Browse Source

Further swizzle work.

athile 14 years ago
parent
commit
a762f19861
6 changed files with 815 additions and 417 deletions
  1. 228 52
      glm/core/_swizzle.hpp
  2. 1 0
      glm/core/func_geometric.inl
  3. 16 0
      glm/core/type_vec2.hpp
  4. 16 0
      glm/core/type_vec3.hpp
  5. 16 0
      glm/core/type_vec4.hpp
  6. 538 365
      test/core/core_type_vec3.cpp

+ 228 - 52
glm/core/_swizzle.hpp

@@ -48,7 +48,6 @@ namespace glm
 	};
 }//namespace glm
 
-
 namespace glm{
 namespace detail
 {
@@ -58,8 +57,8 @@ namespace detail
 
         ValueType = type of scalar values (e.g. float, double)
         VecType   = class the swizzle is applies to (e.g. vector3f)
-        N       = number of components in the vector (e.g. 3)
-        E0...3  = what index the n-th element of this swizzle refers to
+        N         = number of components in the vector (e.g. 3)
+        E0...3    = what index the n-th element of this swizzle refers to in the unswizzled vec
     */
     template <typename DerivedType, typename ValueType, typename VecType, int N, int E0, int E1, int E2, int E3, int DUPLICATE_ELEMENTS>
     struct swizzle_base
@@ -68,75 +67,71 @@ namespace detail
         typedef VecType         vec_type;        
         typedef ValueType       value_type;
 
-        swizzle_base& operator= (const VecType& that)
+        swizzle_base& operator= (const ValueType& t)
         {
             static const int offset_dst[4] = { E0, E1, E2, E3 };
 
-            // Make a copy of the data in this == &that
-            ValueType t[N];
-            for (int i = 0; i < N; ++i)
-                t[i] = that[i];
             for (int i = 0; i < N; ++i)
-                elem(offset_dst[i]) = t[i];
+                elem(offset_dst[i]) = t;
 
             return *this;
         }
 
-        swizzle_base& operator= (const ValueType& t)
+        swizzle_base& operator= (const VecType& that)
         {
-            static const int offset_dst[4] = { E0, E1, E2, E3 };
-
-            for (int i = 0; i < N; ++i)
-                elem(offset_dst[i]) = t;
-
+            struct op { 
+                void operator() (value_type& e, value_type& t) { e = t; } 
+            };
+            _apply_op(that, op());
             return *this;
         }
 
         void operator -= (const VecType& that)
         {
-            static const int offset_dst[4] = { E0, E1, E2, E3 };
-
-            ValueType t[N];
-            for (int i = 0; i < N; ++i)
-                t[i] = that[i];
-            for (int i = 0; i < N; ++i)
-                elem(offset_dst[i]) -= t[i];
+            struct op { 
+                void operator() (value_type& e, value_type& t) { e -= t; } 
+            };
+            _apply_op(that, op());
         }
 
         void operator += (const VecType& that)
         {
-            static const int offset_dst[4] = { E0, E1, E2, E3 };
-
-            ValueType t[N];
-            for (int i = 0; i < N; ++i)
-                t[i] = that[i];
-            for (int i = 0; i < N; ++i)
-                elem(offset_dst[i]) += t[i];
+            struct op { 
+                void operator() (value_type& e, value_type& t) { e += t; } 
+            };
+            _apply_op(that, op());
         }
 
         void operator *= (const VecType& that)
         {
-            static const int offset_dst[4] = { E0, E1, E2, E3 };
-
-            ValueType t[N];
-            for (int i = 0; i < N; ++i)
-                t[i] = that[i];
-            for (int i = 0; i < N; ++i)
-                elem(offset_dst[i]) *= t[i];
+            struct op { 
+                void operator() (value_type& e, value_type& t) { e *= t; } 
+            };
+            _apply_op(that, op());
         }
 
         void operator /= (const VecType& that)
+        {
+            struct op { 
+                void operator() (value_type& e, value_type& t) { e /= t; } 
+            };
+            _apply_op(that, op());
+        }
+
+    protected:
+        template <typename T>
+        void _apply_op(const VecType& that, T op)
         {
             static const int offset_dst[4] = { E0, E1, E2, E3 };
 
+            // Make a copy of the data in this == &that
             ValueType t[N];
             for (int i = 0; i < N; ++i)
                 t[i] = that[i];
             for (int i = 0; i < N; ++i)
-                elem(offset_dst[i]) /= t[i];
+                op( elem(offset_dst[i]), t[i] );
         }
 
-    protected:
         value_type&         elem   (size_t i)       { return (reinterpret_cast<value_type*>(_buffer))[i]; }
         const value_type&   elem   (size_t i) const { return (reinterpret_cast<const value_type*>(_buffer))[i]; }
 
@@ -169,6 +164,7 @@ namespace detail
     {
         using swizzle_base<swizzle2<T,P,E0,E1>,T,P,2,E0,E1,0,0,(E0 == E1)>::operator=;
         P cast() const { return P(this->elem(E0), this->elem(E1)); }
+        P operator ()() const { return cast(); }
         operator P () const { return cast(); }
     };
 
@@ -178,6 +174,7 @@ namespace detail
     {
         using swizzle_base<swizzle2_3<T,P,E0,E1,E2>,T,P,2,E0,E1,E2,0,1>::operator=;
         P cast() const { return P(this->elem(E0), this->elem(E1), this->elem(E2)); }
+        P operator ()() const { return cast(); }
         operator P () const { return cast(); }
     };
 
@@ -187,6 +184,7 @@ namespace detail
     {
         using swizzle_base<swizzle2_4<T,P,E0,E1,E2,E3>,T,P,2,E0,E1,E2,E3,1>::operator=;
         P cast() const { return P(this->elem(E0), this->elem(E1), this->elem(E2), this->elem(E3)); }
+        P operator ()() const { return cast(); }
         operator P () const { return cast(); }
     };
 
@@ -196,6 +194,7 @@ namespace detail
     {
         using swizzle_base<swizzle3<T,P,E0,E1,E2>,T,P,3,E0,E1,E2,0,(E0==E1||E0==E2||E1==E2)>::operator=;
         P cast() const { return P(this->elem(E0), this->elem(E1), this->elem(E2)); }
+        P operator ()()  const { return cast(); }
         operator P () const { return cast(); }
     };
 
@@ -205,6 +204,7 @@ namespace detail
     {
         using swizzle_base<swizzle3_2<T,P,E0,E1>,T,P,2,E0,E1,0,0,(E0==E1)>::operator=;
         P cast() const { return P(this->elem(E0), this->elem(E1)); }
+        P operator ()()  const { return cast(); }
         operator P () const { return cast(); }
     };
 
@@ -214,6 +214,7 @@ namespace detail
     {
         using swizzle_base<swizzle3_4<T,P,E0,E1,E2,E3>,T,P,3,E0,E1,E2,E3,1>::operator=;
         P cast() const { return P(this->elem(E0), this->elem(E1), this->elem(E2), this->elem(E3)); }
+        P operator ()()  const { return cast(); }
         operator P () const { return cast(); }
     };
 
@@ -223,6 +224,7 @@ namespace detail
     {
         using swizzle_base<swizzle4<T,P,E0,E1,E2,E3>,T,P,4,E0,E1,E2,E3,(E0==E1||E0==E2||E0==E3||E1==E2||E1==E3||E2==E3)>::operator=;
         P cast() const { return P(this->elem(E0), this->elem(E1), this->elem(E2), this->elem(E3)); }
+        P operator ()()  const { return cast(); }
         operator P () const { return cast(); }
     };
 
@@ -232,6 +234,7 @@ namespace detail
     {
         using swizzle_base<swizzle4_2<T,P,E0,E1>,T,P,2,E0,E1,0,0,(E0==E1)>::operator=;
         P cast() const { return P(this->elem(E0), this->elem(E1)); }
+        P operator ()()  const { return cast(); }
         operator P () const { return cast(); }
     };
 
@@ -242,18 +245,19 @@ namespace detail
     {
         using swizzle_base<swizzle4_3<T,P,E0,E1,E2>,T,P,4,E0,E1,E2,0,(E0==E1||E0==E2||E1==E2)>::operator=;
         P cast() const { return P(this->elem(E0), this->elem(E1), this->elem(E2)); }
+        P operator ()()  const { return cast(); }
         operator P () const { return cast(); }
     };
 
 //
-// To prevent the C++ syntax from getting *completely* overwhelming, define some alias macros
+// To prevent the C++ syntax from getting entirely overwhelming, define some alias macros
 //
 #define _GLM_SWIZZLE_TEMPLATE1   template <typename T, typename P, int N, typename S0, int E0, int E1, int E2, int E3, int D0>
 #define _GLM_SWIZZLE_TEMPLATE2   template <typename T, typename P, int N, typename S0, int E0, int E1, int E2, int E3, int D0, typename S1,int F0, int F1, int F2, int F3, int D1>
 #define _GLM_SWIZZLE_TYPE1       glm::detail::swizzle_base<S0,T,P,N,E0,E1,E2,E3,D0>
 #define _GLM_SWIZZLE_TYPE2       glm::detail::swizzle_base<S1,T,P,N,F0,F1,F2,F3,D1>
 
-#define _GLM_SWIZZLE_BINARY_OPERATOR_IMPLEMENTATION(OPERAND)\
+#define _GLM_SWIZZLE_VECTOR_BINARY_OPERATOR_IMPLEMENTATION(OPERAND)\
     _GLM_SWIZZLE_TEMPLATE2 \
     typename P operator OPERAND ( const _GLM_SWIZZLE_TYPE1& a, const _GLM_SWIZZLE_TYPE2& b) \
     { \
@@ -282,13 +286,65 @@ namespace detail
         return a OPERAND static_cast<const S0&>(b).cast(); \
     }
 
-#define _GLM_SWIZZLE_FUNCTION2(RETURN_TYPE,FUNCTION)\
+#define _GLM_SWIZZLE_FUNCTION_1_ARGS(RETURN_TYPE,FUNCTION)\
+    template <typename T, typename P, int E0, int E1> \
+    typename glm::detail::swizzle2<T,P,E0,E1>::RETURN_TYPE FUNCTION(const glm::detail::swizzle2<T,P,E0,E1>& a)  \
+    { \
+        return FUNCTION(a.cast()); \
+    } \
+    template <typename T, typename P, int E0, int E1, int E2> \
+    typename glm::detail::swizzle2_3<T,P,E0,E1,E2>::RETURN_TYPE FUNCTION(const glm::detail::swizzle2_3<T,P,E0,E1,E2>& a)  \
+    { \
+        return FUNCTION(a.cast()); \
+    } \
+    template <typename T, typename P, int E0, int E1, int E2, int E3> \
+    typename glm::detail::swizzle2_4<T,P,E0,E1,E2,E3>::RETURN_TYPE FUNCTION(const glm::detail::swizzle2_4<T,P,E0,E1,E2,E3>& a) \
+    { \
+        return FUNCTION(a.cast()); \
+    } \
+    template <typename T, typename P, int E0, int E1> \
+    typename glm::detail::swizzle3_2<T,P,E0,E1>::RETURN_TYPE FUNCTION(const glm::detail::swizzle3_2<T,P,E0,E1>& a) \
+    { \
+        return FUNCTION(a.cast()); \
+    } \
+    template <typename T, typename P, int E0, int E1, int E2> \
+    typename glm::detail::swizzle3<T,P,E0,E1,E2>::RETURN_TYPE FUNCTION(const glm::detail::swizzle3<T,P,E0,E1,E2>& a) \
+    { \
+        return FUNCTION(a.cast()); \
+    } \
+    template <typename T, typename P, int E0, int E1, int E2, int E3> \
+    typename glm::detail::swizzle3_4<T,P,E0,E1,E2,E3>::RETURN_TYPE FUNCTION(const glm::detail::swizzle3_4<T,P,E0,E1,E2,E3>& a) \
+    { \
+        return FUNCTION(a.cast()); \
+    } \
+    template <typename T, typename P, int E0, int E1> \
+    typename glm::detail::swizzle4_2<T,P,E0,E1>::RETURN_TYPE FUNCTION(const glm::detail::swizzle4_2<T,P,E0,E1>& a) \
+    { \
+        return FUNCTION(a.cast()); \
+    } \
+    template <typename T, typename P, int E0, int E1, int E2> \
+    typename glm::detail::swizzle4_3<T,P,E0,E1,E2>::RETURN_TYPE FUNCTION(const glm::detail::swizzle4_3<T,P,E0,E1,E2>& a) \
+    { \
+        return FUNCTION(a.cast()); \
+    } \
+    template <typename T, typename P, int E0, int E1, int E2, int E3> \
+    typename glm::detail::swizzle4<T,P,E0,E1,E2,E3>::RETURN_TYPE FUNCTION(const glm::detail::swizzle4<T,P,E0,E1,E2,E3>& a) \
+    { \
+        return FUNCTION(a.cast()); \
+    } 
+
+#define _GLM_SWIZZLE_FUNCTION_2_ARGS(RETURN_TYPE,FUNCTION)\
     _GLM_SWIZZLE_TEMPLATE2\
     typename S0::RETURN_TYPE FUNCTION(const typename _GLM_SWIZZLE_TYPE1& a, const typename _GLM_SWIZZLE_TYPE2& b)\
     {\
         return FUNCTION(static_cast<const S0&>(a).cast(), static_cast<const S1&>(b).cast());\
     }\
     _GLM_SWIZZLE_TEMPLATE1\
+    typename S0::RETURN_TYPE FUNCTION(const typename _GLM_SWIZZLE_TYPE1& a, const typename _GLM_SWIZZLE_TYPE1& b)\
+    {\
+        return FUNCTION(static_cast<const S0&>(a).cast(), static_cast<const S0&>(b).cast());\
+    }\
+    _GLM_SWIZZLE_TEMPLATE1\
     typename S0::RETURN_TYPE FUNCTION(const typename _GLM_SWIZZLE_TYPE1& a, const typename S0::vec_type& b)\
     {\
         return FUNCTION(static_cast<const S0&>(a).cast(), b);\
@@ -297,26 +353,146 @@ namespace detail
     typename S0::RETURN_TYPE FUNCTION(const typename S0::vec_type& a, const typename _GLM_SWIZZLE_TYPE1& b)\
     {\
         return FUNCTION(a, static_cast<const S0&>(b).cast());\
+    } \
+    template <typename T, typename P, int E0, int E1> \
+    typename glm::detail::swizzle2<T,P,E0,E1>::RETURN_TYPE FUNCTION(const glm::detail::swizzle2<T,P,E0,E1>& a, const glm::detail::swizzle2<T,P,E0,E1>& b)  \
+    { \
+        return FUNCTION(a.cast(), b.cast()); \
+    } \
+    template <typename T, typename P, int E0, int E1, int E2> \
+    typename glm::detail::swizzle2_3<T,P,E0,E1,E2>::RETURN_TYPE FUNCTION(const glm::detail::swizzle2_3<T,P,E0,E1,E2>& a, const glm::detail::swizzle2_3<T,P,E0,E1,E2>& b)  \
+    { \
+        return FUNCTION(a.cast(), b.cast()); \
+    } \
+    template <typename T, typename P, int E0, int E1, int E2, int E3> \
+    typename glm::detail::swizzle2_4<T,P,E0,E1,E2,E3>::RETURN_TYPE FUNCTION(const glm::detail::swizzle2_4<T,P,E0,E1,E2,E3>& a, const glm::detail::swizzle2_4<T,P,E0,E1,E2,E3>& b) \
+    { \
+        return FUNCTION(a.cast(), b.cast()); \
+    } \
+    template <typename T, typename P, int E0, int E1> \
+    typename glm::detail::swizzle3_2<T,P,E0,E1>::RETURN_TYPE FUNCTION(const glm::detail::swizzle3_2<T,P,E0,E1>& a, const glm::detail::swizzle3_2<T,P,E0,E1>& b) \
+    { \
+        return FUNCTION(a.cast(), b.cast()); \
+    } \
+    template <typename T, typename P, int E0, int E1, int E2> \
+    typename glm::detail::swizzle3<T,P,E0,E1,E2>::RETURN_TYPE FUNCTION(const glm::detail::swizzle3<T,P,E0,E1,E2>& a, const glm::detail::swizzle3<T,P,E0,E1,E2>& b) \
+    { \
+        return FUNCTION(a.cast(), b.cast()); \
+    } \
+    template <typename T, typename P, int E0, int E1, int E2, int E3> \
+    typename glm::detail::swizzle3_4<T,P,E0,E1,E2,E3>::RETURN_TYPE FUNCTION(const glm::detail::swizzle3_4<T,P,E0,E1,E2,E3>& a, const glm::detail::swizzle3_4<T,P,E0,E1,E2,E3>& b) \
+    { \
+        return FUNCTION(a.cast(), b.cast()); \
+    } \
+    template <typename T, typename P, int E0, int E1> \
+    typename glm::detail::swizzle4_2<T,P,E0,E1>::RETURN_TYPE FUNCTION(const glm::detail::swizzle4_2<T,P,E0,E1>& a, const glm::detail::swizzle4_2<T,P,E0,E1>& b) \
+    { \
+        return FUNCTION(a.cast(), b.cast()); \
+    } \
+    template <typename T, typename P, int E0, int E1, int E2> \
+    typename glm::detail::swizzle4_3<T,P,E0,E1,E2>::RETURN_TYPE FUNCTION(const glm::detail::swizzle4_3<T,P,E0,E1,E2>& a, const glm::detail::swizzle4_3<T,P,E0,E1,E2>& b) \
+    { \
+        return FUNCTION(a.cast(), b.cast()); \
+    } \
+    template <typename T, typename P, int E0, int E1, int E2, int E3> \
+    typename glm::detail::swizzle4<T,P,E0,E1,E2,E3>::RETURN_TYPE FUNCTION(const glm::detail::swizzle4<T,P,E0,E1,E2,E3>& a, const glm::detail::swizzle4<T,P,E0,E1,E2,E3>& b) \
+    { \
+        return FUNCTION(a.cast(), b.cast()); \
     }
 
-    _GLM_SWIZZLE_TEMPLATE1  typename S0::vec_type   operator-   (typename S0::value_type a, const _GLM_SWIZZLE_TYPE1& b)        { return a - b; }
-
-    _GLM_SWIZZLE_BINARY_OPERATOR_IMPLEMENTATION(+)
-    _GLM_SWIZZLE_BINARY_OPERATOR_IMPLEMENTATION(-)
-    _GLM_SWIZZLE_BINARY_OPERATOR_IMPLEMENTATION(*)
-    _GLM_SWIZZLE_BINARY_OPERATOR_IMPLEMENTATION(/)
-
-    _GLM_SWIZZLE_SCALAR_BINARY_OPERATOR_IMPLEMENTATION(*)
+#define _GLM_SWIZZLE_FUNCTION_2_ARGS_SCALAR(RETURN_TYPE,FUNCTION)\
+    _GLM_SWIZZLE_TEMPLATE2\
+    typename S0::RETURN_TYPE FUNCTION(const typename _GLM_SWIZZLE_TYPE1& a, const typename _GLM_SWIZZLE_TYPE2& b, const typename S0::value_type& c)\
+    {\
+        return FUNCTION(static_cast<const S0&>(a).cast(), static_cast<const S1&>(b).cast(), c);\
+    }\
+    _GLM_SWIZZLE_TEMPLATE1\
+    typename S0::RETURN_TYPE FUNCTION(const typename _GLM_SWIZZLE_TYPE1& a, const typename _GLM_SWIZZLE_TYPE1& b, const typename S0::value_type& c)\
+    {\
+        return FUNCTION(static_cast<const S0&>(a).cast(), static_cast<const S0&>(b).cast(), c);\
+    }\
+    _GLM_SWIZZLE_TEMPLATE1\
+    typename S0::RETURN_TYPE FUNCTION(const typename _GLM_SWIZZLE_TYPE1& a, const typename S0::vec_type& b, const typename S0::value_type& c)\
+    {\
+        return FUNCTION(static_cast<const S0&>(a).cast(), b, c);\
+    }\
+    _GLM_SWIZZLE_TEMPLATE1\
+    typename S0::RETURN_TYPE FUNCTION(const typename S0::vec_type& a, const typename _GLM_SWIZZLE_TYPE1& b, const typename S0::value_type& c)\
+    {\
+        return FUNCTION(a, static_cast<const S0&>(b).cast(), c);\
+    } \
+    template <typename T, typename P, int E0, int E1> \
+    typename glm::detail::swizzle2<T,P,E0,E1>::RETURN_TYPE FUNCTION(const glm::detail::swizzle2<T,P,E0,E1>& a, const glm::detail::swizzle2<T,P,E0,E1>& b, const T& c)  \
+    { \
+        return FUNCTION(a.cast(), b.cast(), c); \
+    } \
+    template <typename T, typename P, int E0, int E1, int E2> \
+    typename glm::detail::swizzle2_3<T,P,E0,E1,E2>::RETURN_TYPE FUNCTION(const glm::detail::swizzle2_3<T,P,E0,E1,E2>& a, const glm::detail::swizzle2_3<T,P,E0,E1,E2>& b, const T& c)  \
+    { \
+        return FUNCTION(a.cast(), b.cast(), c); \
+    } \
+    template <typename T, typename P, int E0, int E1, int E2, int E3> \
+    typename glm::detail::swizzle2_4<T,P,E0,E1,E2,E3>::RETURN_TYPE FUNCTION(const glm::detail::swizzle2_4<T,P,E0,E1,E2,E3>& a, const glm::detail::swizzle2_4<T,P,E0,E1,E2,E3>& b, const T& c) \
+    { \
+        return FUNCTION(a.cast(), b.cast(), c); \
+    } \
+    template <typename T, typename P, int E0, int E1> \
+    typename glm::detail::swizzle3_2<T,P,E0,E1>::RETURN_TYPE FUNCTION(const glm::detail::swizzle3_2<T,P,E0,E1>& a, const glm::detail::swizzle3_2<T,P,E0,E1>& b, const T& c) \
+    { \
+        return FUNCTION(a.cast(), b.cast(), c); \
+    } \
+    template <typename T, typename P, int E0, int E1, int E2> \
+    typename glm::detail::swizzle3<T,P,E0,E1,E2>::RETURN_TYPE FUNCTION(const glm::detail::swizzle3<T,P,E0,E1,E2>& a, const glm::detail::swizzle3<T,P,E0,E1,E2>& b, const T& c) \
+    { \
+        return FUNCTION(a.cast(), b.cast(), c); \
+    } 
+    template <typename T, typename P, int E0, int E1, int E2, int E3> \
+    typename glm::detail::swizzle3_4<T,P,E0,E1,E2,E3>::RETURN_TYPE FUNCTION(const glm::detail::swizzle3_4<T,P,E0,E1,E2,E3>& a, const glm::detail::swizzle3_4<T,P,E0,E1,E2,E3>& b, const T& c) \
+    { \
+        return FUNCTION(a.cast(), b.cast(), c); \
+    } \
+    template <typename T, typename P, int E0, int E1> \
+    typename glm::detail::swizzle4_2<T,P,E0,E1>::RETURN_TYPE FUNCTION(const glm::detail::swizzle4_2<T,P,E0,E1>& a, const glm::detail::swizzle4_2<T,P,E0,E1>& b, const T& c) \
+    { \
+        return FUNCTION(a.cast(), b.cast(), c); \
+    } \
+    template <typename T, typename P, int E0, int E1, int E2> \
+    typename glm::detail::swizzle4_3<T,P,E0,E1,E2>::RETURN_TYPE FUNCTION(const glm::detail::swizzle4_3<T,P,E0,E1,E2>& a, const glm::detail::swizzle4_3<T,P,E0,E1,E2>& b, const T& c) \
+    { \
+        return FUNCTION(a.cast(), b.cast(), c); \
+    } \
+    template <typename T, typename P, int E0, int E1, int E2, int E3> \
+    typename glm::detail::swizzle4<T,P,E0,E1,E2,E3>::RETURN_TYPE FUNCTION(const glm::detail::swizzle4<T,P,E0,E1,E2,E3>& a, const glm::detail::swizzle4<T,P,E0,E1,E2,E3>& b, const T& c) \
+    { \
+        return FUNCTION(a.cast(), b.cast(), c); \
+    }
 
 }//namespace detail 
 }//namespace glm
 
 namespace glm
 {
-        
+    namespace detail
+    {
+        _GLM_SWIZZLE_SCALAR_BINARY_OPERATOR_IMPLEMENTATION(-)
+        _GLM_SWIZZLE_SCALAR_BINARY_OPERATOR_IMPLEMENTATION(*)
 
-    _GLM_SWIZZLE_FUNCTION2(value_type,  dot);
-    _GLM_SWIZZLE_FUNCTION2(vec_type,    abs);
+        _GLM_SWIZZLE_VECTOR_BINARY_OPERATOR_IMPLEMENTATION(+)
+        _GLM_SWIZZLE_VECTOR_BINARY_OPERATOR_IMPLEMENTATION(-)
+        _GLM_SWIZZLE_VECTOR_BINARY_OPERATOR_IMPLEMENTATION(*)
+        _GLM_SWIZZLE_VECTOR_BINARY_OPERATOR_IMPLEMENTATION(/)
+    }
+
+    _GLM_SWIZZLE_FUNCTION_1_ARGS(vec_type,    abs);
+    _GLM_SWIZZLE_FUNCTION_1_ARGS(vec_type,    acos);
+    _GLM_SWIZZLE_FUNCTION_1_ARGS(vec_type,    acosh);
+    _GLM_SWIZZLE_FUNCTION_1_ARGS(vec_type,    all);
+    _GLM_SWIZZLE_FUNCTION_1_ARGS(vec_type,    any);
+    
+    _GLM_SWIZZLE_FUNCTION_2_ARGS(value_type,  dot);
+    _GLM_SWIZZLE_FUNCTION_2_ARGS(vec_type,    cross);
+    _GLM_SWIZZLE_FUNCTION_2_ARGS(vec_type,    step);    
+    _GLM_SWIZZLE_FUNCTION_2_ARGS_SCALAR(vec_type, mix);
 }
 
 

+ 1 - 0
glm/core/func_geometric.inl

@@ -132,6 +132,7 @@ namespace glm
 	(
 		genType const & x, 
 		genType const & y
+        
 	)
 	{
 		GLM_STATIC_ASSERT(detail::type<genType>::is_float, "'dot' only accept floating-point inputs");

+ 16 - 0
glm/core/type_vec2.hpp

@@ -114,6 +114,22 @@ namespace detail
 
 		tvec2(tref2<T> const & r);
 
+        template <int E0, int E1>
+        GLM_FUNC_DECL tvec2(glm::detail::swizzle2<T,tvec2<T>,E0,E1>& that)
+        {
+            *this = that();
+        }
+        template <int E0, int E1>
+        GLM_FUNC_DECL tvec2(glm::detail::swizzle3_2<T,tvec2<T>,E0,E1>& that)
+        {
+            *this = that();
+        }
+        template <int E0, int E1>
+        GLM_FUNC_DECL tvec2(glm::detail::swizzle4_2<T,tvec2<T>,E0,E1>& that)
+        {
+            *this = that();
+        }
+
 		//////////////////////////////////////
 		// Convertion constructors
 

+ 16 - 0
glm/core/type_vec3.hpp

@@ -116,6 +116,22 @@ namespace detail
 
 		GLM_FUNC_DECL tvec3(tref3<T> const & r);
 
+        template <int E0, int E1, int E2>
+        GLM_FUNC_DECL tvec3(glm::detail::swizzle2_3<T,tvec3<T>,E0,E1,E2>& that)
+        {
+            *this = that();
+        }
+        template <int E0, int E1, int E2>
+        GLM_FUNC_DECL tvec3(glm::detail::swizzle3<T,tvec3<T>,E0,E1,E2>& that)
+        {
+            *this = that();
+        }
+        template <int E0, int E1, int E2>
+        GLM_FUNC_DECL tvec3(glm::detail::swizzle4_3<T,tvec3<T>,E0,E1,E2>& that)
+        {
+            *this = that();
+        }
+
 		//////////////////////////////////////
 		// Convertion scalar constructors
 

+ 16 - 0
glm/core/type_vec4.hpp

@@ -118,6 +118,22 @@ namespace detail
 
 		GLM_FUNC_DECL tvec4(tref4<T> const & r);
 
+        template <int E0, int E1, int E2, int E3>
+        GLM_FUNC_DECL tvec4(glm::detail::swizzle2_4<T,tvec4<T>,E0,E1,E2,E3>& that)
+        {
+            *this = that();
+        }
+        template <int E0, int E1, int E2, int E3>
+        GLM_FUNC_DECL tvec4(glm::detail::swizzle3_4<T,tvec4<T>,E0,E1,E2,E3>& that)
+        {
+            *this = that();
+        }
+        template <int E0, int E1, int E2, int E3>
+        GLM_FUNC_DECL tvec4(glm::detail::swizzle4<T,tvec4<T>,E0,E1,E2,E3>& that)
+        {
+            *this = that();
+        }
+
 		//////////////////////////////////////
 		// Convertion scalar constructors
 

+ 538 - 365
test/core/core_type_vec3.cpp

@@ -1,260 +1,264 @@
-///////////////////////////////////////////////////////////////////////////////////////////////////
-// OpenGL Mathematics Copyright (c) 2005 - 2011 G-Truc Creation (www.g-truc.net)
-///////////////////////////////////////////////////////////////////////////////////////////////////
-// Created : 2008-08-31
-// Updated : 2011-09-19
-// Licence : This source is under MIT License
-// File    : test/core/type_vec3.cpp
-///////////////////////////////////////////////////////////////////////////////////////////////////
-
-#include <glm/glm.hpp>
-#include <glm/gtc/half_float.hpp>
-
-static int test_vec3_operators()
-{
-	glm::vec3 A(1.0f);
-	glm::vec3 B(1.0f);
-	bool R = A != B;
-	bool S = A == B;
-
-	return (S && !R) ? 0 : 1;
-}
-
-int test_vec3_size()
-{
-	int Error = 0;
-	
-	Error += sizeof(glm::vec3) == sizeof(glm::mediump_vec3) ? 0 : 1;
-	Error += 12 == sizeof(glm::mediump_vec3) ? 0 : 1;
-	Error += sizeof(glm::dvec3) == sizeof(glm::highp_vec3) ? 0 : 1;
-	Error += 24 == sizeof(glm::highp_vec3) ? 0 : 1;
-	Error += glm::vec3().length() == 3 ? 0 : 1;
-	Error += glm::dvec3().length() == 3 ? 0 : 1;
-	
-	return Error;
-}
-
-int test_vec3_swizzle3_2()
-{
-    int Error = 0;
-
-    glm::vec3 v(1, 2, 3);
-    glm::vec2 u;
-
-    // Can not assign a vec3 swizzle to a vec2
-    //u = v.xyz;    //Illegal
-    //u = v.rgb;    //Illegal
-    //u = v.stp;    //Illegal
-
-    u = v.xx;       Error += (u.x == 1.0f && u.y == 1.0f) ? 0 : 1;
-    u = v.xy;       Error += (u.x == 1.0f && u.y == 2.0f) ? 0 : 1;
-    u = v.xz;       Error += (u.x == 1.0f && u.y == 3.0f) ? 0 : 1;
-    u = v.yx;       Error += (u.x == 2.0f && u.y == 1.0f) ? 0 : 1;
-    u = v.yy;       Error += (u.x == 2.0f && u.y == 2.0f) ? 0 : 1;
-    u = v.yz;       Error += (u.x == 2.0f && u.y == 3.0f) ? 0 : 1;
-    u = v.zx;       Error += (u.x == 3.0f && u.y == 1.0f) ? 0 : 1;
-    u = v.zy;       Error += (u.x == 3.0f && u.y == 2.0f) ? 0 : 1;
-    u = v.zz;       Error += (u.x == 3.0f && u.y == 3.0f) ? 0 : 1;
-
-    u = v.rr;       Error += (u.r == 1.0f && u.g == 1.0f) ? 0 : 1;
-    u = v.rg;       Error += (u.r == 1.0f && u.g == 2.0f) ? 0 : 1;
-    u = v.rb;       Error += (u.r == 1.0f && u.g == 3.0f) ? 0 : 1;
-    u = v.gr;       Error += (u.r == 2.0f && u.g == 1.0f) ? 0 : 1;
-    u = v.gg;       Error += (u.r == 2.0f && u.g == 2.0f) ? 0 : 1;
-    u = v.gb;       Error += (u.r == 2.0f && u.g == 3.0f) ? 0 : 1;
-    u = v.br;       Error += (u.r == 3.0f && u.g == 1.0f) ? 0 : 1;
-    u = v.bg;       Error += (u.r == 3.0f && u.g == 2.0f) ? 0 : 1;
-    u = v.bb;       Error += (u.r == 3.0f && u.g == 3.0f) ? 0 : 1;   
-
-    u = v.ss;       Error += (u.s == 1.0f && u.t == 1.0f) ? 0 : 1;
-    u = v.st;       Error += (u.s == 1.0f && u.t == 2.0f) ? 0 : 1;
-    u = v.sp;       Error += (u.s == 1.0f && u.t == 3.0f) ? 0 : 1;
-    u = v.ts;       Error += (u.s == 2.0f && u.t == 1.0f) ? 0 : 1;
-    u = v.tt;       Error += (u.s == 2.0f && u.t == 2.0f) ? 0 : 1;
-    u = v.tp;       Error += (u.s == 2.0f && u.t == 3.0f) ? 0 : 1;
-    u = v.ps;       Error += (u.s == 3.0f && u.t == 1.0f) ? 0 : 1;
-    u = v.pt;       Error += (u.s == 3.0f && u.t == 2.0f) ? 0 : 1;
-    u = v.pp;       Error += (u.s == 3.0f && u.t == 3.0f) ? 0 : 1;
-
-    // Mixed member aliases are not valid
-    //u = v.rx;     //Illegal
-    //u = v.sy;     //Illegal
-
-
-    u = glm::vec2(1, 2);
-    v = glm::vec3(1, 2, 3);
-    //v.xx = u;     //Illegal
-    v.xy = u;       Error += (v.x == 1.0f && v.y == 2.0f && v.z == 3.0f) ? 0 : 1;
-    v.xz = u;       Error += (v.x == 1.0f && v.y == 2.0f && v.z == 2.0f) ? 0 : 1;
-    v.yx = u;       Error += (v.x == 2.0f && v.y == 1.0f && v.z == 2.0f) ? 0 : 1;
-    //v.yy = u;     //Illegal
-    v.yz = u;       Error += (v.x == 2.0f && v.y == 1.0f && v.z == 2.0f) ? 0 : 1;
-    v.zx = u;       Error += (v.x == 2.0f && v.y == 1.0f && v.z == 1.0f) ? 0 : 1;
-    v.zy = u;       Error += (v.x == 2.0f && v.y == 2.0f && v.z == 1.0f) ? 0 : 1;
-    //v.zz = u;     //Illegal
-    
-    return Error;
-}
-
-int test_vec3_swizzle3_3()
-{
-    int Error = 0;
-
-    glm::vec3 v(1, 2, 3);
-    glm::vec3 u;
-    
-    u = v;          Error += (u.x == 1.0f && u.y == 2.0f && u.z == 3.0f) ? 0 : 1;
-    
-    u = v.xyz;      Error += (u.x == 1.0f && u.y == 2.0f && u.z == 3.0f) ? 0 : 1;
-    u = v.zyx;      Error += (u.x == 3.0f && u.y == 2.0f && u.z == 1.0f) ? 0 : 1;
-    u.zyx = v;      Error += (u.x == 3.0f && u.y == 2.0f && u.z == 1.0f) ? 0 : 1;
-    
-    u = v.rgb;      Error += (u.x == 1.0f && u.y == 2.0f && u.z == 3.0f) ? 0 : 1;
-    u = v.bgr;      Error += (u.x == 3.0f && u.y == 2.0f && u.z == 1.0f) ? 0 : 1;
-    u.bgr = v;      Error += (u.x == 3.0f && u.y == 2.0f && u.z == 1.0f) ? 0 : 1;
-
-    u = v.stp;      Error += (u.x == 1.0f && u.y == 2.0f && u.z == 3.0f) ? 0 : 1;
-    u = v.pts;      Error += (u.x == 3.0f && u.y == 2.0f && u.z == 1.0f) ? 0 : 1;
-    u.pts = v;      Error += (u.x == 3.0f && u.y == 2.0f && u.z == 1.0f) ? 0 : 1;
-   
-    return Error;
-}
-
-int test_vec3_swizzle_half()
-{
-    int Error = 0;
-
-    glm::half a1(1);
-    glm::half b1(2);
-    glm::half c1(3);
-    glm::hvec3 v(a1, b1, c1);
-    glm::hvec3 u;
-
-    u = v;
-
-    Error += (u.x.toFloat() == 1.0f && u.y.toFloat() == 2.0f && u.z.toFloat() == 3.0f) ? 0 : 1;
-    
-    u = v.xyz;
-    Error += (u.x.toFloat() == 1.0f && u.y.toFloat() == 2.0f && u.z.toFloat() == 3.0f) ? 0 : 1;
-    u = v.zyx;
-    Error += (u.x.toFloat() == 3.0f && u.y.toFloat() == 2.0f && u.z.toFloat() == 1.0f) ? 0 : 1;
-    u.zyx = v;
-    Error += (u.x.toFloat() == 3.0f && u.y.toFloat() == 2.0f && u.z.toFloat() == 1.0f) ? 0 : 1;
-    
-    u = v.rgb;
-    Error += (u.x.toFloat() == 1.0f && u.y.toFloat() == 2.0f && u.z.toFloat() == 3.0f) ? 0 : 1;
-    u = v.bgr;
-    Error += (u.x.toFloat() == 3.0f && u.y.toFloat() == 2.0f && u.z.toFloat() == 1.0f) ? 0 : 1;
-    u.bgr = v;
-    Error += (u.x.toFloat() == 3.0f && u.y.toFloat() == 2.0f && u.z.toFloat() == 1.0f) ? 0 : 1;
-
-    u = v.stp;
-    Error += (u.x.toFloat() == 1.0f && u.y.toFloat() == 2.0f && u.z.toFloat() == 3.0f) ? 0 : 1;
-    u = v.pts;
-    Error += (u.x.toFloat() == 3.0f && u.y.toFloat() == 2.0f && u.z.toFloat() == 1.0f) ? 0 : 1;
-    u.pts = v;
-    Error += (u.x.toFloat() == 3.0f && u.y.toFloat() == 2.0f && u.z.toFloat() == 1.0f) ? 0 : 1;
-
-    return Error;
-}
-
-int test_vec3_swizzle_operators()
-{
-    int Error = 0;
-
-    glm::vec3 q, u, v;
-
-    u = glm::vec3(1, 2, 3);
-    v = glm::vec3(10, 20, 30);
-
-    // Swizzle, swizzle binary operators
-    q = u.xyz + v.xyz;          Error += (q == (u + v)) ? 0 : 1;
-    q = (u.zyx + v.zyx).zyx;    Error += (q == (u + v)) ? 0 : 1;
-    q = (u.xyz - v.xyz);        Error += (q == (u - v)) ? 0 : 1;
-    q = (u.xyz * v.xyz);        Error += (q == (u * v)) ? 0 : 1;
-    q = (u.xxx * v.xxx);        Error += (q == glm::vec3(u.x * v.x)) ? 0 : 1;
-    q = (u.xyz / v.xyz);        Error += (q == (u / v)) ? 0 : 1;
-
-    // vec, swizzle binary operators
-    q = u + v.xyz;              Error += (q == (u + v)) ? 0 : 1;
-    q = (u - v.xyz);            Error += (q == (u - v)) ? 0 : 1;
-    q = (u * v.xyz);            Error += (q == (u * v)) ? 0 : 1;
-    q = (u * v.xxx);            Error += (q == v.x * u) ? 0 : 1;
-    q = (u / v.xyz);            Error += (q == (u / v)) ? 0 : 1;
-
-    // swizzle,vec binary operators
-    q = u.xyz + v;              Error += (q == (u + v)) ? 0 : 1;
-    q = (u.xyz - v);            Error += (q == (u - v)) ? 0 : 1;
-    q = (u.xyz * v);            Error += (q == (u * v)) ? 0 : 1;
-    q = (u.xxx * v);            Error += (q == u.x * v) ? 0 : 1;
-    q = (u.xyz / v);            Error += (q == (u / v)) ? 0 : 1;
-
-    // Compile errors
-    //q = (u.yz * v.xyz);
-    //q = (u * v.xy);
-
-    return Error;
-}
-
-int test_vec3_swizzle_functions()
-{
-    int Error = 0;
-
-    // vec3 - working as expected
-    glm::vec3 q, u, v;
-    u = glm::vec3(1, 2, 3);
-    v = glm::vec3(10, 20, 30);
-    glm::dot(u, v);
-    glm::dot(u.xyz, v.zyz);
-    glm::dot(u, v.zyx);
-    glm::dot(u.xyz, v);
-
-    // vec2 - not working! how is vec3 working and not vec2?
-    glm::vec2 a, b;
-    glm::dot(a, b);
-    glm::dot(a.xy, b.xy);
-    //glm::dot(u.xy, v.xy);
-
-    glm::dot(glm::vec4(1,2,3,4).xyz, v);
-
-    glm::vec4 r, s, t;
-
-    r = glm::vec4(1, 2, 3, 4);
-    s = glm::vec4(10, 20, 30, 40);
-
-    glm::dot(r, s);
-    //glm::dot(r.xyzw, s.xyzw);
-    //glm::dot(r.xyz, s.xyz);
-
-    return Error;
-}
-
-#if 0
-using namespace glm;
-
+///////////////////////////////////////////////////////////////////////////////////////////////////
+// OpenGL Mathematics Copyright (c) 2005 - 2011 G-Truc Creation (www.g-truc.net)
+///////////////////////////////////////////////////////////////////////////////////////////////////
+// Created : 2008-08-31
+// Updated : 2011-09-19
+// Licence : This source is under MIT License
+// File    : test/core/type_vec3.cpp
+///////////////////////////////////////////////////////////////////////////////////////////////////
+
+#include <glm/glm.hpp>
+#include <glm/gtc/half_float.hpp>
+
+static int test_vec3_operators()
+{
+	glm::vec3 A(1.0f);
+	glm::vec3 B(1.0f);
+	bool R = A != B;
+	bool S = A == B;
+
+	return (S && !R) ? 0 : 1;
+}
+
+int test_vec3_size()
+{
+	int Error = 0;
+	
+	Error += sizeof(glm::vec3) == sizeof(glm::mediump_vec3) ? 0 : 1;
+	Error += 12 == sizeof(glm::mediump_vec3) ? 0 : 1;
+	Error += sizeof(glm::dvec3) == sizeof(glm::highp_vec3) ? 0 : 1;
+	Error += 24 == sizeof(glm::highp_vec3) ? 0 : 1;
+	Error += glm::vec3().length() == 3 ? 0 : 1;
+	Error += glm::dvec3().length() == 3 ? 0 : 1;
+	
+	return Error;
+}
+
+int test_vec3_swizzle3_2()
+{
+    int Error = 0;
+
+    glm::vec3 v(1, 2, 3);
+    glm::vec2 u;
+
+    // Can not assign a vec3 swizzle to a vec2
+    //u = v.xyz;    //Illegal
+    //u = v.rgb;    //Illegal
+    //u = v.stp;    //Illegal
+
+    u = v.xx;       Error += (u.x == 1.0f && u.y == 1.0f) ? 0 : 1;
+    u = v.xy;       Error += (u.x == 1.0f && u.y == 2.0f) ? 0 : 1;
+    u = v.xz;       Error += (u.x == 1.0f && u.y == 3.0f) ? 0 : 1;
+    u = v.yx;       Error += (u.x == 2.0f && u.y == 1.0f) ? 0 : 1;
+    u = v.yy;       Error += (u.x == 2.0f && u.y == 2.0f) ? 0 : 1;
+    u = v.yz;       Error += (u.x == 2.0f && u.y == 3.0f) ? 0 : 1;
+    u = v.zx;       Error += (u.x == 3.0f && u.y == 1.0f) ? 0 : 1;
+    u = v.zy;       Error += (u.x == 3.0f && u.y == 2.0f) ? 0 : 1;
+    u = v.zz;       Error += (u.x == 3.0f && u.y == 3.0f) ? 0 : 1;
+
+    u = v.rr;       Error += (u.r == 1.0f && u.g == 1.0f) ? 0 : 1;
+    u = v.rg;       Error += (u.r == 1.0f && u.g == 2.0f) ? 0 : 1;
+    u = v.rb;       Error += (u.r == 1.0f && u.g == 3.0f) ? 0 : 1;
+    u = v.gr;       Error += (u.r == 2.0f && u.g == 1.0f) ? 0 : 1;
+    u = v.gg;       Error += (u.r == 2.0f && u.g == 2.0f) ? 0 : 1;
+    u = v.gb;       Error += (u.r == 2.0f && u.g == 3.0f) ? 0 : 1;
+    u = v.br;       Error += (u.r == 3.0f && u.g == 1.0f) ? 0 : 1;
+    u = v.bg;       Error += (u.r == 3.0f && u.g == 2.0f) ? 0 : 1;
+    u = v.bb;       Error += (u.r == 3.0f && u.g == 3.0f) ? 0 : 1;   
+
+    u = v.ss;       Error += (u.s == 1.0f && u.t == 1.0f) ? 0 : 1;
+    u = v.st;       Error += (u.s == 1.0f && u.t == 2.0f) ? 0 : 1;
+    u = v.sp;       Error += (u.s == 1.0f && u.t == 3.0f) ? 0 : 1;
+    u = v.ts;       Error += (u.s == 2.0f && u.t == 1.0f) ? 0 : 1;
+    u = v.tt;       Error += (u.s == 2.0f && u.t == 2.0f) ? 0 : 1;
+    u = v.tp;       Error += (u.s == 2.0f && u.t == 3.0f) ? 0 : 1;
+    u = v.ps;       Error += (u.s == 3.0f && u.t == 1.0f) ? 0 : 1;
+    u = v.pt;       Error += (u.s == 3.0f && u.t == 2.0f) ? 0 : 1;
+    u = v.pp;       Error += (u.s == 3.0f && u.t == 3.0f) ? 0 : 1;
+
+    // Mixed member aliases are not valid
+    //u = v.rx;     //Illegal
+    //u = v.sy;     //Illegal
+
+
+    u = glm::vec2(1, 2);
+    v = glm::vec3(1, 2, 3);
+    //v.xx = u;     //Illegal
+    v.xy = u;       Error += (v.x == 1.0f && v.y == 2.0f && v.z == 3.0f) ? 0 : 1;
+    v.xz = u;       Error += (v.x == 1.0f && v.y == 2.0f && v.z == 2.0f) ? 0 : 1;
+    v.yx = u;       Error += (v.x == 2.0f && v.y == 1.0f && v.z == 2.0f) ? 0 : 1;
+    //v.yy = u;     //Illegal
+    v.yz = u;       Error += (v.x == 2.0f && v.y == 1.0f && v.z == 2.0f) ? 0 : 1;
+    v.zx = u;       Error += (v.x == 2.0f && v.y == 1.0f && v.z == 1.0f) ? 0 : 1;
+    v.zy = u;       Error += (v.x == 2.0f && v.y == 2.0f && v.z == 1.0f) ? 0 : 1;
+    //v.zz = u;     //Illegal
+    
+    return Error;
+}
+
+int test_vec3_swizzle3_3()
+{
+    int Error = 0;
+
+    glm::vec3 v(1, 2, 3);
+    glm::vec3 u;
+    
+    u = v;          Error += (u.x == 1.0f && u.y == 2.0f && u.z == 3.0f) ? 0 : 1;
+    
+    u = v.xyz;      Error += (u.x == 1.0f && u.y == 2.0f && u.z == 3.0f) ? 0 : 1;
+    u = v.zyx;      Error += (u.x == 3.0f && u.y == 2.0f && u.z == 1.0f) ? 0 : 1;
+    u.zyx = v;      Error += (u.x == 3.0f && u.y == 2.0f && u.z == 1.0f) ? 0 : 1;
+    
+    u = v.rgb;      Error += (u.x == 1.0f && u.y == 2.0f && u.z == 3.0f) ? 0 : 1;
+    u = v.bgr;      Error += (u.x == 3.0f && u.y == 2.0f && u.z == 1.0f) ? 0 : 1;
+    u.bgr = v;      Error += (u.x == 3.0f && u.y == 2.0f && u.z == 1.0f) ? 0 : 1;
+
+    u = v.stp;      Error += (u.x == 1.0f && u.y == 2.0f && u.z == 3.0f) ? 0 : 1;
+    u = v.pts;      Error += (u.x == 3.0f && u.y == 2.0f && u.z == 1.0f) ? 0 : 1;
+    u.pts = v;      Error += (u.x == 3.0f && u.y == 2.0f && u.z == 1.0f) ? 0 : 1;
+   
+    return Error;
+}
+
+int test_vec3_swizzle_half()
+{
+    int Error = 0;
+
+    glm::half a1(1);
+    glm::half b1(2);
+    glm::half c1(3);
+    glm::hvec3 v(a1, b1, c1);
+    glm::hvec3 u;
+
+    u = v;
+
+    Error += (u.x.toFloat() == 1.0f && u.y.toFloat() == 2.0f && u.z.toFloat() == 3.0f) ? 0 : 1;
+    
+    u = v.xyz;
+    Error += (u.x.toFloat() == 1.0f && u.y.toFloat() == 2.0f && u.z.toFloat() == 3.0f) ? 0 : 1;
+    u = v.zyx;
+    Error += (u.x.toFloat() == 3.0f && u.y.toFloat() == 2.0f && u.z.toFloat() == 1.0f) ? 0 : 1;
+    u.zyx = v;
+    Error += (u.x.toFloat() == 3.0f && u.y.toFloat() == 2.0f && u.z.toFloat() == 1.0f) ? 0 : 1;
+    
+    u = v.rgb;
+    Error += (u.x.toFloat() == 1.0f && u.y.toFloat() == 2.0f && u.z.toFloat() == 3.0f) ? 0 : 1;
+    u = v.bgr;
+    Error += (u.x.toFloat() == 3.0f && u.y.toFloat() == 2.0f && u.z.toFloat() == 1.0f) ? 0 : 1;
+    u.bgr = v;
+    Error += (u.x.toFloat() == 3.0f && u.y.toFloat() == 2.0f && u.z.toFloat() == 1.0f) ? 0 : 1;
+
+    u = v.stp;
+    Error += (u.x.toFloat() == 1.0f && u.y.toFloat() == 2.0f && u.z.toFloat() == 3.0f) ? 0 : 1;
+    u = v.pts;
+    Error += (u.x.toFloat() == 3.0f && u.y.toFloat() == 2.0f && u.z.toFloat() == 1.0f) ? 0 : 1;
+    u.pts = v;
+    Error += (u.x.toFloat() == 3.0f && u.y.toFloat() == 2.0f && u.z.toFloat() == 1.0f) ? 0 : 1;
+
+    return Error;
+}
+
+int test_vec3_swizzle_operators()
+{
+    int Error = 0;
+
+    glm::vec3 q, u, v;
+
+    u = glm::vec3(1, 2, 3);
+    v = glm::vec3(10, 20, 30);
+
+    // Swizzle, swizzle binary operators
+    q = u.xyz + v.xyz;          Error += (q == (u + v)) ? 0 : 1;
+    q = (u.zyx + v.zyx).zyx;    Error += (q == (u + v)) ? 0 : 1;
+    q = (u.xyz - v.xyz);        Error += (q == (u - v)) ? 0 : 1;
+    q = (u.xyz * v.xyz);        Error += (q == (u * v)) ? 0 : 1;
+    q = (u.xxx * v.xxx);        Error += (q == glm::vec3(u.x * v.x)) ? 0 : 1;
+    q = (u.xyz / v.xyz);        Error += (q == (u / v)) ? 0 : 1;
+
+    // vec, swizzle binary operators
+    q = u + v.xyz;              Error += (q == (u + v)) ? 0 : 1;
+    q = (u - v.xyz);            Error += (q == (u - v)) ? 0 : 1;
+    q = (u * v.xyz);            Error += (q == (u * v)) ? 0 : 1;
+    q = (u * v.xxx);            Error += (q == v.x * u) ? 0 : 1;
+    q = (u / v.xyz);            Error += (q == (u / v)) ? 0 : 1;
+
+    // swizzle,vec binary operators
+    q = u.xyz + v;              Error += (q == (u + v)) ? 0 : 1;
+    q = (u.xyz - v);            Error += (q == (u - v)) ? 0 : 1;
+    q = (u.xyz * v);            Error += (q == (u * v)) ? 0 : 1;
+    q = (u.xxx * v);            Error += (q == u.x * v) ? 0 : 1;
+    q = (u.xyz / v);            Error += (q == (u / v)) ? 0 : 1;
+
+    // Compile errors
+    //q = (u.yz * v.xyz);
+    //q = (u * v.xy);
+
+    return Error;
+}
+
+int test_vec3_swizzle_functions()
+{
+    int Error = 0;
+
+    // vec3 - working as expected
+    glm::vec3 q, u, v;
+    u = glm::vec3(1, 2, 3);
+    v = glm::vec3(10, 20, 30);
+    glm::dot(u, v);
+    glm::dot(u.xyz, v.zyz);
+    glm::dot(u, v.zyx);
+    glm::dot(u.xyz, v);
+
+    // vec2 - not working! how is vec3 working and not vec2?
+    glm::vec2 a, b;
+    glm::dot(a, b);
+    glm::dot(a.xy, b.yy);
+    glm::dot(a.xy, b.xy);
+    glm::dot(u.xy, v.xy);
+
+    glm::dot(glm::vec4(1,2,3,4).xyz, v);
+
+    glm::vec4 r, s, t;
+
+    r = glm::vec4(1, 2, 3, 4);
+    s = glm::vec4(10, 20, 30, 40);
+
+    glm::dot(r, s);
+    glm::dot(r.xyzw, s.xyzw);
+    glm::dot(r.xyz, s.xyz);
+
+    glm::cross(u, v);
+    glm::cross(u.zyx, v);
+    glm::cross(u.xxz, v.yyx);
+
+    return Error;
+}
+
+#if 1
+using namespace glm;
+
 //
-// Description : Array and textureless GLSL 2D/3D/4D simplex 
-//               noise functions.
-//      Author : Ian McEwan, Ashima Arts.
-//  Maintainer : ijm
-//     Lastmod : 20110822 (ijm)
-//     License : Copyright (C) 2011 Ashima Arts. All rights reserved.
-//               Distributed under the MIT License. See LICENSE file.
-//               https://github.com/ashima/webgl-noise
-// 
-
-vec4 mod289(vec4 x) {
-  return x - floor(x * (1.0 / 289.0)) * 289.0; }
-
-float mod289(float x) {
-  return x - floor(x * (1.0 / 289.0)) * 289.0; }
-
-vec4 permute(vec4 x) {
-     return mod289(((x*34.0)+1.0)*x);
+// GLSL textureless classic 4D noise "cnoise",
+// with an RSL-style periodic variant "pnoise".
+// Author:  Stefan Gustavson ([email protected])
+// Version: 2011-08-22
+//
+// Many thanks to Ian McEwan of Ashima Arts for the
+// ideas for permutation and gradient selection.
+//
+// Copyright (c) 2011 Stefan Gustavson. All rights reserved.
+// Distributed under the MIT license. See LICENSE file.
+// https://github.com/ashima/webgl-noise
+//
+
+vec4 mod289(vec4 x)
+{
+  return x - floor(x * (1.0 / 289.0)) * 289.0;
 }
 
-float permute(float x) {
-     return mod289(((x*34.0)+1.0)*x);
+vec4 permute(vec4 x)
+{
+  return mod289(((x*34.0)+1.0)*x);
 }
 
 vec4 taylorInvSqrt(vec4 r)
@@ -262,123 +266,292 @@ vec4 taylorInvSqrt(vec4 r)
   return 1.79284291400159 - 0.85373472095314 * r;
 }
 
-float taylorInvSqrt(float r)
+vec4 fade(vec4 t) {
+  return t*t*t*(t*(t*6.0-15.0)+10.0);
+}
+
+// Classic Perlin noise
+float cnoise(vec4 P)
 {
-  return 1.79284291400159 - 0.85373472095314 * r;
+  vec4 Pi0 = floor(P); // Integer part for indexing
+  vec4 Pi1 = Pi0 + 1.0; // Integer part + 1
+  Pi0 = mod289(Pi0);
+  Pi1 = mod289(Pi1);
+  vec4 Pf0 = fract(P); // Fractional part for interpolation
+  vec4 Pf1 = Pf0 - 1.0; // Fractional part - 1.0
+  vec4 ix = vec4(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
+  vec4 iy = vec4(Pi0.yy(), Pi1.yy());
+  vec4 iz0 = vec4(Pi0.zzzz());
+  vec4 iz1 = vec4(Pi1.zzzz());
+  vec4 iw0 = vec4(Pi0.wwww());
+  vec4 iw1 = vec4(Pi1.wwww);
+
+  vec4 ixy = permute(permute(ix) + iy);
+  vec4 ixy0 = permute(ixy + iz0);
+  vec4 ixy1 = permute(ixy + iz1);
+  vec4 ixy00 = permute(ixy0 + iw0);
+  vec4 ixy01 = permute(ixy0 + iw1);
+  vec4 ixy10 = permute(ixy1 + iw0);
+  vec4 ixy11 = permute(ixy1 + iw1);
+
+  vec4 gx00 = ixy00 * (1.0 / 7.0);
+  vec4 gy00 = floor(gx00) * (1.0 / 7.0);
+  vec4 gz00 = floor(gy00) * (1.0 / 6.0);
+  gx00 = fract(gx00) - 0.5;
+  gy00 = fract(gy00) - 0.5;
+  gz00 = fract(gz00) - 0.5;
+  vec4 gw00 = vec4(0.75) - abs(gx00) - abs(gy00) - abs(gz00);
+  vec4 sw00 = step(gw00, vec4(0.0));
+  gx00 -= sw00 * (step(0.0, gx00) - 0.5);
+  gy00 -= sw00 * (step(0.0, gy00) - 0.5);
+
+  vec4 gx01 = ixy01 * (1.0 / 7.0);
+  vec4 gy01 = floor(gx01) * (1.0 / 7.0);
+  vec4 gz01 = floor(gy01) * (1.0 / 6.0);
+  gx01 = fract(gx01) - 0.5;
+  gy01 = fract(gy01) - 0.5;
+  gz01 = fract(gz01) - 0.5;
+  vec4 gw01 = vec4(0.75) - abs(gx01) - abs(gy01) - abs(gz01);
+  vec4 sw01 = step(gw01, vec4(0.0));
+  gx01 -= sw01 * (step(0.0, gx01) - 0.5);
+  gy01 -= sw01 * (step(0.0, gy01) - 0.5);
+
+  vec4 gx10 = ixy10 * (1.0 / 7.0);
+  vec4 gy10 = floor(gx10) * (1.0 / 7.0);
+  vec4 gz10 = floor(gy10) * (1.0 / 6.0);
+  gx10 = fract(gx10) - 0.5;
+  gy10 = fract(gy10) - 0.5;
+  gz10 = fract(gz10) - 0.5;
+  vec4 gw10 = vec4(0.75) - abs(gx10) - abs(gy10) - abs(gz10);
+  vec4 sw10 = step(gw10, vec4(0.0));
+  gx10 -= sw10 * (step(0.0, gx10) - 0.5);
+  gy10 -= sw10 * (step(0.0, gy10) - 0.5);
+
+  vec4 gx11 = ixy11 * (1.0 / 7.0);
+  vec4 gy11 = floor(gx11) * (1.0 / 7.0);
+  vec4 gz11 = floor(gy11) * (1.0 / 6.0);
+  gx11 = fract(gx11) - 0.5;
+  gy11 = fract(gy11) - 0.5;
+  gz11 = fract(gz11) - 0.5;
+  vec4 gw11 = vec4(0.75) - abs(gx11) - abs(gy11) - abs(gz11);
+  vec4 sw11 = step(gw11, vec4(0.0));
+  gx11 -= sw11 * (step(0.0, gx11) - 0.5);
+  gy11 -= sw11 * (step(0.0, gy11) - 0.5);
+
+  vec4 g0000 = vec4(gx00.x,gy00.x,gz00.x,gw00.x);
+  vec4 g1000 = vec4(gx00.y,gy00.y,gz00.y,gw00.y);
+  vec4 g0100 = vec4(gx00.z,gy00.z,gz00.z,gw00.z);
+  vec4 g1100 = vec4(gx00.w,gy00.w,gz00.w,gw00.w);
+  vec4 g0010 = vec4(gx10.x,gy10.x,gz10.x,gw10.x);
+  vec4 g1010 = vec4(gx10.y,gy10.y,gz10.y,gw10.y);
+  vec4 g0110 = vec4(gx10.z,gy10.z,gz10.z,gw10.z);
+  vec4 g1110 = vec4(gx10.w,gy10.w,gz10.w,gw10.w);
+  vec4 g0001 = vec4(gx01.x,gy01.x,gz01.x,gw01.x);
+  vec4 g1001 = vec4(gx01.y,gy01.y,gz01.y,gw01.y);
+  vec4 g0101 = vec4(gx01.z,gy01.z,gz01.z,gw01.z);
+  vec4 g1101 = vec4(gx01.w,gy01.w,gz01.w,gw01.w);
+  vec4 g0011 = vec4(gx11.x,gy11.x,gz11.x,gw11.x);
+  vec4 g1011 = vec4(gx11.y,gy11.y,gz11.y,gw11.y);
+  vec4 g0111 = vec4(gx11.z,gy11.z,gz11.z,gw11.z);
+  vec4 g1111 = vec4(gx11.w,gy11.w,gz11.w,gw11.w);
+
+  vec4 norm00 = taylorInvSqrt(vec4(dot(g0000, g0000), dot(g0100, g0100), dot(g1000, g1000), dot(g1100, g1100)));
+  g0000 *= norm00.x;
+  g0100 *= norm00.y;
+  g1000 *= norm00.z;
+  g1100 *= norm00.w;
+
+  vec4 norm01 = taylorInvSqrt(vec4(dot(g0001, g0001), dot(g0101, g0101), dot(g1001, g1001), dot(g1101, g1101)));
+  g0001 *= norm01.x;
+  g0101 *= norm01.y;
+  g1001 *= norm01.z;
+  g1101 *= norm01.w;
+
+  vec4 norm10 = taylorInvSqrt(vec4(dot(g0010, g0010), dot(g0110, g0110), dot(g1010, g1010), dot(g1110, g1110)));
+  g0010 *= norm10.x;
+  g0110 *= norm10.y;
+  g1010 *= norm10.z;
+  g1110 *= norm10.w;
+
+  vec4 norm11 = taylorInvSqrt(vec4(dot(g0011, g0011), dot(g0111, g0111), dot(g1011, g1011), dot(g1111, g1111)));
+  g0011 *= norm11.x;
+  g0111 *= norm11.y;
+  g1011 *= norm11.z;
+  g1111 *= norm11.w;
+
+  float n0000 = dot(g0000, Pf0);
+  float n1000 = dot(g1000, vec4(Pf1.x, Pf0.yzw()));
+  float n0100 = dot(g0100, vec4(Pf0.x, Pf1.y, Pf0.zw()));
+  float n1100 = dot(g1100, vec4(Pf1.xy(), Pf0.zw()));
+  float n0010 = dot(g0010, vec4(Pf0.xy(), Pf1.z, Pf0.w));
+  float n1010 = dot(g1010, vec4(Pf1.x, Pf0.y, Pf1.z, Pf0.w));
+  float n0110 = dot(g0110, vec4(Pf0.x, Pf1.yz(), Pf0.w));
+  float n1110 = dot(g1110, vec4(Pf1.xyz(), Pf0.w));
+  float n0001 = dot(g0001, vec4(Pf0.xyz(), Pf1.w));
+  float n1001 = dot(g1001, vec4(Pf1.x, Pf0.yz(), Pf1.w));
+  float n0101 = dot(g0101, vec4(Pf0.x, Pf1.y, Pf0.z, Pf1.w));
+  float n1101 = dot(g1101, vec4(Pf1.xy(), Pf0.z, Pf1.w));
+  float n0011 = dot(g0011, vec4(Pf0.xy(), Pf1.zw()));
+  float n1011 = dot(g1011, vec4(Pf1.x, Pf0.y, Pf1.zw()));
+  float n0111 = dot(g0111, vec4(Pf0.x, Pf1.yzw()));
+  float n1111 = dot(g1111, Pf1);
+
+  vec4 fade_xyzw = fade(Pf0);
+  vec4 n_0w = mix(vec4(n0000, n1000, n0100, n1100), vec4(n0001, n1001, n0101, n1101), fade_xyzw.w);
+  vec4 n_1w = mix(vec4(n0010, n1010, n0110, n1110), vec4(n0011, n1011, n0111, n1111), fade_xyzw.w);
+  vec4 n_zw = mix(n_0w, n_1w, fade_xyzw.z);
+  vec2 n_yzw = mix(n_zw.xy, n_zw.zw, fade_xyzw.y);
+  float n_xyzw = mix(n_yzw.x, n_yzw.y, fade_xyzw.x);
+  return 2.2 * n_xyzw;
 }
 
-vec4 grad4(float j, vec4 ip)
-  {
-  const vec4 ones = vec4(1.0, 1.0, 1.0, -1.0);
-  vec4 p,s;
+// Classic Perlin noise, periodic version
+float pnoise(vec4 P, vec4 rep)
+{
+  vec4 Pi0 = mod(floor(P), rep); // Integer part modulo rep
+  vec4 Pi1 = mod(Pi0 + 1.0, rep); // Integer part + 1 mod rep
+  Pi0 = mod289(Pi0);
+  Pi1 = mod289(Pi1);
+  vec4 Pf0 = fract(P); // Fractional part for interpolation
+  vec4 Pf1 = Pf0 - 1.0; // Fractional part - 1.0
+  vec4 ix = vec4(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
+  vec4 iy = vec4(Pi0.yy(), Pi1.yy());
+  vec4 iz0 = vec4(Pi0.zzzz());
+  vec4 iz1 = vec4(Pi1.zzzz());
+  vec4 iw0 = vec4(Pi0.wwww());
+  vec4 iw1 = vec4(Pi1.wwww());
+
+  vec4 ixy = permute(permute(ix) + iy);
+  vec4 ixy0 = permute(ixy + iz0);
+  vec4 ixy1 = permute(ixy + iz1);
+  vec4 ixy00 = permute(ixy0 + iw0);
+  vec4 ixy01 = permute(ixy0 + iw1);
+  vec4 ixy10 = permute(ixy1 + iw0);
+  vec4 ixy11 = permute(ixy1 + iw1);
+
+  vec4 gx00 = ixy00 * (1.0 / 7.0);
+  vec4 gy00 = floor(gx00) * (1.0 / 7.0);
+  vec4 gz00 = floor(gy00) * (1.0 / 6.0);
+  gx00 = fract(gx00) - 0.5;
+  gy00 = fract(gy00) - 0.5;
+  gz00 = fract(gz00) - 0.5;
+  vec4 gw00 = vec4(0.75) - abs(gx00) - abs(gy00) - abs(gz00);
+  vec4 sw00 = step(gw00, vec4(0.0));
+  gx00 -= sw00 * (step(0.0, gx00) - 0.5);
+  gy00 -= sw00 * (step(0.0, gy00) - 0.5);
+
+  vec4 gx01 = ixy01 * (1.0 / 7.0);
+  vec4 gy01 = floor(gx01) * (1.0 / 7.0);
+  vec4 gz01 = floor(gy01) * (1.0 / 6.0);
+  gx01 = fract(gx01) - 0.5;
+  gy01 = fract(gy01) - 0.5;
+  gz01 = fract(gz01) - 0.5;
+  vec4 gw01 = vec4(0.75) - abs(gx01) - abs(gy01) - abs(gz01);
+  vec4 sw01 = step(gw01, vec4(0.0));
+  gx01 -= sw01 * (step(0.0, gx01) - 0.5);
+  gy01 -= sw01 * (step(0.0, gy01) - 0.5);
+
+  vec4 gx10 = ixy10 * (1.0 / 7.0);
+  vec4 gy10 = floor(gx10) * (1.0 / 7.0);
+  vec4 gz10 = floor(gy10) * (1.0 / 6.0);
+  gx10 = fract(gx10) - 0.5;
+  gy10 = fract(gy10) - 0.5;
+  gz10 = fract(gz10) - 0.5;
+  vec4 gw10 = vec4(0.75) - abs(gx10) - abs(gy10) - abs(gz10);
+  vec4 sw10 = step(gw10, vec4(0.0));
+  gx10 -= sw10 * (step(0.0, gx10) - 0.5);
+  gy10 -= sw10 * (step(0.0, gy10) - 0.5);
+
+  vec4 gx11 = ixy11 * (1.0 / 7.0);
+  vec4 gy11 = floor(gx11) * (1.0 / 7.0);
+  vec4 gz11 = floor(gy11) * (1.0 / 6.0);
+  gx11 = fract(gx11) - 0.5;
+  gy11 = fract(gy11) - 0.5;
+  gz11 = fract(gz11) - 0.5;
+  vec4 gw11 = vec4(0.75) - abs(gx11) - abs(gy11) - abs(gz11);
+  vec4 sw11 = step(gw11, vec4(0.0));
+  gx11 -= sw11 * (step(0.0, gx11) - 0.5);
+  gy11 -= sw11 * (step(0.0, gy11) - 0.5);
+
+  vec4 g0000 = vec4(gx00.x,gy00.x,gz00.x,gw00.x);
+  vec4 g1000 = vec4(gx00.y,gy00.y,gz00.y,gw00.y);
+  vec4 g0100 = vec4(gx00.z,gy00.z,gz00.z,gw00.z);
+  vec4 g1100 = vec4(gx00.w,gy00.w,gz00.w,gw00.w);
+  vec4 g0010 = vec4(gx10.x,gy10.x,gz10.x,gw10.x);
+  vec4 g1010 = vec4(gx10.y,gy10.y,gz10.y,gw10.y);
+  vec4 g0110 = vec4(gx10.z,gy10.z,gz10.z,gw10.z);
+  vec4 g1110 = vec4(gx10.w,gy10.w,gz10.w,gw10.w);
+  vec4 g0001 = vec4(gx01.x,gy01.x,gz01.x,gw01.x);
+  vec4 g1001 = vec4(gx01.y,gy01.y,gz01.y,gw01.y);
+  vec4 g0101 = vec4(gx01.z,gy01.z,gz01.z,gw01.z);
+  vec4 g1101 = vec4(gx01.w,gy01.w,gz01.w,gw01.w);
+  vec4 g0011 = vec4(gx11.x,gy11.x,gz11.x,gw11.x);
+  vec4 g1011 = vec4(gx11.y,gy11.y,gz11.y,gw11.y);
+  vec4 g0111 = vec4(gx11.z,gy11.z,gz11.z,gw11.z);
+  vec4 g1111 = vec4(gx11.w,gy11.w,gz11.w,gw11.w);
 
-  auto t1 = abs(p.xyz);
-  auto t2 = ones.xyz;
-  auto t3 = dot(t1, t2);
-  auto t0 = dot(abs(p.xyz), ones.xyz);
+  vec4 norm00 = taylorInvSqrt(vec4(dot(g0000, g0000), dot(g0100, g0100), dot(g1000, g1000), dot(g1100, g1100)));
+  g0000 *= norm00.x;
+  g0100 *= norm00.y;
+  g1000 *= norm00.z;
+  g1100 *= norm00.w;
 
-  p.xyz = floor( fract (vec3(j) * ip.xyz) * 7.0f) * ip.z - 1.0f;
-  p.w = 1.5f - dot(abs(p.xyz), ones.xyz);
-  s = vec4(lessThan(p, vec4(0.0)));
-  p.xyz = p.xyz + (s.xyz*2.0f - 1.0f) * s.www; 
+  vec4 norm01 = taylorInvSqrt(vec4(dot(g0001, g0001), dot(g0101, g0101), dot(g1001, g1001), dot(g1101, g1101)));
+  g0001 *= norm01.x;
+  g0101 *= norm01.y;
+  g1001 *= norm01.z;
+  g1101 *= norm01.w;
 
-  return p;
+  vec4 norm10 = taylorInvSqrt(vec4(dot(g0010, g0010), dot(g0110, g0110), dot(g1010, g1010), dot(g1110, g1110)));
+  g0010 *= norm10.x;
+  g0110 *= norm10.y;
+  g1010 *= norm10.z;
+  g1110 *= norm10.w;
+
+  vec4 norm11 = taylorInvSqrt(vec4(dot(g0011, g0011), dot(g0111, g0111), dot(g1011, g1011), dot(g1111, g1111)));
+  g0011 *= norm11.x;
+  g0111 *= norm11.y;
+  g1011 *= norm11.z;
+  g1111 *= norm11.w;
+
+  float n0000 = dot(g0000, Pf0);
+  float n1000 = dot(g1000, vec4(Pf1.x, Pf0.yzw()));
+  float n0100 = dot(g0100, vec4(Pf0.x, Pf1.y, Pf0.zw()));
+  float n1100 = dot(g1100, vec4(Pf1.xy(), Pf0.zw()));
+  float n0010 = dot(g0010, vec4(Pf0.xy(), Pf1.z, Pf0.w));
+  float n1010 = dot(g1010, vec4(Pf1.x, Pf0.y, Pf1.z, Pf0.w));
+  float n0110 = dot(g0110, vec4(Pf0.x, Pf1.yz(), Pf0.w));
+  float n1110 = dot(g1110, vec4(Pf1.xyz(), Pf0.w));
+  float n0001 = dot(g0001, vec4(Pf0.xyz(), Pf1.w));
+  float n1001 = dot(g1001, vec4(Pf1.x, Pf0.yz(), Pf1.w));
+  float n0101 = dot(g0101, vec4(Pf0.x, Pf1.y, Pf0.z, Pf1.w));
+  float n1101 = dot(g1101, vec4(Pf1.xy(), Pf0.z, Pf1.w));
+  float n0011 = dot(g0011, vec4(Pf0.xy(), Pf1.zw()));
+  float n1011 = dot(g1011, vec4(Pf1.x, Pf0.y, Pf1.zw()));
+  float n0111 = dot(g0111, vec4(Pf0.x, Pf1.yzw()));
+  float n1111 = dot(g1111, Pf1);
+
+  vec4 fade_xyzw = fade(Pf0);
+  vec4 n_0w = mix(vec4(n0000, n1000, n0100, n1100), vec4(n0001, n1001, n0101, n1101), fade_xyzw.w);
+  vec4 n_1w = mix(vec4(n0010, n1010, n0110, n1110), vec4(n0011, n1011, n0111, n1111), fade_xyzw.w);
+  vec4 n_zw = mix(n_0w, n_1w, fade_xyzw.z);
+  vec2 n_yzw = mix(n_zw.xy, n_zw.zw, fade_xyzw.y);
+  float n_xyzw = mix(n_yzw.x, n_yzw.y, fade_xyzw.x);
+  return 2.2 * n_xyzw;
   }
+#endif
 
+int main()
+{
+	int Error = 0;
 
-float snoise(vec4 v)
-  {
-  const vec4  C = vec4( 0.138196601125011,  // (5 - sqrt(5))/20  G4
-                        0.276393202250021,  // 2 * G4
-                        0.414589803375032,  // 3 * G4
-                       -0.447213595499958); // -1 + 4 * G4
-
-// (sqrt(5) - 1)/4 = F4, used once below
-#define F4 0.309016994374947451
-
-// First corner
-  vec4 i  = floor(v + dot(v, vec4(F4)) );
-  vec4 x0 = v -   i + dot(i, C.xxxx);
-
-// Other corners
-
-// Rank sorting originally contributed by Bill Licea-Kane, AMD (formerly ATI)
-  vec4 i0;
-  vec3 isX = step( x0.yzw, x0.xxx );
-  vec3 isYZ = step( x0.zww, x0.yyz );
-//  i0.x = dot( isX, vec3( 1.0 ) );
-  i0.x = isX.x + isX.y + isX.z;
-  i0.yzw = 1.0f - isX;
-//  i0.y += dot( isYZ.xy, vec2( 1.0 ) );
-  i0.y += isYZ.x + isYZ.y;
-  i0.zw += 1.0f - isYZ.xy;
-  i0.z += isYZ.z;
-  i0.w += 1.0f - isYZ.z;
-
-  // i0 now contains the unique values 0,1,2,3 in each channel
-  vec4 i3 = clamp( i0, 0.0, 1.0 );
-  vec4 i2 = clamp( i0-1.0, 0.0, 1.0 );
-  vec4 i1 = clamp( i0-2.0, 0.0, 1.0 );
-
-  //  x0 = x0 - 0.0 + 0.0 * C.xxxx
-  //  x1 = x0 - i1  + 1.0 * C.xxxx
-  //  x2 = x0 - i2  + 2.0 * C.xxxx
-  //  x3 = x0 - i3  + 3.0 * C.xxxx
-  //  x4 = x0 - 1.0 + 4.0 * C.xxxx
-  vec4 x1 = x0 - i1 + C.xxxx;
-  vec4 x2 = x0 - i2 + C.yyyy;
-  vec4 x3 = x0 - i3 + C.zzzz;
-  vec4 x4 = x0 + C.wwww;
-
-// Permutations
-  i = mod289(i); 
-  float j0 = permute( permute( permute( permute(i.w) + i.z) + i.y) + i.x);
-  vec4 j1 = permute( permute( permute( permute (
-             i.w + vec4(i1.w, i2.w, i3.w, 1.0 ))
-           + i.z + vec4(i1.z, i2.z, i3.z, 1.0 ))
-           + i.y + vec4(i1.y, i2.y, i3.y, 1.0 ))
-           + i.x + vec4(i1.x, i2.x, i3.x, 1.0 ));
-
-// Gradients: 7x7x6 points over a cube, mapped onto a 4-cross polytope
-// 7*7*6 = 294, which is close to the ring size 17*17 = 289.
-  vec4 ip = vec4(1.0/294.0, 1.0/49.0, 1.0/7.0, 0.0) ;
-
-  vec4 p0 = grad4(j0,   ip);
-  vec4 p1 = grad4(j1.x, ip);
-  vec4 p2 = grad4(j1.y, ip);
-  vec4 p3 = grad4(j1.z, ip);
-  vec4 p4 = grad4(j1.w, ip);
-
-// Normalise gradients
-  vec4 norm = taylorInvSqrt(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3)));
-  p0 *= norm.x;
-  p1 *= norm.y;
-  p2 *= norm.z;
-  p3 *= norm.w;
-  p4 *= taylorInvSqrt(dot(p4,p4));
-
-// Mix contributions from the five corners
-  vec3 m0 = max(0.6f - vec3(dot(x0,x0), dot(x1,x1), dot(x2,x2)), 0.0);
-  vec2 m1 = max(0.6f - vec2(dot(x3,x3), dot(x4,x4)            ), 0.0);
-  m0 = m0 * m0;
-  m1 = m1 * m1;
-  return 49.0 * ( dot(m0*m0, vec3( dot( p0, x0 ), dot( p1, x1 ), dot( p2, x2 )))
-               + dot(m1*m1, vec2( dot( p3, x3 ), dot( p4, x4 ) ) ) ) ;
-
-  }
-#endif
-
-int main()
-{
-	int Error = 0;
-
-	Error += test_vec3_operators();
-	Error += test_vec3_size();
-    Error += test_vec3_swizzle3_2();
-    Error += test_vec3_swizzle3_3();
-    Error += test_vec3_swizzle_half();
-    Error += test_vec3_swizzle_operators();
-    Error += test_vec3_swizzle_functions();
-	
-	return Error;
-}
+	Error += test_vec3_operators();
+	Error += test_vec3_size();
+    Error += test_vec3_swizzle3_2();
+    Error += test_vec3_swizzle3_3();
+    Error += test_vec3_swizzle_half();
+    Error += test_vec3_swizzle_operators();
+    Error += test_vec3_swizzle_functions();
+	
+	return Error;
+}