This is the messiest.
|
|
|
- if(LocalMatrix[0][3] != 0 || LocalMatrix[1][3] != 0 || LocalMatrix[2][3] != 0)
|
|
|
- {
|
|
|
+ // First, isolate perspective. This is the messiest.
|
|
|
+ if(LocalMatrix[0][3] != 0 || LocalMatrix[1][3] != 0 || LocalMatrix[2][3] != 0)
|
|
|
+ {
|
|
|
// rightHandSide is the right hand side of the equation.
|
|
|
tvec4<T, P> RightHandSide;
|
|
|
RightHandSide[0] = LocalMatrix[0][3];
|
|
|
@@ -106,122 +106,121 @@ namespace glm
|
|
|
// Clear the perspective partition
|
|
|
LocalMatrix[0][3] = LocalMatrix[1][3] = LocalMatrix[2][3] = 0;
|
|
|
LocalMatrix[3][3] = 1;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
// No perspective.
|
|
|
Perspective = tvec4<T, P>(0, 0, 0, 1);
|
|
|
- }
|
|
|
-
|
|
|
- // Next take care of translation (easy).
|
|
|
- Translation = tvec3<T, P>(LocalMatrix[3]);
|
|
|
- LocalMatrix[3] = tvec4<T, P>(0, 0, 0, LocalMatrix[3].w);
|
|
|
-
|
|
|
- tvec3<T, P> Row[3], Pdum3;
|
|
|
-
|
|
|
- // Now get scale and shear.
|
|
|
- for(length_t i = 0; i < 3; ++i)
|
|
|
- Row[i] = LocalMatrix[i];
|
|
|
-
|
|
|
- // Compute X scale factor and normalize first row.
|
|
|
- Scale.x = length(Row[0]);// v3Length(Row[0]);
|
|
|
-
|
|
|
- v3Scale(Row[0], 1.0);
|
|
|
-
|
|
|
- // Compute XY shear factor and make 2nd row orthogonal to 1st.
|
|
|
- Skew.z = dot(Row[0], Row[1]);
|
|
|
- Row[1] = combine(Row[1], Row[0], 1.0, -Skew.z);
|
|
|
-
|
|
|
- // Now, compute Y scale and normalize 2nd row.
|
|
|
- Scale.y = length(Row[1]);
|
|
|
- v3Scale(Row[1], 1.0);
|
|
|
- Skew.z /= Scale.y;
|
|
|
-
|
|
|
- // Compute XZ and YZ shears, orthogonalize 3rd row.
|
|
|
- Skew.y = glm::dot(Row[0], Row[2]);
|
|
|
- Row[2] = combine(Row[2], Row[0], 1.0, -Skew.y);
|
|
|
- Skew.x = glm::dot(Row[1], Row[2]);
|
|
|
- Row[2] = combine(Row[2], Row[1], 1.0, -Skew.x);
|
|
|
-
|
|
|
- // Next, get Z scale and normalize 3rd row.
|
|
|
- Scale.z = length(Row[2]);
|
|
|
- v3Scale(Row[2], 1.0);
|
|
|
- Skew.y /= Scale.z;
|
|
|
- Skew.x /= Scale.z;
|
|
|
-
|
|
|
- // At this point, the matrix (in rows[]) is orthonormal.
|
|
|
- // Check for a coordinate system flip. If the determinant
|
|
|
- // is -1, then negate the matrix and the scaling factors.
|
|
|
- Pdum3 = cross(Row[1], Row[2]); // v3Cross(row[1], row[2], Pdum3);
|
|
|
- if(dot(Row[0], Pdum3) < 0)
|
|
|
- {
|
|
|
- for(length_t i = 0; i < 3; i++)
|
|
|
- {
|
|
|
- Scale.x *= static_cast<T>(-1);
|
|
|
- Row[i] *= static_cast<T>(-1);
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- // Now, get the rotations out, as described in the gem.
|
|
|
-
|
|
|
- // FIXME - Add the ability to return either quaternions (which are
|
|
|
- // easier to recompose with) or Euler angles (rx, ry, rz), which
|
|
|
- // are easier for authors to deal with. The latter will only be useful
|
|
|
- // when we fix https://bugs.webkit.org/show_bug.cgi?id=23799, so I
|
|
|
- // will leave the Euler angle code here for now.
|
|
|
-
|
|
|
- // ret.rotateY = asin(-Row[0][2]);
|
|
|
- // if (cos(ret.rotateY) != 0) {
|
|
|
- // ret.rotateX = atan2(Row[1][2], Row[2][2]);
|
|
|
- // ret.rotateZ = atan2(Row[0][1], Row[0][0]);
|
|
|
- // } else {
|
|
|
- // ret.rotateX = atan2(-Row[2][0], Row[1][1]);
|
|
|
- // ret.rotateZ = 0;
|
|
|
- // }
|
|
|
-
|
|
|
- T s, t, x, y, z, w;
|
|
|
-
|
|
|
- t = Row[0][0] + Row[1][1] + Row[2][2] + 1.0;
|
|
|
-
|
|
|
- if(t > 1e-4)
|
|
|
- {
|
|
|
- s = 0.5 / sqrt(t);
|
|
|
- w = 0.25 / s;
|
|
|
- x = (Row[2][1] - Row[1][2]) * s;
|
|
|
- y = (Row[0][2] - Row[2][0]) * s;
|
|
|
- z = (Row[1][0] - Row[0][1]) * s;
|
|
|
- }
|
|
|
- else if(Row[0][0] > Row[1][1] && Row[0][0] > Row[2][2])
|
|
|
- {
|
|
|
- s = sqrt (1.0 + Row[0][0] - Row[1][1] - Row[2][2]) * 2.0; // S=4*qx
|
|
|
- x = 0.25 * s;
|
|
|
- y = (Row[0][1] + Row[1][0]) / s;
|
|
|
- z = (Row[0][2] + Row[2][0]) / s;
|
|
|
- w = (Row[2][1] - Row[1][2]) / s;
|
|
|
- }
|
|
|
- else if(Row[1][1] > Row[2][2])
|
|
|
- {
|
|
|
- s = sqrt (1.0 + Row[1][1] - Row[0][0] - Row[2][2]) * 2.0; // S=4*qy
|
|
|
- x = (Row[0][1] + Row[1][0]) / s;
|
|
|
- y = 0.25 * s;
|
|
|
- z = (Row[1][2] + Row[2][1]) / s;
|
|
|
- w = (Row[0][2] - Row[2][0]) / s;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- s = sqrt(1.0 + Row[2][2] - Row[0][0] - Row[1][1]) * 2.0; // S=4*qz
|
|
|
- x = (Row[0][2] + Row[2][0]) / s;
|
|
|
- y = (Row[1][2] + Row[2][1]) / s;
|
|
|
- z = 0.25 * s;
|
|
|
- w = (Row[1][0] - Row[0][1]) / s;
|
|
|
- }
|
|
|
-
|
|
|
- Orientation.x = x;
|
|
|
- Orientation.y = y;
|
|
|
- Orientation.z = z;
|
|
|
- Orientation.w = w;
|
|
|
-
|
|
|
- return true;
|
|
|
-
|
|
|
+ }
|
|
|
+
|
|
|
+ // Next take care of translation (easy).
|
|
|
+ Translation = tvec3<T, P>(LocalMatrix[3]);
|
|
|
+ LocalMatrix[3] = tvec4<T, P>(0, 0, 0, LocalMatrix[3].w);
|
|
|
+
|
|
|
+ tvec3<T, P> Row[3], Pdum3;
|
|
|
+
|
|
|
+ // Now get scale and shear.
|
|
|
+ for(length_t i = 0; i < 3; ++i)
|
|
|
+ Row[i] = LocalMatrix[i];
|
|
|
+
|
|
|
+ // Compute X scale factor and normalize first row.
|
|
|
+ Scale.x = length(Row[0]);// v3Length(Row[0]);
|
|
|
+
|
|
|
+ v3Scale(Row[0], 1.0);
|
|
|
+
|
|
|
+ // Compute XY shear factor and make 2nd row orthogonal to 1st.
|
|
|
+ Skew.z = dot(Row[0], Row[1]);
|
|
|
+ Row[1] = combine(Row[1], Row[0], 1.0, -Skew.z);
|
|
|
+
|
|
|
+ // Now, compute Y scale and normalize 2nd row.
|
|
|
+ Scale.y = length(Row[1]);
|
|
|
+ v3Scale(Row[1], 1.0);
|
|
|
+ Skew.z /= Scale.y;
|
|
|
+
|
|
|
+ // Compute XZ and YZ shears, orthogonalize 3rd row.
|
|
|
+ Skew.y = glm::dot(Row[0], Row[2]);
|
|
|
+ Row[2] = combine(Row[2], Row[0], 1.0, -Skew.y);
|
|
|
+ Skew.x = glm::dot(Row[1], Row[2]);
|
|
|
+ Row[2] = combine(Row[2], Row[1], 1.0, -Skew.x);
|
|
|
+
|
|
|
+ // Next, get Z scale and normalize 3rd row.
|
|
|
+ Scale.z = length(Row[2]);
|
|
|
+ v3Scale(Row[2], 1.0);
|
|
|
+ Skew.y /= Scale.z;
|
|
|
+ Skew.x /= Scale.z;
|
|
|
+
|
|
|
+ // At this point, the matrix (in rows[]) is orthonormal.
|
|
|
+ // Check for a coordinate system flip. If the determinant
|
|
|
+ // is -1, then negate the matrix and the scaling factors.
|
|
|
+ Pdum3 = cross(Row[1], Row[2]); // v3Cross(row[1], row[2], Pdum3);
|
|
|
+ if(dot(Row[0], Pdum3) < 0)
|
|
|
+ {
|
|
|
+ for(length_t i = 0; i < 3; i++)
|
|
|
+ {
|
|
|
+ Scale.x *= static_cast<T>(-1);
|
|
|
+ Row[i] *= static_cast<T>(-1);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // Now, get the rotations out, as described in the gem.
|
|
|
+
|
|
|
+ // FIXME - Add the ability to return either quaternions (which are
|
|
|
+ // easier to recompose with) or Euler angles (rx, ry, rz), which
|
|
|
+ // are easier for authors to deal with. The latter will only be useful
|
|
|
+ // when we fix https://bugs.webkit.org/show_bug.cgi?id=23799, so I
|
|
|
+ // will leave the Euler angle code here for now.
|
|
|
+
|
|
|
+ // ret.rotateY = asin(-Row[0][2]);
|
|
|
+ // if (cos(ret.rotateY) != 0) {
|
|
|
+ // ret.rotateX = atan2(Row[1][2], Row[2][2]);
|
|
|
+ // ret.rotateZ = atan2(Row[0][1], Row[0][0]);
|
|
|
+ // } else {
|
|
|
+ // ret.rotateX = atan2(-Row[2][0], Row[1][1]);
|
|
|
+ // ret.rotateZ = 0;
|
|
|
+ // }
|
|
|
+
|
|
|
+ T s, t, x, y, z, w;
|
|
|
+
|
|
|
+ t = Row[0][0] + Row[1][1] + Row[2][2] + 1.0;
|
|
|
+
|
|
|
+ if(t > 1e-4)
|
|
|
+ {
|
|
|
+ s = 0.5 / sqrt(t);
|
|
|
+ w = 0.25 / s;
|
|
|
+ x = (Row[2][1] - Row[1][2]) * s;
|
|
|
+ y = (Row[0][2] - Row[2][0]) * s;
|
|
|
+ z = (Row[1][0] - Row[0][1]) * s;
|
|
|
+ }
|
|
|
+ else if(Row[0][0] > Row[1][1] && Row[0][0] > Row[2][2])
|
|
|
+ {
|
|
|
+ s = sqrt (1.0 + Row[0][0] - Row[1][1] - Row[2][2]) * 2.0; // S=4*qx
|
|
|
+ x = 0.25 * s;
|
|
|
+ y = (Row[0][1] + Row[1][0]) / s;
|
|
|
+ z = (Row[0][2] + Row[2][0]) / s;
|
|
|
+ w = (Row[2][1] - Row[1][2]) / s;
|
|
|
+ }
|
|
|
+ else if(Row[1][1] > Row[2][2])
|
|
|
+ {
|
|
|
+ s = sqrt (1.0 + Row[1][1] - Row[0][0] - Row[2][2]) * 2.0; // S=4*qy
|
|
|
+ x = (Row[0][1] + Row[1][0]) / s;
|
|
|
+ y = 0.25 * s;
|
|
|
+ z = (Row[1][2] + Row[2][1]) / s;
|
|
|
+ w = (Row[0][2] - Row[2][0]) / s;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ s = sqrt(1.0 + Row[2][2] - Row[0][0] - Row[1][1]) * 2.0; // S=4*qz
|
|
|
+ x = (Row[0][2] + Row[2][0]) / s;
|
|
|
+ y = (Row[1][2] + Row[2][1]) / s;
|
|
|
+ z = 0.25 * s;
|
|
|
+ w = (Row[1][0] - Row[0][1]) / s;
|
|
|
+ }
|
|
|
+
|
|
|
+ Orientation.x = x;
|
|
|
+ Orientation.y = y;
|
|
|
+ Orientation.z = z;
|
|
|
+ Orientation.w = w;
|
|
|
+
|
|
|
+ return true;
|
|
|
}
|
|
|
}//namespace glm
|