|
@@ -11,6 +11,10 @@
|
|
|
#include <glm/gtc/type_precision.hpp>
|
|
#include <glm/gtc/type_precision.hpp>
|
|
|
#include <glm/gtx/bit.hpp>
|
|
#include <glm/gtx/bit.hpp>
|
|
|
#include <iostream>
|
|
#include <iostream>
|
|
|
|
|
+#include <vector>
|
|
|
|
|
+#include <ctime>
|
|
|
|
|
+
|
|
|
|
|
+#include <emmintrin.h>
|
|
|
|
|
|
|
|
enum result
|
|
enum result
|
|
|
{
|
|
{
|
|
@@ -162,10 +166,447 @@ namespace bitRevert
|
|
|
}
|
|
}
|
|
|
}//bitRevert
|
|
}//bitRevert
|
|
|
|
|
|
|
|
|
|
+inline glm::uint64 fastBitfieldInterleave(glm::uint32 x, glm::uint32 y)
|
|
|
|
|
+{
|
|
|
|
|
+ glm::uint64 REG1;
|
|
|
|
|
+ glm::uint64 REG2;
|
|
|
|
|
+
|
|
|
|
|
+ REG1 = x;
|
|
|
|
|
+ REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF);
|
|
|
|
|
+ REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF);
|
|
|
|
|
+ REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F);
|
|
|
|
|
+ REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333);
|
|
|
|
|
+ REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555);
|
|
|
|
|
+
|
|
|
|
|
+ REG2 = y;
|
|
|
|
|
+ REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF);
|
|
|
|
|
+ REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF);
|
|
|
|
|
+ REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F);
|
|
|
|
|
+ REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333);
|
|
|
|
|
+ REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555);
|
|
|
|
|
+
|
|
|
|
|
+ return REG1 | (REG2 << 1);
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+inline glm::uint64 interleaveBitfieldInterleave(glm::uint32 x, glm::uint32 y)
|
|
|
|
|
+{
|
|
|
|
|
+ glm::uint64 REG1;
|
|
|
|
|
+ glm::uint64 REG2;
|
|
|
|
|
+
|
|
|
|
|
+ REG1 = x;
|
|
|
|
|
+ REG2 = y;
|
|
|
|
|
+
|
|
|
|
|
+ REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF);
|
|
|
|
|
+ REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF);
|
|
|
|
|
+
|
|
|
|
|
+ REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF);
|
|
|
|
|
+ REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF);
|
|
|
|
|
+
|
|
|
|
|
+ REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F);
|
|
|
|
|
+ REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F);
|
|
|
|
|
+
|
|
|
|
|
+ REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333);
|
|
|
|
|
+ REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333);
|
|
|
|
|
+
|
|
|
|
|
+ REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555);
|
|
|
|
|
+ REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555);
|
|
|
|
|
+
|
|
|
|
|
+ return REG1 | (REG2 << 1);
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+inline glm::uint64 loopBitfieldInterleave(glm::uint32 x, glm::uint32 y)
|
|
|
|
|
+{
|
|
|
|
|
+ static glm::uint64 const Mask[5] =
|
|
|
|
|
+ {
|
|
|
|
|
+ 0x5555555555555555,
|
|
|
|
|
+ 0x3333333333333333,
|
|
|
|
|
+ 0x0F0F0F0F0F0F0F0F,
|
|
|
|
|
+ 0x00FF00FF00FF00FF,
|
|
|
|
|
+ 0x0000FFFF0000FFFF
|
|
|
|
|
+ };
|
|
|
|
|
+
|
|
|
|
|
+ glm::uint64 REG1 = x;
|
|
|
|
|
+ glm::uint64 REG2 = y;
|
|
|
|
|
+ for(int i = 4; i >= 0; --i)
|
|
|
|
|
+ {
|
|
|
|
|
+ REG1 = ((REG1 << (1 << i)) | REG1) & Mask[i];
|
|
|
|
|
+ REG2 = ((REG2 << (1 << i)) | REG2) & Mask[i];
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ return REG1 | (REG2 << 1);
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+/*
|
|
|
|
|
+const int N = 1024;
|
|
|
|
|
+
|
|
|
|
|
+int32_t b1[N]; // 2 x arrays of input bit sets
|
|
|
|
|
+int32_t b2[N];
|
|
|
|
|
+int32_t b3[N]; // 1 x array of output bit sets
|
|
|
|
|
+
|
|
|
|
|
+for (int i = 0; i < N; i += 4)
|
|
|
|
|
+{
|
|
|
|
|
+ __m128i v1 = _mm_loadu_si128(&b1[i]); // load input bits sets
|
|
|
|
|
+ __m128i v2 = _mm_loadu_si128(&b2[i]);
|
|
|
|
|
+ __m128i v3 = _mm_and_si128(v1, v2); // do the bitwise AND
|
|
|
|
|
+ _mm_storeu_si128(&b3[i], v3); // store the result
|
|
|
|
|
+}
|
|
|
|
|
+If you just want to AND an array in-place with a fixed mask then it would simplify to this:
|
|
|
|
|
+
|
|
|
|
|
+const int N = 1024;
|
|
|
|
|
+
|
|
|
|
|
+int32_t b1[N]; // input/output array of bit sets
|
|
|
|
|
+
|
|
|
|
|
+const __m128i v2 = _mm_set1_epi32(0x12345678); // mask
|
|
|
|
|
+
|
|
|
|
|
+for (int i = 0; i < N; i += 4)
|
|
|
|
|
+{
|
|
|
|
|
+ __m128i v1 = _mm_loadu_si128(&b1[i]); // load input bits sets
|
|
|
|
|
+ __m128i v3 = _mm_and_si128(v1, v2); // do the bitwise AND
|
|
|
|
|
+ _mm_storeu_si128(&b1[i], v3); // store the result
|
|
|
|
|
+}
|
|
|
|
|
+Note: for better performance make sure your input/output arrays are 16 byte aligned and then use _mm_load_si128/_mm_store_si128 rather than their unaligned counterparts as above.
|
|
|
|
|
+*/
|
|
|
|
|
+
|
|
|
|
|
+inline glm::uint64 sseBitfieldInterleave(glm::uint32 x, glm::uint32 y)
|
|
|
|
|
+{
|
|
|
|
|
+ GLM_ALIGN(16) glm::uint32 const Array[4] = {x, 0, y, 0};
|
|
|
|
|
+
|
|
|
|
|
+ __m128i const Mask4 = _mm_set1_epi32(0x0000FFFF);
|
|
|
|
|
+ __m128i const Mask3 = _mm_set1_epi32(0x00FF00FF);
|
|
|
|
|
+ __m128i const Mask2 = _mm_set1_epi32(0x0F0F0F0F);
|
|
|
|
|
+ __m128i const Mask1 = _mm_set1_epi32(0x33333333);
|
|
|
|
|
+ __m128i const Mask0 = _mm_set1_epi32(0x55555555);
|
|
|
|
|
+
|
|
|
|
|
+ __m128i Reg1;
|
|
|
|
|
+ __m128i Reg2;
|
|
|
|
|
+
|
|
|
|
|
+ // REG1 = x;
|
|
|
|
|
+ // REG2 = y;
|
|
|
|
|
+ Reg1 = _mm_load_si128((__m128i*)Array);
|
|
|
|
|
+
|
|
|
|
|
+ //REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF);
|
|
|
|
|
+ //REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF);
|
|
|
|
|
+ Reg2 = _mm_slli_si128(Reg1, 2);
|
|
|
|
|
+ Reg1 = _mm_or_si128(Reg2, Reg1);
|
|
|
|
|
+ Reg1 = _mm_and_si128(Reg1, Mask4);
|
|
|
|
|
+
|
|
|
|
|
+ //REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF);
|
|
|
|
|
+ //REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF);
|
|
|
|
|
+ Reg2 = _mm_slli_si128(Reg1, 1);
|
|
|
|
|
+ Reg1 = _mm_or_si128(Reg2, Reg1);
|
|
|
|
|
+ Reg1 = _mm_and_si128(Reg1, Mask3);
|
|
|
|
|
+
|
|
|
|
|
+ //REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F);
|
|
|
|
|
+ //REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F);
|
|
|
|
|
+ Reg2 = _mm_slli_epi32(Reg1, 4);
|
|
|
|
|
+ Reg1 = _mm_or_si128(Reg2, Reg1);
|
|
|
|
|
+ Reg1 = _mm_and_si128(Reg1, Mask2);
|
|
|
|
|
+
|
|
|
|
|
+ //REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333);
|
|
|
|
|
+ //REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333);
|
|
|
|
|
+ Reg2 = _mm_slli_epi32(Reg1, 2);
|
|
|
|
|
+ Reg1 = _mm_or_si128(Reg2, Reg1);
|
|
|
|
|
+ Reg1 = _mm_and_si128(Reg1, Mask1);
|
|
|
|
|
+
|
|
|
|
|
+ //REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555);
|
|
|
|
|
+ //REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555);
|
|
|
|
|
+ Reg2 = _mm_slli_epi32(Reg1, 1);
|
|
|
|
|
+ Reg1 = _mm_or_si128(Reg2, Reg1);
|
|
|
|
|
+ Reg1 = _mm_and_si128(Reg1, Mask0);
|
|
|
|
|
+
|
|
|
|
|
+ //return REG1 | (REG2 << 1);
|
|
|
|
|
+ Reg2 = _mm_slli_epi32(Reg1, 1);
|
|
|
|
|
+ Reg2 = _mm_srli_si128(Reg2, 8);
|
|
|
|
|
+ Reg1 = _mm_or_si128(Reg1, Reg2);
|
|
|
|
|
+
|
|
|
|
|
+ GLM_ALIGN(16) glm::uint64 Result[2];
|
|
|
|
|
+ _mm_store_si128((__m128i*)Result, Reg1);
|
|
|
|
|
+
|
|
|
|
|
+ return Result[0];
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+inline glm::uint64 sseUnalignedBitfieldInterleave(glm::uint32 x, glm::uint32 y)
|
|
|
|
|
+{
|
|
|
|
|
+ glm::uint32 const Array[4] = {x, 0, y, 0};
|
|
|
|
|
+
|
|
|
|
|
+ __m128i const Mask4 = _mm_set1_epi32(0x0000FFFF);
|
|
|
|
|
+ __m128i const Mask3 = _mm_set1_epi32(0x00FF00FF);
|
|
|
|
|
+ __m128i const Mask2 = _mm_set1_epi32(0x0F0F0F0F);
|
|
|
|
|
+ __m128i const Mask1 = _mm_set1_epi32(0x33333333);
|
|
|
|
|
+ __m128i const Mask0 = _mm_set1_epi32(0x55555555);
|
|
|
|
|
+
|
|
|
|
|
+ __m128i Reg1;
|
|
|
|
|
+ __m128i Reg2;
|
|
|
|
|
+
|
|
|
|
|
+ // REG1 = x;
|
|
|
|
|
+ // REG2 = y;
|
|
|
|
|
+ Reg1 = _mm_loadu_si128((__m128i*)Array);
|
|
|
|
|
+
|
|
|
|
|
+ //REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF);
|
|
|
|
|
+ //REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF);
|
|
|
|
|
+ Reg2 = _mm_slli_si128(Reg1, 2);
|
|
|
|
|
+ Reg1 = _mm_or_si128(Reg2, Reg1);
|
|
|
|
|
+ Reg1 = _mm_and_si128(Reg1, Mask4);
|
|
|
|
|
+
|
|
|
|
|
+ //REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF);
|
|
|
|
|
+ //REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF);
|
|
|
|
|
+ Reg2 = _mm_slli_si128(Reg1, 1);
|
|
|
|
|
+ Reg1 = _mm_or_si128(Reg2, Reg1);
|
|
|
|
|
+ Reg1 = _mm_and_si128(Reg1, Mask3);
|
|
|
|
|
+
|
|
|
|
|
+ //REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F);
|
|
|
|
|
+ //REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F);
|
|
|
|
|
+ Reg2 = _mm_slli_epi32(Reg1, 4);
|
|
|
|
|
+ Reg1 = _mm_or_si128(Reg2, Reg1);
|
|
|
|
|
+ Reg1 = _mm_and_si128(Reg1, Mask2);
|
|
|
|
|
+
|
|
|
|
|
+ //REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333);
|
|
|
|
|
+ //REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333);
|
|
|
|
|
+ Reg2 = _mm_slli_epi32(Reg1, 2);
|
|
|
|
|
+ Reg1 = _mm_or_si128(Reg2, Reg1);
|
|
|
|
|
+ Reg1 = _mm_and_si128(Reg1, Mask1);
|
|
|
|
|
+
|
|
|
|
|
+ //REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555);
|
|
|
|
|
+ //REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555);
|
|
|
|
|
+ Reg2 = _mm_slli_epi32(Reg1, 1);
|
|
|
|
|
+ Reg1 = _mm_or_si128(Reg2, Reg1);
|
|
|
|
|
+ Reg1 = _mm_and_si128(Reg1, Mask0);
|
|
|
|
|
+
|
|
|
|
|
+ //return REG1 | (REG2 << 1);
|
|
|
|
|
+ Reg2 = _mm_slli_epi32(Reg1, 1);
|
|
|
|
|
+ Reg2 = _mm_srli_si128(Reg2, 8);
|
|
|
|
|
+ Reg1 = _mm_or_si128(Reg1, Reg2);
|
|
|
|
|
+
|
|
|
|
|
+ glm::uint64 Result[2];
|
|
|
|
|
+ _mm_storeu_si128((__m128i*)Result, Reg1);
|
|
|
|
|
+
|
|
|
|
|
+ return Result[0];
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+inline __m128i _mm_bit_interleave_si128(__m128i x, __m128i y)
|
|
|
|
|
+{
|
|
|
|
|
+ __m128i const Mask4 = _mm_set1_epi32(0x0000FFFF);
|
|
|
|
|
+ __m128i const Mask3 = _mm_set1_epi32(0x00FF00FF);
|
|
|
|
|
+ __m128i const Mask2 = _mm_set1_epi32(0x0F0F0F0F);
|
|
|
|
|
+ __m128i const Mask1 = _mm_set1_epi32(0x33333333);
|
|
|
|
|
+ __m128i const Mask0 = _mm_set1_epi32(0x55555555);
|
|
|
|
|
+
|
|
|
|
|
+ __m128i Reg1;
|
|
|
|
|
+ __m128i Reg2;
|
|
|
|
|
+
|
|
|
|
|
+ // REG1 = x;
|
|
|
|
|
+ // REG2 = y;
|
|
|
|
|
+ Reg1 = _mm_unpacklo_epi64(x, y);
|
|
|
|
|
+
|
|
|
|
|
+ //REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF);
|
|
|
|
|
+ //REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF);
|
|
|
|
|
+ Reg2 = _mm_slli_si128(Reg1, 2);
|
|
|
|
|
+ Reg1 = _mm_or_si128(Reg2, Reg1);
|
|
|
|
|
+ Reg1 = _mm_and_si128(Reg1, Mask4);
|
|
|
|
|
+
|
|
|
|
|
+ //REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF);
|
|
|
|
|
+ //REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF);
|
|
|
|
|
+ Reg2 = _mm_slli_si128(Reg1, 1);
|
|
|
|
|
+ Reg1 = _mm_or_si128(Reg2, Reg1);
|
|
|
|
|
+ Reg1 = _mm_and_si128(Reg1, Mask3);
|
|
|
|
|
+
|
|
|
|
|
+ //REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F);
|
|
|
|
|
+ //REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F);
|
|
|
|
|
+ Reg2 = _mm_slli_epi32(Reg1, 4);
|
|
|
|
|
+ Reg1 = _mm_or_si128(Reg2, Reg1);
|
|
|
|
|
+ Reg1 = _mm_and_si128(Reg1, Mask2);
|
|
|
|
|
+
|
|
|
|
|
+ //REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333);
|
|
|
|
|
+ //REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333);
|
|
|
|
|
+ Reg2 = _mm_slli_epi32(Reg1, 2);
|
|
|
|
|
+ Reg1 = _mm_or_si128(Reg2, Reg1);
|
|
|
|
|
+ Reg1 = _mm_and_si128(Reg1, Mask1);
|
|
|
|
|
+
|
|
|
|
|
+ //REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555);
|
|
|
|
|
+ //REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555);
|
|
|
|
|
+ Reg2 = _mm_slli_epi32(Reg1, 1);
|
|
|
|
|
+ Reg1 = _mm_or_si128(Reg2, Reg1);
|
|
|
|
|
+ Reg1 = _mm_and_si128(Reg1, Mask0);
|
|
|
|
|
+
|
|
|
|
|
+ //return REG1 | (REG2 << 1);
|
|
|
|
|
+ Reg2 = _mm_slli_epi32(Reg1, 1);
|
|
|
|
|
+ Reg2 = _mm_srli_si128(Reg2, 8);
|
|
|
|
|
+ Reg1 = _mm_or_si128(Reg1, Reg2);
|
|
|
|
|
+
|
|
|
|
|
+ return Reg1;
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+namespace bitfieldInterleave
|
|
|
|
|
+{
|
|
|
|
|
+ int test()
|
|
|
|
|
+ {
|
|
|
|
|
+ glm::uint32 x_max = 1 << 13;
|
|
|
|
|
+ glm::uint32 y_max = 1 << 12;
|
|
|
|
|
+
|
|
|
|
|
+ // ALU
|
|
|
|
|
+ std::vector<glm::u64vec2> Data(x_max * y_max);
|
|
|
|
|
+ std::vector<glm::u64vec2> ParamX(x_max);
|
|
|
|
|
+ std::vector<glm::u64vec2> ParamY(y_max);
|
|
|
|
|
+ for(glm::uint32 x = 0; x < x_max; ++x)
|
|
|
|
|
+ ParamX[x] = glm::u64vec2(x);
|
|
|
|
|
+ for(glm::uint32 y = 0; y < y_max; ++y)
|
|
|
|
|
+ ParamY[y] = glm::u64vec2(y);
|
|
|
|
|
+
|
|
|
|
|
+ {
|
|
|
|
|
+ for(glm::uint32 y = 0; y < (1 << 10); ++y)
|
|
|
|
|
+ for(glm::uint32 x = 0; x < (1 << 10); ++x)
|
|
|
|
|
+ {
|
|
|
|
|
+ glm::uint64 A = glm::bitfieldInterleave(x, y);
|
|
|
|
|
+ glm::uint64 B = fastBitfieldInterleave(x, y);
|
|
|
|
|
+ glm::uint64 C = loopBitfieldInterleave(x, y);
|
|
|
|
|
+ glm::uint64 D = interleaveBitfieldInterleave(x, y);
|
|
|
|
|
+ glm::uint64 E = sseBitfieldInterleave(x, y);
|
|
|
|
|
+ glm::uint64 F = sseUnalignedBitfieldInterleave(x, y);
|
|
|
|
|
+ assert(A == B);
|
|
|
|
|
+ assert(A == C);
|
|
|
|
|
+ assert(A == D);
|
|
|
|
|
+ assert(A == E);
|
|
|
|
|
+ assert(A == F);
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ {
|
|
|
|
|
+ std::clock_t LastTime = std::clock();
|
|
|
|
|
+
|
|
|
|
|
+ for(glm::uint32 y = 0; y < y_max; ++y)
|
|
|
|
|
+ for(glm::uint32 x = 0; x < x_max; ++x)
|
|
|
|
|
+ {
|
|
|
|
|
+ glm::uint64 Result = glm::bitfieldInterleave(glm::uint32(ParamX[x].x), glm::uint32(ParamY[y].x));
|
|
|
|
|
+ Data[x + y * x_max].x = Result;
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ std::clock_t Time = std::clock() - LastTime;
|
|
|
|
|
+
|
|
|
|
|
+ std::cout << "glm::bitfieldInterleave Time " << Time << " clocks" << std::endl;
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ {
|
|
|
|
|
+ std::clock_t LastTime = std::clock();
|
|
|
|
|
+
|
|
|
|
|
+ for(glm::uint32 y = 0; y < y_max; ++y)
|
|
|
|
|
+ for(glm::uint32 x = 0; x < x_max; ++x)
|
|
|
|
|
+ {
|
|
|
|
|
+ glm::uint64 Result = fastBitfieldInterleave(glm::uint32(ParamX[x].x), glm::uint32(ParamY[y].x));
|
|
|
|
|
+ Data[x + y * x_max].x = Result;
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ std::clock_t Time = std::clock() - LastTime;
|
|
|
|
|
+
|
|
|
|
|
+ std::cout << "fastBitfieldInterleave Time " << Time << " clocks" << std::endl;
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ {
|
|
|
|
|
+ std::clock_t LastTime = std::clock();
|
|
|
|
|
+
|
|
|
|
|
+ for(glm::uint32 y = 0; y < y_max; ++y)
|
|
|
|
|
+ for(glm::uint32 x = 0; x < x_max; ++x)
|
|
|
|
|
+ {
|
|
|
|
|
+ glm::uint64 Result = loopBitfieldInterleave(glm::uint32(ParamX[x].x), glm::uint32(ParamY[y].x));
|
|
|
|
|
+ Data[x + y * x_max].x = Result;
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ std::clock_t Time = std::clock() - LastTime;
|
|
|
|
|
+
|
|
|
|
|
+ std::cout << "loopBitfieldInterleave Time " << Time << " clocks" << std::endl;
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ {
|
|
|
|
|
+ std::clock_t LastTime = std::clock();
|
|
|
|
|
+
|
|
|
|
|
+ for(glm::uint32 y = 0; y < y_max; ++y)
|
|
|
|
|
+ for(glm::uint32 x = 0; x < x_max; ++x)
|
|
|
|
|
+ {
|
|
|
|
|
+ glm::uint64 Result = interleaveBitfieldInterleave(glm::uint32(ParamX[x].x), glm::uint32(ParamY[y].x));
|
|
|
|
|
+ Data[x + y * x_max].x = Result;
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ std::clock_t Time = std::clock() - LastTime;
|
|
|
|
|
+
|
|
|
|
|
+ std::cout << "interleaveBitfieldInterleave Time " << Time << " clocks" << std::endl;
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ {
|
|
|
|
|
+ std::clock_t LastTime = std::clock();
|
|
|
|
|
+
|
|
|
|
|
+ for(glm::uint32 y = 0; y < y_max; ++y)
|
|
|
|
|
+ for(glm::uint32 x = 0; x < x_max; ++x)
|
|
|
|
|
+ {
|
|
|
|
|
+ glm::uint64 Result = sseBitfieldInterleave(glm::uint32(ParamX[x].x), glm::uint32(ParamY[y].x));
|
|
|
|
|
+ Data[x + y * x_max].x = Result;
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ std::clock_t Time = std::clock() - LastTime;
|
|
|
|
|
+
|
|
|
|
|
+ std::cout << "sseBitfieldInterleave Time " << Time << " clocks" << std::endl;
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ {
|
|
|
|
|
+ std::clock_t LastTime = std::clock();
|
|
|
|
|
+
|
|
|
|
|
+ for(glm::uint32 y = 0; y < y_max; ++y)
|
|
|
|
|
+ for(glm::uint32 x = 0; x < x_max; ++x)
|
|
|
|
|
+ {
|
|
|
|
|
+ glm::uint64 Result = sseUnalignedBitfieldInterleave(glm::uint32(ParamX[x].x), glm::uint32(ParamY[y].x));
|
|
|
|
|
+ Data[x + y * x_max].x = Result;
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ std::clock_t Time = std::clock() - LastTime;
|
|
|
|
|
+
|
|
|
|
|
+ std::cout << "sseUnalignedBitfieldInterleave Time " << Time << " clocks" << std::endl;
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ {
|
|
|
|
|
+ // SIMD
|
|
|
|
|
+ glm::int32 simd_x_max = 1 << 13;
|
|
|
|
|
+ glm::int32 simd_y_max = 1 << 12;
|
|
|
|
|
+
|
|
|
|
|
+ std::vector<__m128i> SimdData(x_max * y_max);
|
|
|
|
|
+ std::vector<__m128i> SimdParamX(x_max);
|
|
|
|
|
+ std::vector<__m128i> SimdParamY(y_max);
|
|
|
|
|
+ for(int x = 0; x < simd_x_max; ++x)
|
|
|
|
|
+ SimdParamX[x] = _mm_set1_epi32(x);
|
|
|
|
|
+ for(int y = 0; y < simd_y_max; ++y)
|
|
|
|
|
+ SimdParamY[y] = _mm_set1_epi32(y);
|
|
|
|
|
+
|
|
|
|
|
+ std::clock_t LastTime = std::clock();
|
|
|
|
|
+
|
|
|
|
|
+ for(glm::int32 y = 0; y < simd_y_max; ++y)
|
|
|
|
|
+ for(glm::int32 x = 0; x < simd_x_max; ++x)
|
|
|
|
|
+ {
|
|
|
|
|
+ __m128i Result = _mm_bit_interleave_si128(SimdParamX[x], SimdParamX[y]);
|
|
|
|
|
+ SimdData[x + y * x_max] = Result;
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ std::clock_t Time = std::clock() - LastTime;
|
|
|
|
|
+
|
|
|
|
|
+ std::cout << "_mm_bit_interleave_si128 Time " << Time << " clocks" << std::endl;
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+ return 0;
|
|
|
|
|
+ }
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
int main()
|
|
int main()
|
|
|
{
|
|
{
|
|
|
|
|
+ //__m64 REG3 = _mm_set1_pi32(static_cast<int>(0x80000000));
|
|
|
|
|
+ //__m64 REG1 = _mm_set1_pi32(0xFFFFFFFF);
|
|
|
|
|
+ //__m64 REG2 = _mm_set1_pi32(0x55555555);
|
|
|
|
|
+ //__m128i REG = _mm_set_epi64(REG1, REG2);
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
int Error = 0;
|
|
int Error = 0;
|
|
|
|
|
+ Error += ::bitfieldInterleave::test();
|
|
|
Error += ::extractField::test();
|
|
Error += ::extractField::test();
|
|
|
Error += ::bitRevert::test();
|
|
Error += ::bitRevert::test();
|
|
|
|
|
+
|
|
|
|
|
+ while(true);
|
|
|
|
|
+
|
|
|
return Error;
|
|
return Error;
|
|
|
}
|
|
}
|