Browse Source

Promoted matrix inverse functions

Christophe Riccio 15 years ago
parent
commit
cd183edb29

+ 0 - 1
glm/core/func_integer.hpp

@@ -65,7 +65,6 @@ namespace glm
 			genIType & msb, 
 			genIType & lsb);
 
-
 		//! Extracts bits [offset, offset + bits - 1] from value,
 		//! returning them in the least significant bits of the result.
 		//! For unsigned data types, the most significant bits of the

+ 2 - 5
glm/ext.hpp

@@ -2,7 +2,7 @@
 // OpenGL Mathematics Copyright (c) 2005 - 2010 G-Truc Creation (www.g-truc.net)
 ///////////////////////////////////////////////////////////////////////////////////////////////////
 // Created : 2009-05-01
-// Updated : 2010-04-30
+// Updated : 2010-12-13
 // Licence : This source is under MIT License
 // File    : glm/ext.hpp
 ///////////////////////////////////////////////////////////////////////////////////////////////////
@@ -12,6 +12,7 @@
 
 #include "./gtc/half_float.hpp"
 #include "./gtc/matrix_access.hpp"
+#include "./gtc/matrix_inverse.hpp"
 #include "./gtc/matrix_transform.hpp"
 #include "./gtc/quaternion.hpp"
 #include "./gtc/swizzle.hpp"
@@ -27,7 +28,6 @@
 #include "./gtx/comparison.hpp"
 #include "./gtx/compatibility.hpp"
 #include "./gtx/component_wise.hpp"
-#include "./gtx/determinant.hpp"
 #include "./gtx/epsilon.hpp"
 #include "./gtx/euler_angles.hpp"
 #include "./gtx/extend.hpp"
@@ -41,14 +41,11 @@
 #include "./gtx/int_10_10_10_2.hpp"
 #include "./gtx/integer.hpp"
 #include "./gtx/intersect.hpp"
-#include "./gtx/inverse.hpp"
-#include "./gtx/inverse_transpose.hpp"
 #include "./gtx/log_base.hpp"
 #include "./gtx/matrix_cross_product.hpp"
 #include "./gtx/matrix_major_storage.hpp"
 #include "./gtx/matrix_operation.hpp"
 #include "./gtx/matrix_query.hpp"
-#include "./gtx/matrix_selection.hpp"
 #include "./gtx/mixed_product.hpp"
 #include "./gtx/norm.hpp"
 #include "./gtx/normal.hpp"

+ 43 - 0
glm/gtc/matrix_inverse.hpp

@@ -0,0 +1,43 @@
+///////////////////////////////////////////////////////////////////////////////////////////////////
+// OpenGL Mathematics Copyright (c) 2005 - 2010 G-Truc Creation (www.g-truc.net)
+///////////////////////////////////////////////////////////////////////////////////////////////////
+// Created : 2005-12-21
+// Updated : 2010-12-13
+// Licence : This source is under MIT License
+// File    : glm/gtc/matrix_inverse.hpp
+///////////////////////////////////////////////////////////////////////////////////////////////////
+// Dependency:
+// - GLM core
+///////////////////////////////////////////////////////////////////////////////////////////////////
+
+#ifndef glm_gtc_matrix_inverse
+#define glm_gtc_matrix_inverse
+
+// Dependency:
+#include "../glm.hpp"
+
+namespace glm{
+namespace gtc{
+//! GLM_GTC_matrix_inverse extension: Inverse matrix functions
+namespace matrix_inverse
+{
+	//! Fast matrix inverse for affine matrix.
+	//! From GLM_GTC_matrix_inverse extension.
+	template <typename genType> 
+	genType affineInverse(genType const & m);
+
+	//! Compute the inverse transpose of a matrix.
+	//! From GLM_GTC_matrix_inverse extension.
+	template <typename genType> 
+	inline typename genType::value_type inverseTranspose(
+		genType const & m);
+
+}//namespace matrix_inverse
+}//namespace gtc
+}//namespace glm
+
+#include "matrix_inverse.inl"
+
+namespace glm{using namespace gtc::matrix_inverse;}
+
+#endif//glm_gtc_matrix_inverse

+ 139 - 0
glm/gtc/matrix_inverse.inl

@@ -0,0 +1,139 @@
+///////////////////////////////////////////////////////////////////////////////////////////////////
+// OpenGL Mathematics Copyright (c) 2005 - 2010 G-Truc Creation (www.g-truc.net)
+///////////////////////////////////////////////////////////////////////////////////////////////////
+// Created : 2005-12-21
+// Updated : 2010-12-13
+// Licence : This source is under MIT License
+// File    : glm/gtc/matrix_inverse.inl
+///////////////////////////////////////////////////////////////////////////////////////////////////
+
+namespace glm{
+namespace gtx{
+namespace matrix_inverse
+{
+	template <typename T> 
+	inline detail::tmat3x3<T> affineInverse
+	(
+		detail::tmat3x3<T> const & m
+	)
+	{
+		detail::tmat3x3<T> Result(m);
+		Result[2] = detail::tvec3<T>(0, 0, 1);
+		Result = transpose(Result);
+		detail::tvec3<T> Translation = Result * detail::tvec3<T>(-detail::tvec2<T>(m[2]), m[2][2]);
+		Result[2] = Translation;
+		return Result;
+	}
+
+	template <typename T> 
+	inline detail::tmat4x4<T> affineInverse
+	(
+		detail::tmat4x4<T> const & m
+	)
+	{
+		detail::tmat4x4<T> Result(m);
+		Result[3] = detail::tvec4<T>(0, 0, 0, 1);
+		Result = transpose(Result);
+		detail::tvec4<T> Translation = Result * detail::tvec4<T>(-detail::tvec3<T>(m[3]), m[3][3]);
+		Result[3] = Translation;
+		return Result;
+	}
+
+	template <typename valType> 
+	inline detail::tmat2x2<valType> inverseTranspose(
+		detail::tmat2x2<valType> const & m)
+	{
+		valType Determinant = m[0][0] * m[1][1] - m[1][0] * m[0][1];
+
+		detail::tmat2x2<valType> Inverse(
+			+ m[1][1] / Determinant,
+			- m[0][1] / Determinant,
+			- m[1][0] / Determinant, 
+			+ m[0][0] / Determinant);
+
+		return Inverse;
+	}
+
+	template <typename valType> 
+	inline detail::tmat3x3<valType> inverseTranspose(
+		detail::tmat3x3<valType> const & m)
+	{
+		valType Determinant = 
+			+ m[0][0] * (m[1][1] * m[2][2] - m[1][2] * m[2][1])
+			- m[0][1] * (m[1][0] * m[2][2] - m[1][2] * m[2][0])
+			+ m[0][2] * (m[1][0] * m[2][1] - m[1][1] * m[2][0]);
+
+		detail::tmat3x3<valType> Inverse;
+		Inverse[0][0] = + (m[1][1] * m[2][2] - m[2][1] * m[1][2]);
+		Inverse[0][1] = - (m[1][0] * m[2][2] - m[2][0] * m[1][2]);
+		Inverse[0][2] = + (m[1][0] * m[2][1] - m[2][0] * m[1][1]);
+		Inverse[1][0] = - (m[0][1] * m[2][2] - m[2][1] * m[0][2]);
+		Inverse[1][1] = + (m[0][0] * m[2][2] - m[2][0] * m[0][2]);
+		Inverse[1][2] = - (m[0][0] * m[2][1] - m[2][0] * m[0][1]);
+		Inverse[2][0] = + (m[0][1] * m[1][2] - m[1][1] * m[0][2]);
+		Inverse[2][1] = - (m[0][0] * m[1][2] - m[1][0] * m[0][2]);
+		Inverse[2][2] = + (m[0][0] * m[1][1] - m[1][0] * m[0][1]);
+		Inverse /= Determinant;
+
+		return Inverse;
+	}
+
+	template <typename valType> 
+	inline detail::tmat4x4<valType> inverseTranspose(
+		detail::tmat4x4<valType> const & m)
+	{
+		valType SubFactor00 = m[2][2] * m[3][3] - m[3][2] * m[2][3];
+		valType SubFactor01 = m[2][1] * m[3][3] - m[3][1] * m[2][3];
+		valType SubFactor02 = m[2][1] * m[3][2] - m[3][1] * m[2][2];
+		valType SubFactor03 = m[2][0] * m[3][3] - m[3][0] * m[2][3];
+		valType SubFactor04 = m[2][0] * m[3][2] - m[3][0] * m[2][2];
+		valType SubFactor05 = m[2][0] * m[3][1] - m[3][0] * m[2][1];
+		valType SubFactor06 = m[1][2] * m[3][3] - m[3][2] * m[1][3];
+		valType SubFactor07 = m[1][1] * m[3][3] - m[3][1] * m[1][3];
+		valType SubFactor08 = m[1][1] * m[3][2] - m[3][1] * m[1][2];
+		valType SubFactor09 = m[1][0] * m[3][3] - m[3][0] * m[1][3];
+		valType SubFactor10 = m[1][0] * m[3][2] - m[3][0] * m[1][2];
+		valType SubFactor11 = m[1][1] * m[3][3] - m[3][1] * m[1][3];
+		valType SubFactor12 = m[1][0] * m[3][1] - m[3][0] * m[1][1];
+		valType SubFactor13 = m[1][2] * m[2][3] - m[2][2] * m[1][3];
+		valType SubFactor14 = m[1][1] * m[2][3] - m[2][1] * m[1][3];
+		valType SubFactor15 = m[1][1] * m[2][2] - m[2][1] * m[1][2];
+		valType SubFactor16 = m[1][0] * m[2][3] - m[2][0] * m[1][3];
+		valType SubFactor17 = m[1][0] * m[2][2] - m[2][0] * m[1][2];
+		valType SubFactor18 = m[1][0] * m[2][1] - m[2][0] * m[1][1];
+
+		detail::tmat4x4<valType> Inverse;
+		Inverse[0][0] = + (m[1][1] * SubFactor00 - m[1][2] * SubFactor01 + m[1][3] * SubFactor02);
+		Inverse[0][1] = - (m[1][0] * SubFactor00 - m[1][2] * SubFactor03 + m[1][3] * SubFactor04);
+		Inverse[0][2] = + (m[1][0] * SubFactor01 - m[1][1] * SubFactor03 + m[1][3] * SubFactor05);
+		Inverse[0][3] = - (m[1][0] * SubFactor02 - m[1][1] * SubFactor04 + m[1][2] * SubFactor05);
+
+		Inverse[1][0] = - (m[0][1] * SubFactor00 - m[0][2] * SubFactor01 + m[0][3] * SubFactor02);
+		Inverse[1][1] = + (m[0][0] * SubFactor00 - m[0][2] * SubFactor03 + m[0][3] * SubFactor04);
+		Inverse[1][2] = - (m[0][0] * SubFactor01 - m[0][1] * SubFactor03 + m[0][3] * SubFactor05);
+		Inverse[1][3] = + (m[0][0] * SubFactor02 - m[0][1] * SubFactor04 + m[0][2] * SubFactor05);
+
+		Inverse[2][0] = + (m[0][1] * SubFactor06 - m[0][2] * SubFactor07 + m[0][3] * SubFactor08);
+		Inverse[2][1] = - (m[0][0] * SubFactor06 - m[0][2] * SubFactor09 + m[0][3] * SubFactor10);
+		Inverse[2][2] = + (m[0][0] * SubFactor11 - m[0][1] * SubFactor09 + m[0][3] * SubFactor12);
+		Inverse[2][3] = - (m[0][0] * SubFactor08 - m[0][1] * SubFactor10 + m[0][2] * SubFactor12);
+
+		Inverse[3][0] = - (m[0][1] * SubFactor13 - m[0][2] * SubFactor14 + m[0][3] * SubFactor15);
+		Inverse[3][1] = + (m[0][0] * SubFactor13 - m[0][2] * SubFactor16 + m[0][3] * SubFactor17);
+		Inverse[3][2] = - (m[0][0] * SubFactor14 - m[0][1] * SubFactor16 + m[0][3] * SubFactor18);
+		Inverse[3][3] = + (m[0][0] * SubFactor15 - m[0][1] * SubFactor17 + m[0][2] * SubFactor18);
+
+		valType Determinant = 
+			+ m[0][0] * Inverse[0][0] 
+			+ m[0][1] * Inverse[0][1] 
+			+ m[0][2] * Inverse[0][2] 
+			+ m[0][3] * Inverse[0][3];
+
+		Inverse /= Determinant;
+    
+		return Inverse;
+	}
+
+}//namespace matrix_inverse
+}//namespace gtx
+}//namespace glm

+ 0 - 40
glm/gtx/inverse.hpp

@@ -1,40 +0,0 @@
-///////////////////////////////////////////////////////////////////////////////////////////////////
-// OpenGL Mathematics Copyright (c) 2005 - 2010 G-Truc Creation (www.g-truc.net)
-///////////////////////////////////////////////////////////////////////////////////////////////////
-// Created : 2005-12-21
-// Updated : 2008-09-30
-// Licence : This source is under MIT License
-// File    : glm/gtx/inverse.hpp
-///////////////////////////////////////////////////////////////////////////////////////////////////
-// Dependency:
-// - GLM core
-///////////////////////////////////////////////////////////////////////////////////////////////////
-
-#ifndef glm_gtx_inverse
-#define glm_gtx_inverse
-
-// Dependency:
-#include "../glm.hpp"
-#include "../gtc/matrix_operation.hpp"
-
-namespace glm{
-namespace gtx{
-//! GLM_GTX_inverse extension: Inverse matrix functions
-namespace inverse
-{
-	using namespace gtc::matrix_operation;
-
-	//! Fast matrix inverse for affine matrix.
-	//! From GLM_GTX_inverse extension.
-	template <typename genType> 
-	genType affineInverse(genType const & m);
- 
-}//namespace inverse
-}//namespace gtx
-}//namespace glm
-
-#include "inverse.inl"
-
-namespace glm{using namespace gtx::inverse;}
-
-#endif//glm_gtx_inverse

+ 0 - 44
glm/gtx/inverse.inl

@@ -1,44 +0,0 @@
-///////////////////////////////////////////////////////////////////////////////////////////////////
-// OpenGL Mathematics Copyright (c) 2005 - 2010 G-Truc Creation (www.g-truc.net)
-///////////////////////////////////////////////////////////////////////////////////////////////////
-// Created : 2005-12-21
-// Updated : 2008-09-30
-// Licence : This source is under MIT License
-// File    : glm/gtx/inverse.inl
-///////////////////////////////////////////////////////////////////////////////////////////////////
-
-namespace glm{
-namespace gtx{
-namespace inverse
-{
-	template <typename T> 
-	inline detail::tmat3x3<T> affineInverse
-	(
-		detail::tmat3x3<T> const & m
-	)
-	{
-		detail::tmat3x3<T> Result(m);
-		Result[2] = detail::tvec3<T>(0, 0, 1);
-		Result = transpose(Result);
-		detail::tvec3<T> Translation = Result * detail::tvec3<T>(-detail::tvec2<T>(m[2]), m[2][2]);
-		Result[2] = Translation;
-		return Result;
-	}
-
-	template <typename T> 
-	inline detail::tmat4x4<T> affineInverse
-	(
-		detail::tmat4x4<T> const & m
-	)
-	{
-		detail::tmat4x4<T> Result(m);
-		Result[3] = detail::tvec4<T>(0, 0, 0, 1);
-		Result = transpose(Result);
-		detail::tvec4<T> Translation = Result * detail::tvec4<T>(-detail::tvec3<T>(m[3]), m[3][3]);
-		Result[3] = Translation;
-		return Result;
-	}
-
-}//namespace inverse
-}//namespace gtx
-}//namespace glm

+ 0 - 39
glm/gtx/inverse_transpose.hpp

@@ -1,39 +0,0 @@
-///////////////////////////////////////////////////////////////////////////////////////////////////
-// OpenGL Mathematics Copyright (c) 2005 - 2010 G-Truc Creation (www.g-truc.net)
-///////////////////////////////////////////////////////////////////////////////////////////////////
-// Created : 2006-01-04
-// Updated : 2008-10-23
-// Licence : This source is under MIT License
-// File    : glm/gtx/inverse_transpose.hpp
-///////////////////////////////////////////////////////////////////////////////////////////////////
-// Dependency:
-// - GLM core
-///////////////////////////////////////////////////////////////////////////////////////////////////
-
-#ifndef glm_gtx_inverse_transpose
-#define glm_gtx_inverse_transpose
-
-// Dependency:
-#include "../glm.hpp"
-
-namespace glm
-{
-	namespace gtx{
-	//! GLM_GTX_inverse_transpose extension: Inverse transpose matrix functions
-	namespace inverse_transpose
-	{
-		//! Compute the inverse transpose of a matrix.
-		//! From GLM_GTX_inverse extension.
-		template <typename genType> 
-		inline typename genType::value_type inverseTranspose(
-			genType const & m);
-
-	}//namespace inverse_transpose
-	}//namespace gtx
-}//namespace glm
-
-#include "inverse_transpose.inl"
-
-namespace glm{using namespace gtx::inverse_transpose;}
-
-#endif//glm_gtx_inverse_transpose

+ 0 - 112
glm/gtx/inverse_transpose.inl

@@ -1,112 +0,0 @@
-///////////////////////////////////////////////////////////////////////////////////////////////////
-// OpenGL Mathematics Copyright (c) 2005 - 2010 G-Truc Creation (www.g-truc.net)
-///////////////////////////////////////////////////////////////////////////////////////////////////
-// Created : 2006-01-04
-// Updated : 2008-12-02
-// Licence : This source is under MIT License
-// File    : glm/gtx/inverse_transpose.inl
-///////////////////////////////////////////////////////////////////////////////////////////////////
-
-namespace glm{
-namespace gtx{
-//! GLM_GTX_inverse_transpose extension: Inverse transpose matrix functions
-namespace inverse_transpose{
-
-template <typename valType> 
-inline detail::tmat2x2<valType> inverseTranspose(
-	detail::tmat2x2<valType> const & m)
-{
-    valType Determinant = m[0][0] * m[1][1] - m[1][0] * m[0][1];
-
-    detail::tmat2x2<valType> Inverse(
-        + m[1][1] / Determinant,
-        - m[0][1] / Determinant,
-        - m[1][0] / Determinant, 
-        + m[0][0] / Determinant);
-
-    return Inverse;
-}
-
-template <typename valType> 
-inline detail::tmat3x3<valType> inverseTranspose(
-	detail::tmat3x3<valType> const & m)
-{
-    valType Determinant = 
-		+ m[0][0] * (m[1][1] * m[2][2] - m[1][2] * m[2][1])
-		- m[0][1] * (m[1][0] * m[2][2] - m[1][2] * m[2][0])
-		+ m[0][2] * (m[1][0] * m[2][1] - m[1][1] * m[2][0]);
-
-    detail::tmat3x3<valType> Inverse;
-    Inverse[0][0] = + (m[1][1] * m[2][2] - m[2][1] * m[1][2]);
-    Inverse[0][1] = - (m[1][0] * m[2][2] - m[2][0] * m[1][2]);
-    Inverse[0][2] = + (m[1][0] * m[2][1] - m[2][0] * m[1][1]);
-    Inverse[1][0] = - (m[0][1] * m[2][2] - m[2][1] * m[0][2]);
-    Inverse[1][1] = + (m[0][0] * m[2][2] - m[2][0] * m[0][2]);
-    Inverse[1][2] = - (m[0][0] * m[2][1] - m[2][0] * m[0][1]);
-    Inverse[2][0] = + (m[0][1] * m[1][2] - m[1][1] * m[0][2]);
-    Inverse[2][1] = - (m[0][0] * m[1][2] - m[1][0] * m[0][2]);
-    Inverse[2][2] = + (m[0][0] * m[1][1] - m[1][0] * m[0][1]);
-    Inverse /= Determinant;
-
-    return Inverse;
-}
-
-template <typename valType> 
-inline detail::tmat4x4<valType> inverseTranspose(
-	detail::tmat4x4<valType> const & m)
-{
-    valType SubFactor00 = m[2][2] * m[3][3] - m[3][2] * m[2][3];
-    valType SubFactor01 = m[2][1] * m[3][3] - m[3][1] * m[2][3];
-    valType SubFactor02 = m[2][1] * m[3][2] - m[3][1] * m[2][2];
-    valType SubFactor03 = m[2][0] * m[3][3] - m[3][0] * m[2][3];
-    valType SubFactor04 = m[2][0] * m[3][2] - m[3][0] * m[2][2];
-    valType SubFactor05 = m[2][0] * m[3][1] - m[3][0] * m[2][1];
-    valType SubFactor06 = m[1][2] * m[3][3] - m[3][2] * m[1][3];
-    valType SubFactor07 = m[1][1] * m[3][3] - m[3][1] * m[1][3];
-    valType SubFactor08 = m[1][1] * m[3][2] - m[3][1] * m[1][2];
-    valType SubFactor09 = m[1][0] * m[3][3] - m[3][0] * m[1][3];
-    valType SubFactor10 = m[1][0] * m[3][2] - m[3][0] * m[1][2];
-    valType SubFactor11 = m[1][1] * m[3][3] - m[3][1] * m[1][3];
-    valType SubFactor12 = m[1][0] * m[3][1] - m[3][0] * m[1][1];
-    valType SubFactor13 = m[1][2] * m[2][3] - m[2][2] * m[1][3];
-    valType SubFactor14 = m[1][1] * m[2][3] - m[2][1] * m[1][3];
-    valType SubFactor15 = m[1][1] * m[2][2] - m[2][1] * m[1][2];
-    valType SubFactor16 = m[1][0] * m[2][3] - m[2][0] * m[1][3];
-    valType SubFactor17 = m[1][0] * m[2][2] - m[2][0] * m[1][2];
-    valType SubFactor18 = m[1][0] * m[2][1] - m[2][0] * m[1][1];
-
-    detail::tmat4x4<valType> Inverse;
-    Inverse[0][0] = + (m[1][1] * SubFactor00 - m[1][2] * SubFactor01 + m[1][3] * SubFactor02);
-    Inverse[0][1] = - (m[1][0] * SubFactor00 - m[1][2] * SubFactor03 + m[1][3] * SubFactor04);
-    Inverse[0][2] = + (m[1][0] * SubFactor01 - m[1][1] * SubFactor03 + m[1][3] * SubFactor05);
-    Inverse[0][3] = - (m[1][0] * SubFactor02 - m[1][1] * SubFactor04 + m[1][2] * SubFactor05);
-
-    Inverse[1][0] = - (m[0][1] * SubFactor00 - m[0][2] * SubFactor01 + m[0][3] * SubFactor02);
-    Inverse[1][1] = + (m[0][0] * SubFactor00 - m[0][2] * SubFactor03 + m[0][3] * SubFactor04);
-    Inverse[1][2] = - (m[0][0] * SubFactor01 - m[0][1] * SubFactor03 + m[0][3] * SubFactor05);
-    Inverse[1][3] = + (m[0][0] * SubFactor02 - m[0][1] * SubFactor04 + m[0][2] * SubFactor05);
-
-    Inverse[2][0] = + (m[0][1] * SubFactor06 - m[0][2] * SubFactor07 + m[0][3] * SubFactor08);
-    Inverse[2][1] = - (m[0][0] * SubFactor06 - m[0][2] * SubFactor09 + m[0][3] * SubFactor10);
-    Inverse[2][2] = + (m[0][0] * SubFactor11 - m[0][1] * SubFactor09 + m[0][3] * SubFactor12);
-    Inverse[2][3] = - (m[0][0] * SubFactor08 - m[0][1] * SubFactor10 + m[0][2] * SubFactor12);
-
-    Inverse[3][0] = - (m[0][1] * SubFactor13 - m[0][2] * SubFactor14 + m[0][3] * SubFactor15);
-    Inverse[3][1] = + (m[0][0] * SubFactor13 - m[0][2] * SubFactor16 + m[0][3] * SubFactor17);
-    Inverse[3][2] = - (m[0][0] * SubFactor14 - m[0][1] * SubFactor16 + m[0][3] * SubFactor18);
-    Inverse[3][3] = + (m[0][0] * SubFactor15 - m[0][1] * SubFactor17 + m[0][2] * SubFactor18);
-
-    valType Determinant = 
-		+ m[0][0] * Inverse[0][0] 
-		+ m[0][1] * Inverse[0][1] 
-		+ m[0][2] * Inverse[0][2] 
-		+ m[0][3] * Inverse[0][3];
-
-    Inverse /= Determinant;
-    
-    return Inverse;
-}
-
-}//namespace inverse_transpose
-}//namespace gtx
-}//namespace glm