|
|
@@ -8,6 +8,7 @@
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
#include <limits>
|
|
|
+#include "../gtc/constants.hpp"
|
|
|
|
|
|
namespace glm
|
|
|
{
|
|
|
@@ -62,7 +63,10 @@ namespace glm
|
|
|
)
|
|
|
{
|
|
|
detail::tvec3<T, P> u(q.x, q.y, q.z);
|
|
|
- float Angle = glm::length(u);
|
|
|
+ T Angle = glm::length(u);
|
|
|
+ if (Angle < epsilon<T>())
|
|
|
+ return detail::tquat<T, P>();
|
|
|
+
|
|
|
detail::tvec3<T, P> v(u / Angle);
|
|
|
return detail::tquat<T, P>(cos(Angle), sin(Angle) * v);
|
|
|
}
|
|
|
@@ -73,18 +77,20 @@ namespace glm
|
|
|
detail::tquat<T, P> const & q
|
|
|
)
|
|
|
{
|
|
|
- if((q.x == static_cast<T>(0)) && (q.y == static_cast<T>(0)) && (q.z == static_cast<T>(0)))
|
|
|
+ detail::tvec3<T, P> u(q.x, q.y, q.z);
|
|
|
+ T Vec3Len = length(u);
|
|
|
+
|
|
|
+ if (Vec3Len < epsilon<T>())
|
|
|
{
|
|
|
- if(q.w > T(0))
|
|
|
- return detail::tquat<T, P>(log(q.w), T(0), T(0), T(0));
|
|
|
- else if(q.w < T(0))
|
|
|
- return detail::tquat<T, P>(log(-q.w), T(3.1415926535897932384626433832795), T(0),T(0));
|
|
|
+ if(q.w > static_cast<T>(0))
|
|
|
+ return detail::tquat<T, P>(log(q.w), static_cast<T>(0), static_cast<T>(0), static_cast<T>(0));
|
|
|
+ else if(q.w < static_cast<T>(0))
|
|
|
+ return detail::tquat<T, P>(log(-q.w), pi<T>(), static_cast<T>(0), static_cast<T>(0));
|
|
|
else
|
|
|
return detail::tquat<T, P>(std::numeric_limits<T>::infinity(), std::numeric_limits<T>::infinity(), std::numeric_limits<T>::infinity(), std::numeric_limits<T>::infinity());
|
|
|
}
|
|
|
else
|
|
|
{
|
|
|
- T Vec3Len = sqrt(q.x * q.x + q.y * q.y + q.z * q.z);
|
|
|
T QuatLen = sqrt(Vec3Len * Vec3Len + q.w * q.w);
|
|
|
T t = atan(Vec3Len, T(q.w)) / Vec3Len;
|
|
|
return detail::tquat<T, P>(log(QuatLen), t * q.x, t * q.y, t * q.z);
|
|
|
@@ -98,11 +104,11 @@ namespace glm
|
|
|
T const & y
|
|
|
)
|
|
|
{
|
|
|
- if(abs(x.w) > T(0.9999))
|
|
|
+ if(abs(x.w) > (static_cast<T>(1) - epsilon<T>()))
|
|
|
return x;
|
|
|
- float Angle = acos(y);
|
|
|
- float NewAngle = Angle * y;
|
|
|
- float Div = sin(NewAngle) / sin(Angle);
|
|
|
+ T Angle = acos(y);
|
|
|
+ T NewAngle = Angle * y;
|
|
|
+ T Div = sin(NewAngle) / sin(Angle);
|
|
|
return detail::tquat<T, P>(
|
|
|
cos(NewAngle),
|
|
|
x.x * Div,
|