|
|
@@ -32,8 +32,8 @@ int test_linearRand()
|
|
|
|
|
|
return Error;
|
|
|
}
|
|
|
-/*
|
|
|
-int test_normalizedRand2()
|
|
|
+
|
|
|
+int test_circularRand()
|
|
|
{
|
|
|
int Error = 0;
|
|
|
|
|
|
@@ -41,21 +41,23 @@ int test_normalizedRand2()
|
|
|
std::size_t Max = 100000;
|
|
|
float ResultFloat = 0.0f;
|
|
|
double ResultDouble = 0.0f;
|
|
|
+ double Radius = 2.0f;
|
|
|
+
|
|
|
for(std::size_t i = 0; i < Max; ++i)
|
|
|
{
|
|
|
- ResultFloat += glm::length(glm::normalizedRand2(1.0f, 1.0f));
|
|
|
- ResultDouble += glm::length(glm::normalizedRand2(1.0f, 1.0f));
|
|
|
+ ResultFloat += glm::length(glm::circularRand(1.0f));
|
|
|
+ ResultDouble += glm::length(glm::circularRand(Radius));
|
|
|
}
|
|
|
|
|
|
Error += glm::equalEpsilon(ResultFloat, float(Max), 0.01f) ? 0 : 1;
|
|
|
- Error += glm::equalEpsilon(ResultDouble, double(Max), 0.01) ? 0 : 1;
|
|
|
+ Error += glm::equalEpsilon(ResultDouble, double(Max) * double(Radius), 0.01) ? 0 : 1;
|
|
|
assert(!Error);
|
|
|
}
|
|
|
|
|
|
return Error;
|
|
|
}
|
|
|
|
|
|
-int test_normalizedRand3()
|
|
|
+int test_sphericalRand()
|
|
|
{
|
|
|
int Error = 0;
|
|
|
|
|
|
@@ -69,33 +71,33 @@ int test_normalizedRand3()
|
|
|
double ResultDoubleC = 0.0f;
|
|
|
for(std::size_t i = 0; i < Max; ++i)
|
|
|
{
|
|
|
- ResultFloatA += glm::length(glm::normalizedRand3(1.0f, 1.0f));
|
|
|
- ResultDoubleA += glm::length(glm::normalizedRand3(1.0f, 1.0f));
|
|
|
- ResultFloatB += glm::length(glm::normalizedRand3(2.0f, 2.0f));
|
|
|
- ResultDoubleB += glm::length(glm::normalizedRand3(2.0, 2.0));
|
|
|
- ResultFloatC += glm::length(glm::normalizedRand3(1.0f, 3.0f));
|
|
|
- ResultDoubleC += glm::length(glm::normalizedRand3(1.0, 3.0));
|
|
|
+ ResultFloatA += glm::length(glm::sphericalRand(1.0f));
|
|
|
+ ResultDoubleA += glm::length(glm::sphericalRand(1.0));
|
|
|
+ ResultFloatB += glm::length(glm::sphericalRand(2.0f));
|
|
|
+ ResultDoubleB += glm::length(glm::sphericalRand(2.0));
|
|
|
+ ResultFloatC += glm::length(glm::sphericalRand(3.0f));
|
|
|
+ ResultDoubleC += glm::length(glm::sphericalRand(3.0));
|
|
|
}
|
|
|
|
|
|
- Error += glm::equalEpsilon(ResultFloatA, float(Max), 100.0f) ? 0 : 1;
|
|
|
- Error += glm::equalEpsilon(ResultDoubleA, double(Max), 100.0) ? 0 : 1;
|
|
|
- Error += glm::equalEpsilon(ResultFloatB, float(Max * 2), 100.0001f) ? 0 : 1;
|
|
|
- Error += glm::equalEpsilon(ResultDoubleB, double(Max * 2), 100.0001) ? 0 : 1;
|
|
|
- Error += (ResultFloatC >= float(Max) && ResultFloatC <= float(Max * 3)) ? 0 : 1;
|
|
|
- Error += (ResultDoubleC >= double(Max) && ResultDoubleC <= double(Max * 3)) ? 0 : 1;
|
|
|
+ Error += glm::equalEpsilon(ResultFloatA, float(Max), 0.01f) ? 0 : 1;
|
|
|
+ Error += glm::equalEpsilon(ResultDoubleA, double(Max), 0.0001) ? 0 : 1;
|
|
|
+ Error += glm::equalEpsilon(ResultFloatB, float(Max * 2), 0.01f) ? 0 : 1;
|
|
|
+ Error += glm::equalEpsilon(ResultDoubleB, double(Max * 2), 0.0001) ? 0 : 1;
|
|
|
+ Error += glm::equalEpsilon(ResultFloatC, float(Max * 3), 0.01f) ? 0 : 1;
|
|
|
+ Error += glm::equalEpsilon(ResultDoubleC, double(Max * 3), 0.01) ? 0 : 1;
|
|
|
assert(!Error);
|
|
|
}
|
|
|
|
|
|
return Error;
|
|
|
}
|
|
|
-*/
|
|
|
+
|
|
|
int main()
|
|
|
{
|
|
|
int Error = 0;
|
|
|
|
|
|
Error += test_linearRand();
|
|
|
- //Error += test_normalizedRand2();
|
|
|
- //Error += test_normalizedRand3();
|
|
|
+ Error += test_circularRand();
|
|
|
+ Error += test_sphericalRand();
|
|
|
|
|
|
return Error;
|
|
|
}
|