Christophe Riccio 11 anni fa
parent
commit
284ba46dae
1 ha cambiato i file con 138 aggiunte e 139 eliminazioni
  1. 138 139
      glm/gtx/matrix_decompose.inl

+ 138 - 139
glm/gtx/matrix_decompose.inl

@@ -36,20 +36,20 @@ namespace glm
 		tvec3<T, P> const & b,
 		T ascl, T bscl)
 	{
-	    return (a * ascl) + (b * bscl);
+		return (a * ascl) + (b * bscl);
 	}
 
 	template <typename T, precision P>
-	GLM_FUNC_QUALIFIER void v3Scale(tvec3<T, P> & v, T desiredLength) 
+	GLM_FUNC_QUALIFIER void v3Scale(tvec3<T, P> & v, T desiredLength)
 	{
-	    T len = glm::length(v);
-	    if(len != 0)
-	    {
-	        T l = desiredLength / len;
-	        v[0] *= l;
-	        v[1] *= l;
-	        v[2] *= l;
-	    }
+		T len = glm::length(v);
+		if(len != 0)
+		{
+			T l = desiredLength / len;
+			v[0] *= l;
+			v[1] *= l;
+			v[2] *= l;
+		}
 	}
 
 	/**
@@ -64,29 +64,29 @@ namespace glm
 	{
 		tmat4x4<T, P> LocalMatrix(ModelMatrix);
 
-	    // Normalize the matrix.
-	    if(LocalMatrix[3][3] == static_cast<T>(0))
-	        return false;
+		// Normalize the matrix.
+		if(LocalMatrix[3][3] == static_cast<T>(0))
+			return false;
 
-		for(length_t i = 0; i < 4; i++)
-		for(length_t j = 0; j < 4; j++)
+		for(length_t i = 0; i < 4; ++i)
+		for(length_t j = 0; j < 4; ++j)
 			LocalMatrix[i][j] /= LocalMatrix[3][3];
 
 		// perspectiveMatrix is used to solve for perspective, but it also provides
 		// an easy way to test for singularity of the upper 3x3 component.
 		tmat4x4<T, P> PerspectiveMatrix(LocalMatrix);
 
-	    for(length_t i = 0; i < 3; i++)
-	        PerspectiveMatrix[i][3] = 0;
-	    PerspectiveMatrix[3][3] = 1;
+		for(length_t i = 0; i < 3; i++)
+			PerspectiveMatrix[i][3] = 0;
+		PerspectiveMatrix[3][3] = 1;
 
-	    /// TODO: Fixme!
-	    if(determinant(PerspectiveMatrix) == static_cast<T>(0))
-	        return false;
+		/// TODO: Fixme!
+		if(determinant(PerspectiveMatrix) == static_cast<T>(0))
+			return false;
 
-	    // First, isolate perspective.  This is the messiest.
-	    if(LocalMatrix[0][3] != 0 || LocalMatrix[1][3] != 0 || LocalMatrix[2][3] != 0)
-	    {
+		// First, isolate perspective.  This is the messiest.
+		if(LocalMatrix[0][3] != 0 || LocalMatrix[1][3] != 0 || LocalMatrix[2][3] != 0)
+		{
 			// rightHandSide is the right hand side of the equation.
 			tvec4<T, P> RightHandSide;
 			RightHandSide[0] = LocalMatrix[0][3];
@@ -106,122 +106,121 @@ namespace glm
 			// Clear the perspective partition
 			LocalMatrix[0][3] = LocalMatrix[1][3] = LocalMatrix[2][3] = 0;
 			LocalMatrix[3][3] = 1;
-	    }
-	    else
-	    {
+		}
+		else
+		{
 			// No perspective.
 			Perspective = tvec4<T, P>(0, 0, 0, 1);
-	    }
-
-	    // Next take care of translation (easy).
-	    Translation = tvec3<T, P>(LocalMatrix[3]);
-	    LocalMatrix[3] = tvec4<T, P>(0, 0, 0, LocalMatrix[3].w);
-
-	    tvec3<T, P> Row[3], Pdum3;
-
-	    // Now get scale and shear.
-	    for(length_t i = 0; i < 3; ++i)
-	        Row[i] = LocalMatrix[i];
-
-	    // Compute X scale factor and normalize first row.
-	    Scale.x = length(Row[0]);// v3Length(Row[0]);
-
-	    v3Scale(Row[0], 1.0);
-
-	    // Compute XY shear factor and make 2nd row orthogonal to 1st.
-	    Skew.z = dot(Row[0], Row[1]);
-	    Row[1] = combine(Row[1], Row[0], 1.0, -Skew.z);
-
-	    // Now, compute Y scale and normalize 2nd row.
-	    Scale.y = length(Row[1]);
-	    v3Scale(Row[1], 1.0);
-	    Skew.z /= Scale.y;
-
-	    // Compute XZ and YZ shears, orthogonalize 3rd row.
-	    Skew.y = glm::dot(Row[0], Row[2]);
-	    Row[2] = combine(Row[2], Row[0], 1.0, -Skew.y);
-	    Skew.x = glm::dot(Row[1], Row[2]);
-	    Row[2] = combine(Row[2], Row[1], 1.0, -Skew.x);
-
-	    // Next, get Z scale and normalize 3rd row.
-	    Scale.z = length(Row[2]);
-	    v3Scale(Row[2], 1.0);
-	    Skew.y /= Scale.z;
-	    Skew.x /= Scale.z;
-
-	    // At this point, the matrix (in rows[]) is orthonormal.
-	    // Check for a coordinate system flip.  If the determinant
-	    // is -1, then negate the matrix and the scaling factors.
-	    Pdum3 = cross(Row[1], Row[2]); // v3Cross(row[1], row[2], Pdum3);
-	    if(dot(Row[0], Pdum3) < 0)
-	    {
-	        for(length_t i = 0; i < 3; i++)
-	        {
-	            Scale.x *= static_cast<T>(-1);
-	            Row[i] *= static_cast<T>(-1);
-	        }
-	    }
-
-	    // Now, get the rotations out, as described in the gem.
-
-	    // FIXME - Add the ability to return either quaternions (which are
-	    // easier to recompose with) or Euler angles (rx, ry, rz), which
-	    // are easier for authors to deal with. The latter will only be useful
-	    // when we fix https://bugs.webkit.org/show_bug.cgi?id=23799, so I
-	    // will leave the Euler angle code here for now.
-
-	    // ret.rotateY = asin(-Row[0][2]);
-	    // if (cos(ret.rotateY) != 0) {
-	    //     ret.rotateX = atan2(Row[1][2], Row[2][2]);
-	    //     ret.rotateZ = atan2(Row[0][1], Row[0][0]);
-	    // } else {
-	    //     ret.rotateX = atan2(-Row[2][0], Row[1][1]);
-	    //     ret.rotateZ = 0;
-	    // }
-
-	    T s, t, x, y, z, w;
-
-	    t = Row[0][0] + Row[1][1] + Row[2][2] + 1.0;
-
-	    if(t > 1e-4)
-	    {
-	        s = 0.5 / sqrt(t);
-	        w = 0.25 / s;
-	        x = (Row[2][1] - Row[1][2]) * s;
-	        y = (Row[0][2] - Row[2][0]) * s;
-	        z = (Row[1][0] - Row[0][1]) * s;
-	    }
-	    else if(Row[0][0] > Row[1][1] && Row[0][0] > Row[2][2])
-	    { 
-	        s = sqrt (1.0 + Row[0][0] - Row[1][1] - Row[2][2]) * 2.0; // S=4*qx 
-	        x = 0.25 * s;
-	        y = (Row[0][1] + Row[1][0]) / s; 
-	        z = (Row[0][2] + Row[2][0]) / s; 
-	        w = (Row[2][1] - Row[1][2]) / s;
-	    }
-	    else if(Row[1][1] > Row[2][2])
-	    { 
-	        s = sqrt (1.0 + Row[1][1] - Row[0][0] - Row[2][2]) * 2.0; // S=4*qy
-	        x = (Row[0][1] + Row[1][0]) / s; 
-	        y = 0.25 * s;
-	        z = (Row[1][2] + Row[2][1]) / s; 
-	        w = (Row[0][2] - Row[2][0]) / s;
-	    }
-	    else
-	    { 
-	        s = sqrt(1.0 + Row[2][2] - Row[0][0] - Row[1][1]) * 2.0; // S=4*qz
-	        x = (Row[0][2] + Row[2][0]) / s;
-	        y = (Row[1][2] + Row[2][1]) / s; 
-	        z = 0.25 * s;
-	        w = (Row[1][0] - Row[0][1]) / s;
-	    }
-
-	    Orientation.x = x;
-	    Orientation.y = y;
-	    Orientation.z = z;
-	    Orientation.w = w;
-
-	    return true;
-
+		}
+
+		// Next take care of translation (easy).
+		Translation = tvec3<T, P>(LocalMatrix[3]);
+		LocalMatrix[3] = tvec4<T, P>(0, 0, 0, LocalMatrix[3].w);
+
+		tvec3<T, P> Row[3], Pdum3;
+
+		// Now get scale and shear.
+		for(length_t i = 0; i < 3; ++i)
+			Row[i] = LocalMatrix[i];
+
+		// Compute X scale factor and normalize first row.
+		Scale.x = length(Row[0]);// v3Length(Row[0]);
+
+		v3Scale(Row[0], 1.0);
+
+		// Compute XY shear factor and make 2nd row orthogonal to 1st.
+		Skew.z = dot(Row[0], Row[1]);
+		Row[1] = combine(Row[1], Row[0], 1.0, -Skew.z);
+
+		// Now, compute Y scale and normalize 2nd row.
+		Scale.y = length(Row[1]);
+		v3Scale(Row[1], 1.0);
+		Skew.z /= Scale.y;
+
+		// Compute XZ and YZ shears, orthogonalize 3rd row.
+		Skew.y = glm::dot(Row[0], Row[2]);
+		Row[2] = combine(Row[2], Row[0], 1.0, -Skew.y);
+		Skew.x = glm::dot(Row[1], Row[2]);
+		Row[2] = combine(Row[2], Row[1], 1.0, -Skew.x);
+
+		// Next, get Z scale and normalize 3rd row.
+		Scale.z = length(Row[2]);
+		v3Scale(Row[2], 1.0);
+		Skew.y /= Scale.z;
+		Skew.x /= Scale.z;
+
+		// At this point, the matrix (in rows[]) is orthonormal.
+		// Check for a coordinate system flip.  If the determinant
+		// is -1, then negate the matrix and the scaling factors.
+		Pdum3 = cross(Row[1], Row[2]); // v3Cross(row[1], row[2], Pdum3);
+		if(dot(Row[0], Pdum3) < 0)
+		{
+			for(length_t i = 0; i < 3; i++)
+			{
+				Scale.x *= static_cast<T>(-1);
+				Row[i] *= static_cast<T>(-1);
+			}
+		}
+
+		// Now, get the rotations out, as described in the gem.
+
+		// FIXME - Add the ability to return either quaternions (which are
+		// easier to recompose with) or Euler angles (rx, ry, rz), which
+		// are easier for authors to deal with. The latter will only be useful
+		// when we fix https://bugs.webkit.org/show_bug.cgi?id=23799, so I
+		// will leave the Euler angle code here for now.
+
+		// ret.rotateY = asin(-Row[0][2]);
+		// if (cos(ret.rotateY) != 0) {
+		//     ret.rotateX = atan2(Row[1][2], Row[2][2]);
+		//     ret.rotateZ = atan2(Row[0][1], Row[0][0]);
+		// } else {
+		//     ret.rotateX = atan2(-Row[2][0], Row[1][1]);
+		//     ret.rotateZ = 0;
+		// }
+
+		T s, t, x, y, z, w;
+
+		t = Row[0][0] + Row[1][1] + Row[2][2] + 1.0;
+
+		if(t > 1e-4)
+		{
+			s = 0.5 / sqrt(t);
+			w = 0.25 / s;
+			x = (Row[2][1] - Row[1][2]) * s;
+			y = (Row[0][2] - Row[2][0]) * s;
+			z = (Row[1][0] - Row[0][1]) * s;
+		}
+		else if(Row[0][0] > Row[1][1] && Row[0][0] > Row[2][2])
+		{ 
+			s = sqrt (1.0 + Row[0][0] - Row[1][1] - Row[2][2]) * 2.0; // S=4*qx 
+			x = 0.25 * s;
+			y = (Row[0][1] + Row[1][0]) / s; 
+			z = (Row[0][2] + Row[2][0]) / s; 
+			w = (Row[2][1] - Row[1][2]) / s;
+		}
+		else if(Row[1][1] > Row[2][2])
+		{ 
+			s = sqrt (1.0 + Row[1][1] - Row[0][0] - Row[2][2]) * 2.0; // S=4*qy
+			x = (Row[0][1] + Row[1][0]) / s; 
+			y = 0.25 * s;
+			z = (Row[1][2] + Row[2][1]) / s; 
+			w = (Row[0][2] - Row[2][0]) / s;
+		}
+		else
+		{ 
+			s = sqrt(1.0 + Row[2][2] - Row[0][0] - Row[1][1]) * 2.0; // S=4*qz
+			x = (Row[0][2] + Row[2][0]) / s;
+			y = (Row[1][2] + Row[2][1]) / s; 
+			z = 0.25 * s;
+			w = (Row[1][0] - Row[0][1]) / s;
+		}
+
+		Orientation.x = x;
+		Orientation.y = y;
+		Orientation.z = z;
+		Orientation.w = w;
+
+		return true;
 	}
 }//namespace glm