瀏覽代碼

Sliced matrix transform extension

Christophe Riccio 7 年之前
父節點
當前提交
f905aecd23

+ 531 - 0
glm/ext/matrix_clip_space.hpp

@@ -0,0 +1,531 @@
+/// @ref ext_matrix_clip_space
+/// @file glm/ext/matrix_clip_space.hpp
+///
+/// @see core (dependence)
+///
+/// @defgroup ext_matrix_clip_space GLM_EXT_matrix_clip_space
+/// @ingroup ext
+///
+/// Include <glm/ext/matrix_clip_space.hpp> to use the features of this extension.
+///
+/// Defines functions that generate common transformation matrices.
+///
+/// The matrices generated by this extension use standard OpenGL fixed-function
+/// conventions. For example, the lookAt function generates a transform from world
+/// space into the specific eye space that the projective matrix functions
+/// (perspective, ortho, etc) are designed to expect. The OpenGL compatibility
+/// specifications defines the particular layout of this eye space.
+
+#pragma once
+
+// Dependencies
+#include "../gtc/constants.hpp"
+#include "../geometric.hpp"
+#include "../trigonometric.hpp"
+#include "../matrix.hpp"
+
+#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED)
+#	pragma message("GLM: GLM_EXT_matrix_clip_space extension included")
+#endif
+
+namespace glm
+{
+	/// @addtogroup ext_matrix_clip_space
+	/// @{
+
+	/// Creates a matrix for projecting two-dimensional coordinates onto the screen.
+	///
+	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
+	/// @see gtc_matrix_transform
+	/// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top, T const& zNear, T const& zFar)
+	/// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluOrtho2D.xml">gluOrtho2D man page</a>
+	template<typename T>
+	GLM_FUNC_DECL mat<4, 4, T, defaultp> ortho(
+		T left, T right, T bottom, T top);
+
+	/// Creates a matrix for an orthographic parallel viewing volume, using left-handed coordinates.
+	/// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
+	///
+	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
+	/// @see gtc_matrix_transform
+	/// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top)
+	template<typename T>
+	GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoLH_ZO(
+		T left, T right, T bottom, T top, T zNear, T zFar);
+
+	/// Creates a matrix for an orthographic parallel viewing volume using right-handed coordinates.
+	/// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
+	///
+	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
+	/// @see gtc_matrix_transform
+	/// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top)
+	template<typename T>
+	GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoLH_NO(
+		T left, T right, T bottom, T top, T zNear, T zFar);
+
+	/// Creates a matrix for an orthographic parallel viewing volume, using left-handed coordinates.
+	/// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
+	///
+	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
+	/// @see gtc_matrix_transform
+	/// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top)
+	template<typename T>
+	GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoRH_ZO(
+		T left, T right, T bottom, T top, T zNear, T zFar);
+
+	/// Creates a matrix for an orthographic parallel viewing volume, using right-handed coordinates.
+	/// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
+	///
+	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
+	/// @see gtc_matrix_transform
+	/// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top)
+	template<typename T>
+	GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoRH_NO(
+		T left, T right, T bottom, T top, T zNear, T zFar);
+
+	/// Creates a matrix for an orthographic parallel viewing volume, using left-handed coordinates.
+	/// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
+	///
+	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
+	/// @see gtc_matrix_transform
+	/// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top)
+	template<typename T>
+	GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoZO(
+		T left, T right, T bottom, T top, T zNear, T zFar);
+
+	/// Creates a matrix for an orthographic parallel viewing volume, using left-handed coordinates if GLM_FORCE_LEFT_HANDED if defined or right-handed coordinates otherwise.
+	/// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
+	///
+	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
+	/// @see gtc_matrix_transform
+	/// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top)
+	template<typename T>
+	GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoNO(
+		T left, T right, T bottom, T top, T zNear, T zFar);
+
+	/// Creates a matrix for an orthographic parallel viewing volume, using left-handed coordinates.
+	/// If GLM_FORCE_DEPTH_ZERO_TO_ONE is defined, the near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
+	/// Otherwise, the near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
+	///
+	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
+	/// @see gtc_matrix_transform
+	/// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top)
+	template<typename T>
+	GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoLH(
+		T left, T right, T bottom, T top, T zNear, T zFar);
+
+	/// Creates a matrix for an orthographic parallel viewing volume, using right-handed coordinates.
+	/// If GLM_FORCE_DEPTH_ZERO_TO_ONE is defined, the near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
+	/// Otherwise, the near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
+	///
+	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
+	/// @see gtc_matrix_transform
+	/// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top)
+	template<typename T>
+	GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoRH(
+		T left, T right, T bottom, T top, T zNear, T zFar);
+
+	/// Creates a matrix for an orthographic parallel viewing volume, using the default handedness and default near and far clip planes definition.
+	/// To change default handedness use GLM_FORCE_LEFT_HANDED. To change default near and far clip planes definition use GLM_FORCE_DEPTH_ZERO_TO_ONE.
+	///
+	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
+	/// @see gtc_matrix_transform
+	/// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top)
+	/// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glOrtho.xml">glOrtho man page</a>
+	template<typename T>
+	GLM_FUNC_DECL mat<4, 4, T, defaultp> ortho(
+		T left, T right, T bottom, T top, T zNear, T zFar);
+
+	/// Creates a left handed frustum matrix.
+	/// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
+	///
+	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
+	/// @see gtc_matrix_transform
+	template<typename T>
+	GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumLH_ZO(
+		T left, T right, T bottom, T top, T near, T far);
+
+	/// Creates a left handed frustum matrix.
+	/// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
+	///
+	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
+	/// @see gtc_matrix_transform
+	template<typename T>
+	GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumLH_NO(
+		T left, T right, T bottom, T top, T near, T far);
+
+	/// Creates a right handed frustum matrix.
+	/// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
+	///
+	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
+	/// @see gtc_matrix_transform
+	template<typename T>
+	GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumRH_ZO(
+		T left, T right, T bottom, T top, T near, T far);
+
+	/// Creates a right handed frustum matrix.
+	/// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
+	///
+	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
+	/// @see gtc_matrix_transform
+	template<typename T>
+	GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumRH_NO(
+		T left, T right, T bottom, T top, T near, T far);
+
+	/// Creates a frustum matrix using left-handed coordinates if GLM_FORCE_LEFT_HANDED if defined or right-handed coordinates otherwise.
+	/// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
+	///
+	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
+	/// @see gtc_matrix_transform
+	template<typename T>
+	GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumZO(
+		T left, T right, T bottom, T top, T near, T far);
+
+	/// Creates a frustum matrix using left-handed coordinates if GLM_FORCE_LEFT_HANDED if defined or right-handed coordinates otherwise.
+	/// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
+	///
+	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
+	/// @see gtc_matrix_transform
+	template<typename T>
+	GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumNO(
+		T left, T right, T bottom, T top, T near, T far);
+
+	/// Creates a left handed frustum matrix.
+	/// If GLM_FORCE_DEPTH_ZERO_TO_ONE is defined, the near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
+	/// Otherwise, the near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
+	///
+	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
+	/// @see gtc_matrix_transform
+	template<typename T>
+	GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumLH(
+		T left, T right, T bottom, T top, T near, T far);
+
+	/// Creates a right handed frustum matrix.
+	/// If GLM_FORCE_DEPTH_ZERO_TO_ONE is defined, the near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
+	/// Otherwise, the near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
+	///
+	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
+	/// @see gtc_matrix_transform
+	template<typename T>
+	GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumRH(
+		T left, T right, T bottom, T top, T near, T far);
+
+	/// Creates a frustum matrix with default handedness, using the default handedness and default near and far clip planes definition.
+	/// To change default handedness use GLM_FORCE_LEFT_HANDED. To change default near and far clip planes definition use GLM_FORCE_DEPTH_ZERO_TO_ONE.
+	///
+	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
+	/// @see gtc_matrix_transform
+	/// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glFrustum.xml">glFrustum man page</a>
+	template<typename T>
+	GLM_FUNC_DECL mat<4, 4, T, defaultp> frustum(
+		T left, T right, T bottom, T top, T near, T far);
+
+
+	/// Creates a matrix for a right handed, symetric perspective-view frustum.
+	/// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
+	///
+	/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
+	/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
+	/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
+	/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
+	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
+	/// @see gtc_matrix_transform
+	template<typename T>
+	GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveRH_ZO(
+		T fovy, T aspect, T near, T far);
+
+	/// Creates a matrix for a right handed, symetric perspective-view frustum.
+	/// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
+	///
+	/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
+	/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
+	/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
+	/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
+	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
+	/// @see gtc_matrix_transform
+	template<typename T>
+	GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveRH_NO(
+		T fovy, T aspect, T near, T far);
+
+	/// Creates a matrix for a left handed, symetric perspective-view frustum.
+	/// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
+	///
+	/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
+	/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
+	/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
+	/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
+	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
+	/// @see gtc_matrix_transform
+	template<typename T>
+	GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveLH_ZO(
+		T fovy, T aspect, T near, T far);
+
+	/// Creates a matrix for a left handed, symetric perspective-view frustum.
+	/// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
+	///
+	/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
+	/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
+	/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
+	/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
+	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
+	/// @see gtc_matrix_transform
+	template<typename T>
+	GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveLH_NO(
+		T fovy, T aspect, T near, T far);
+
+	/// Creates a matrix for a symetric perspective-view frustum using left-handed coordinates if GLM_FORCE_LEFT_HANDED if defined or right-handed coordinates otherwise.
+	/// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
+	///
+	/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
+	/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
+	/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
+	/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
+	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
+	/// @see gtc_matrix_transform
+	template<typename T>
+	GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveZO(
+		T fovy, T aspect, T near, T far);
+
+	/// Creates a matrix for a symetric perspective-view frustum using left-handed coordinates if GLM_FORCE_LEFT_HANDED if defined or right-handed coordinates otherwise.
+	/// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
+	///
+	/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
+	/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
+	/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
+	/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
+	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
+	/// @see gtc_matrix_transform
+	template<typename T>
+	GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveNO(
+		T fovy, T aspect, T near, T far);
+
+	/// Creates a matrix for a right handed, symetric perspective-view frustum.
+	/// If GLM_FORCE_DEPTH_ZERO_TO_ONE is defined, the near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
+	/// Otherwise, the near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
+	///
+	/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
+	/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
+	/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
+	/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
+	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
+	/// @see gtc_matrix_transform
+	template<typename T>
+	GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveRH(
+		T fovy, T aspect, T near, T far);
+
+	/// Creates a matrix for a left handed, symetric perspective-view frustum.
+	/// If GLM_FORCE_DEPTH_ZERO_TO_ONE is defined, the near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
+	/// Otherwise, the near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
+	///
+	/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
+	/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
+	/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
+	/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
+	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
+	/// @see gtc_matrix_transform
+	template<typename T>
+	GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveLH(
+		T fovy, T aspect, T near, T far);
+
+	/// Creates a matrix for a symetric perspective-view frustum based on the default handedness and default near and far clip planes definition.
+	/// To change default handedness use GLM_FORCE_LEFT_HANDED. To change default near and far clip planes definition use GLM_FORCE_DEPTH_ZERO_TO_ONE.
+	///
+	/// @param fovy Specifies the field of view angle in the y direction. Expressed in radians.
+	/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
+	/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
+	/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
+	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
+	/// @see gtc_matrix_transform
+	/// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluPerspective.xml">gluPerspective man page</a>
+	template<typename T>
+	GLM_FUNC_DECL mat<4, 4, T, defaultp> perspective(
+		T fovy, T aspect, T near, T far);
+
+	/// Builds a perspective projection matrix based on a field of view using right-handed coordinates.
+	/// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
+	///
+	/// @param fov Expressed in radians.
+	/// @param width Width of the viewport
+	/// @param height Height of the viewport
+	/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
+	/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
+	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
+	/// @see gtc_matrix_transform
+	template<typename T>
+	GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovRH_ZO(
+		T fov, T width, T height, T near, T far);
+
+	/// Builds a perspective projection matrix based on a field of view using right-handed coordinates.
+	/// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
+	///
+	/// @param fov Expressed in radians.
+	/// @param width Width of the viewport
+	/// @param height Height of the viewport
+	/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
+	/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
+	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
+	/// @see gtc_matrix_transform
+	template<typename T>
+	GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovRH_NO(
+		T fov, T width, T height, T near, T far);
+
+	/// Builds a perspective projection matrix based on a field of view using left-handed coordinates.
+	/// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
+	///
+	/// @param fov Expressed in radians.
+	/// @param width Width of the viewport
+	/// @param height Height of the viewport
+	/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
+	/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
+	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
+	/// @see gtc_matrix_transform
+	template<typename T>
+	GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovLH_ZO(
+		T fov, T width, T height, T near, T far);
+
+	/// Builds a perspective projection matrix based on a field of view using left-handed coordinates.
+	/// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
+	///
+	/// @param fov Expressed in radians.
+	/// @param width Width of the viewport
+	/// @param height Height of the viewport
+	/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
+	/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
+	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
+	/// @see gtc_matrix_transform
+	template<typename T>
+	GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovLH_NO(
+		T fov, T width, T height, T near, T far);
+
+	/// Builds a perspective projection matrix based on a field of view using left-handed coordinates if GLM_FORCE_LEFT_HANDED if defined or right-handed coordinates otherwise.
+	/// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
+	///
+	/// @param fov Expressed in radians.
+	/// @param width Width of the viewport
+	/// @param height Height of the viewport
+	/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
+	/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
+	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
+	/// @see gtc_matrix_transform
+	template<typename T>
+	GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovZO(
+		T fov, T width, T height, T near, T far);
+
+	/// Builds a perspective projection matrix based on a field of view using left-handed coordinates if GLM_FORCE_LEFT_HANDED if defined or right-handed coordinates otherwise.
+	/// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
+	///
+	/// @param fov Expressed in radians.
+	/// @param width Width of the viewport
+	/// @param height Height of the viewport
+	/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
+	/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
+	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
+	/// @see gtc_matrix_transform
+	template<typename T>
+	GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovNO(
+		T fov, T width, T height, T near, T far);
+
+	/// Builds a right handed perspective projection matrix based on a field of view.
+	/// If GLM_FORCE_DEPTH_ZERO_TO_ONE is defined, the near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
+	/// Otherwise, the near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
+	///
+	/// @param fov Expressed in radians.
+	/// @param width Width of the viewport
+	/// @param height Height of the viewport
+	/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
+	/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
+	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
+	/// @see gtc_matrix_transform
+	template<typename T>
+	GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovRH(
+		T fov, T width, T height, T near, T far);
+
+	/// Builds a left handed perspective projection matrix based on a field of view.
+	/// If GLM_FORCE_DEPTH_ZERO_TO_ONE is defined, the near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
+	/// Otherwise, the near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
+	///
+	/// @param fov Expressed in radians.
+	/// @param width Width of the viewport
+	/// @param height Height of the viewport
+	/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
+	/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
+	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
+	/// @see gtc_matrix_transform
+	template<typename T>
+	GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovLH(
+		T fov, T width, T height, T near, T far);
+
+	/// Builds a perspective projection matrix based on a field of view and the default handedness and default near and far clip planes definition.
+	/// To change default handedness use GLM_FORCE_LEFT_HANDED. To change default near and far clip planes definition use GLM_FORCE_DEPTH_ZERO_TO_ONE.
+	///
+	/// @param fov Expressed in radians.
+	/// @param width Width of the viewport
+	/// @param height Height of the viewport
+	/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
+	/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
+	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
+	/// @see gtc_matrix_transform
+	template<typename T>
+	GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFov(
+		T fov, T width, T height, T near, T far);
+
+	/// Creates a matrix for a left handed, symmetric perspective-view frustum with far plane at infinite.
+	///
+	/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
+	/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
+	/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
+	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
+	/// @see gtc_matrix_transform
+	template<typename T>
+	GLM_FUNC_DECL mat<4, 4, T, defaultp> infinitePerspectiveLH(
+		T fovy, T aspect, T near);
+
+	/// Creates a matrix for a right handed, symmetric perspective-view frustum with far plane at infinite.
+	///
+	/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
+	/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
+	/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
+	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
+	/// @see gtc_matrix_transform
+	template<typename T>
+	GLM_FUNC_DECL mat<4, 4, T, defaultp> infinitePerspectiveRH(
+		T fovy, T aspect, T near);
+
+	/// Creates a matrix for a symmetric perspective-view frustum with far plane at infinite with default handedness.
+	///
+	/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
+	/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
+	/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
+	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
+	/// @see gtc_matrix_transform
+	template<typename T>
+	GLM_FUNC_DECL mat<4, 4, T, defaultp> infinitePerspective(
+		T fovy, T aspect, T near);
+
+	/// Creates a matrix for a symmetric perspective-view frustum with far plane at infinite for graphics hardware that doesn't support depth clamping.
+	///
+	/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
+	/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
+	/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
+	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
+	/// @see gtc_matrix_transform
+	template<typename T>
+	GLM_FUNC_DECL mat<4, 4, T, defaultp> tweakedInfinitePerspective(
+		T fovy, T aspect, T near);
+
+	/// Creates a matrix for a symmetric perspective-view frustum with far plane at infinite for graphics hardware that doesn't support depth clamping.
+	///
+	/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
+	/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
+	/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
+	/// @param ep Epsilon
+	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
+	/// @see gtc_matrix_transform
+	template<typename T>
+	GLM_FUNC_DECL mat<4, 4, T, defaultp> tweakedInfinitePerspective(
+		T fovy, T aspect, T near, T ep);
+
+	/// @}
+}//namespace glm
+
+#include "matrix_clip_space.inl"

+ 534 - 0
glm/ext/matrix_clip_space.inl

@@ -0,0 +1,534 @@
+namespace glm
+{
+	template<typename T>
+	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> ortho(T left, T right, T bottom, T top)
+	{
+		mat<4, 4, T, defaultp> Result(static_cast<T>(1));
+		Result[0][0] = static_cast<T>(2) / (right - left);
+		Result[1][1] = static_cast<T>(2) / (top - bottom);
+		Result[2][2] = - static_cast<T>(1);
+		Result[3][0] = - (right + left) / (right - left);
+		Result[3][1] = - (top + bottom) / (top - bottom);
+		return Result;
+	}
+
+	template<typename T>
+	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoLH_ZO(T left, T right, T bottom, T top, T zNear, T zFar)
+	{
+		mat<4, 4, T, defaultp> Result(1);
+		Result[0][0] = static_cast<T>(2) / (right - left);
+		Result[1][1] = static_cast<T>(2) / (top - bottom);
+		Result[2][2] = static_cast<T>(1) / (zFar - zNear);
+		Result[3][0] = - (right + left) / (right - left);
+		Result[3][1] = - (top + bottom) / (top - bottom);
+		Result[3][2] = - zNear / (zFar - zNear);
+		return Result;
+	}
+
+	template<typename T>
+	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoLH_NO(T left, T right, T bottom, T top, T zNear, T zFar)
+	{
+		mat<4, 4, T, defaultp> Result(1);
+		Result[0][0] = static_cast<T>(2) / (right - left);
+		Result[1][1] = static_cast<T>(2) / (top - bottom);
+		Result[2][2] = static_cast<T>(2) / (zFar - zNear);
+		Result[3][0] = - (right + left) / (right - left);
+		Result[3][1] = - (top + bottom) / (top - bottom);
+		Result[3][2] = - (zFar + zNear) / (zFar - zNear);
+		return Result;
+	}
+
+	template<typename T>
+	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoRH_ZO(T left, T right, T bottom, T top, T zNear, T zFar)
+	{
+		mat<4, 4, T, defaultp> Result(1);
+		Result[0][0] = static_cast<T>(2) / (right - left);
+		Result[1][1] = static_cast<T>(2) / (top - bottom);
+		Result[2][2] = - static_cast<T>(1) / (zFar - zNear);
+		Result[3][0] = - (right + left) / (right - left);
+		Result[3][1] = - (top + bottom) / (top - bottom);
+		Result[3][2] = - zNear / (zFar - zNear);
+		return Result;
+	}
+
+	template<typename T>
+	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoRH_NO(T left, T right, T bottom, T top, T zNear, T zFar)
+	{
+		mat<4, 4, T, defaultp> Result(1);
+		Result[0][0] = static_cast<T>(2) / (right - left);
+		Result[1][1] = static_cast<T>(2) / (top - bottom);
+		Result[2][2] = - static_cast<T>(2) / (zFar - zNear);
+		Result[3][0] = - (right + left) / (right - left);
+		Result[3][1] = - (top + bottom) / (top - bottom);
+		Result[3][2] = - (zFar + zNear) / (zFar - zNear);
+		return Result;
+	}
+
+	template<typename T>
+	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoZO(T left, T right, T bottom, T top, T zNear, T zFar)
+	{
+		if(GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_LH_BIT)
+			return orthoLH_ZO(left, right, bottom, top, zNear, zFar);
+		else
+			return orthoRH_ZO(left, right, bottom, top, zNear, zFar);
+	}
+
+	template<typename T>
+	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoNO(T left, T right, T bottom, T top, T zNear, T zFar)
+	{
+		if(GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_LH_BIT)
+			return orthoLH_NO(left, right, bottom, top, zNear, zFar);
+		else
+			return orthoRH_NO(left, right, bottom, top, zNear, zFar);
+	}
+
+	template<typename T>
+	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoLH(T left, T right, T bottom, T top, T zNear, T zFar)
+	{
+		if(GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_ZO_BIT)
+			return orthoLH_ZO(left, right, bottom, top, zNear, zFar);
+		else
+			return orthoLH_NO(left, right, bottom, top, zNear, zFar);
+
+	}
+
+	template<typename T>
+	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoRH(T left, T right, T bottom, T top, T zNear, T zFar)
+	{
+		if(GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_ZO_BIT)
+			return orthoRH_ZO(left, right, bottom, top, zNear, zFar);
+		else
+			return orthoRH_NO(left, right, bottom, top, zNear, zFar);
+	}
+
+	template<typename T>
+	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> ortho(T left, T right, T bottom, T top, T zNear, T zFar)
+	{
+		if(GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_LH_ZO)
+			return orthoLH_ZO(left, right, bottom, top, zNear, zFar);
+		else if(GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_LH_NO)
+			return orthoLH_NO(left, right, bottom, top, zNear, zFar);
+		else if(GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_RH_ZO)
+			return orthoRH_ZO(left, right, bottom, top, zNear, zFar);
+		else if(GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_RH_NO)
+			return orthoRH_NO(left, right, bottom, top, zNear, zFar);
+	}
+
+	template<typename T>
+	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumLH_ZO(T left, T right, T bottom, T top, T nearVal, T farVal)
+	{
+		mat<4, 4, T, defaultp> Result(0);
+		Result[0][0] = (static_cast<T>(2) * nearVal) / (right - left);
+		Result[1][1] = (static_cast<T>(2) * nearVal) / (top - bottom);
+		Result[2][0] = (right + left) / (right - left);
+		Result[2][1] = (top + bottom) / (top - bottom);
+		Result[2][2] = farVal / (farVal - nearVal);
+		Result[2][3] = static_cast<T>(1);
+		Result[3][2] = -(farVal * nearVal) / (farVal - nearVal);
+		return Result;
+	}
+
+	template<typename T>
+	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumLH_NO(T left, T right, T bottom, T top, T nearVal, T farVal)
+	{
+		mat<4, 4, T, defaultp> Result(0);
+		Result[0][0] = (static_cast<T>(2) * nearVal) / (right - left);
+		Result[1][1] = (static_cast<T>(2) * nearVal) / (top - bottom);
+		Result[2][0] = (right + left) / (right - left);
+		Result[2][1] = (top + bottom) / (top - bottom);
+		Result[2][2] = (farVal + nearVal) / (farVal - nearVal);
+		Result[2][3] = static_cast<T>(1);
+		Result[3][2] = - (static_cast<T>(2) * farVal * nearVal) / (farVal - nearVal);
+		return Result;
+	}
+
+	template<typename T>
+	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumRH_ZO(T left, T right, T bottom, T top, T nearVal, T farVal)
+	{
+		mat<4, 4, T, defaultp> Result(0);
+		Result[0][0] = (static_cast<T>(2) * nearVal) / (right - left);
+		Result[1][1] = (static_cast<T>(2) * nearVal) / (top - bottom);
+		Result[2][0] = (right + left) / (right - left);
+		Result[2][1] = (top + bottom) / (top - bottom);
+		Result[2][2] = farVal / (nearVal - farVal);
+		Result[2][3] = static_cast<T>(-1);
+		Result[3][2] = -(farVal * nearVal) / (farVal - nearVal);
+		return Result;
+	}
+
+	template<typename T>
+	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumRH_NO(T left, T right, T bottom, T top, T nearVal, T farVal)
+	{
+		mat<4, 4, T, defaultp> Result(0);
+		Result[0][0] = (static_cast<T>(2) * nearVal) / (right - left);
+		Result[1][1] = (static_cast<T>(2) * nearVal) / (top - bottom);
+		Result[2][0] = (right + left) / (right - left);
+		Result[2][1] = (top + bottom) / (top - bottom);
+		Result[2][2] = - (farVal + nearVal) / (farVal - nearVal);
+		Result[2][3] = static_cast<T>(-1);
+		Result[3][2] = - (static_cast<T>(2) * farVal * nearVal) / (farVal - nearVal);
+		return Result;
+	}
+
+	template<typename T>
+	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumZO(T left, T right, T bottom, T top, T nearVal, T farVal)
+	{
+		if(GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_LH_BIT)
+			return frustumLH_ZO(left, right, bottom, top, nearVal, farVal);
+		else
+			return frustumRH_ZO(left, right, bottom, top, nearVal, farVal);
+	}
+
+	template<typename T>
+	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumNO(T left, T right, T bottom, T top, T nearVal, T farVal)
+	{
+		if(GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_LH_BIT)
+			return frustumLH_NO(left, right, bottom, top, nearVal, farVal);
+		else
+			return frustumRH_NO(left, right, bottom, top, nearVal, farVal);
+	}
+
+	template<typename T>
+	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumLH(T left, T right, T bottom, T top, T nearVal, T farVal)
+	{
+		if(GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_ZO_BIT)
+			return frustumLH_ZO(left, right, bottom, top, nearVal, farVal);
+		else
+			return frustumLH_NO(left, right, bottom, top, nearVal, farVal);
+	}
+
+	template<typename T>
+	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumRH(T left, T right, T bottom, T top, T nearVal, T farVal)
+	{
+		if(GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_ZO_BIT)
+			return frustumRH_ZO(left, right, bottom, top, nearVal, farVal);
+		else
+			return frustumRH_NO(left, right, bottom, top, nearVal, farVal);
+	}
+
+	template<typename T>
+	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustum(T left, T right, T bottom, T top, T nearVal, T farVal)
+	{
+		if(GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_LH_ZO)
+			return frustumLH_ZO(left, right, bottom, top, nearVal, farVal);
+		else if(GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_LH_NO)
+			return frustumLH_NO(left, right, bottom, top, nearVal, farVal);
+		else if(GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_RH_ZO)
+			return frustumRH_ZO(left, right, bottom, top, nearVal, farVal);
+		else if(GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_RH_NO)
+			return frustumRH_NO(left, right, bottom, top, nearVal, farVal);
+	}
+
+	template<typename T>
+	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveRH_ZO(T fovy, T aspect, T zNear, T zFar)
+	{
+		assert(abs(aspect - std::numeric_limits<T>::epsilon()) > static_cast<T>(0));
+
+		T const tanHalfFovy = tan(fovy / static_cast<T>(2));
+
+		mat<4, 4, T, defaultp> Result(static_cast<T>(0));
+		Result[0][0] = static_cast<T>(1) / (aspect * tanHalfFovy);
+		Result[1][1] = static_cast<T>(1) / (tanHalfFovy);
+		Result[2][2] = zFar / (zNear - zFar);
+		Result[2][3] = - static_cast<T>(1);
+		Result[3][2] = -(zFar * zNear) / (zFar - zNear);
+		return Result;
+	}
+
+	template<typename T>
+	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveRH_NO(T fovy, T aspect, T zNear, T zFar)
+	{
+		assert(abs(aspect - std::numeric_limits<T>::epsilon()) > static_cast<T>(0));
+
+		T const tanHalfFovy = tan(fovy / static_cast<T>(2));
+
+		mat<4, 4, T, defaultp> Result(static_cast<T>(0));
+		Result[0][0] = static_cast<T>(1) / (aspect * tanHalfFovy);
+		Result[1][1] = static_cast<T>(1) / (tanHalfFovy);
+		Result[2][2] = - (zFar + zNear) / (zFar - zNear);
+		Result[2][3] = - static_cast<T>(1);
+		Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear);
+		return Result;
+	}
+
+	template<typename T>
+	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveLH_ZO(T fovy, T aspect, T zNear, T zFar)
+	{
+		assert(abs(aspect - std::numeric_limits<T>::epsilon()) > static_cast<T>(0));
+
+		T const tanHalfFovy = tan(fovy / static_cast<T>(2));
+
+		mat<4, 4, T, defaultp> Result(static_cast<T>(0));
+		Result[0][0] = static_cast<T>(1) / (aspect * tanHalfFovy);
+		Result[1][1] = static_cast<T>(1) / (tanHalfFovy);
+		Result[2][2] = zFar / (zFar - zNear);
+		Result[2][3] = static_cast<T>(1);
+		Result[3][2] = -(zFar * zNear) / (zFar - zNear);
+		return Result;
+	}
+
+	template<typename T>
+	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveLH_NO(T fovy, T aspect, T zNear, T zFar)
+	{
+		assert(abs(aspect - std::numeric_limits<T>::epsilon()) > static_cast<T>(0));
+
+		T const tanHalfFovy = tan(fovy / static_cast<T>(2));
+
+		mat<4, 4, T, defaultp> Result(static_cast<T>(0));
+		Result[0][0] = static_cast<T>(1) / (aspect * tanHalfFovy);
+		Result[1][1] = static_cast<T>(1) / (tanHalfFovy);
+		Result[2][2] = (zFar + zNear) / (zFar - zNear);
+		Result[2][3] = static_cast<T>(1);
+		Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear);
+		return Result;
+	}
+
+	template<typename T>
+	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveZO(T fovy, T aspect, T zNear, T zFar)
+	{
+		if(GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_LH_BIT)
+			return perspectiveLH_ZO(fovy, aspect, zNear, zFar);
+		else
+			return perspectiveRH_ZO(fovy, aspect, zNear, zFar);
+	}
+
+	template<typename T>
+	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveNO(T fovy, T aspect, T zNear, T zFar)
+	{
+		if(GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_LH_BIT)
+			return perspectiveLH_NO(fovy, aspect, zNear, zFar);
+		else
+			return perspectiveRH_NO(fovy, aspect, zNear, zFar);
+	}
+
+	template<typename T>
+	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveLH(T fovy, T aspect, T zNear, T zFar)
+	{
+		if(GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_ZO_BIT)
+			return perspectiveLH_ZO(fovy, aspect, zNear, zFar);
+		else
+			return perspectiveLH_NO(fovy, aspect, zNear, zFar);
+
+	}
+
+	template<typename T>
+	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveRH(T fovy, T aspect, T zNear, T zFar)
+	{
+		if(GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_ZO_BIT)
+			return perspectiveRH_ZO(fovy, aspect, zNear, zFar);
+		else
+			return perspectiveRH_NO(fovy, aspect, zNear, zFar);
+	}
+
+	template<typename T>
+	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspective(T fovy, T aspect, T zNear, T zFar)
+	{
+		if(GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_LH_ZO)
+			return perspectiveLH_ZO(fovy, aspect, zNear, zFar);
+		else if(GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_LH_NO)
+			return perspectiveLH_NO(fovy, aspect, zNear, zFar);
+		else if(GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_RH_ZO)
+			return perspectiveRH_ZO(fovy, aspect, zNear, zFar);
+		else if(GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_RH_NO)
+			return perspectiveRH_NO(fovy, aspect, zNear, zFar);
+	}
+
+	template<typename T>
+	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovRH_ZO(T fov, T width, T height, T zNear, T zFar)
+	{
+		assert(width > static_cast<T>(0));
+		assert(height > static_cast<T>(0));
+		assert(fov > static_cast<T>(0));
+
+		T const rad = fov;
+		T const h = glm::cos(static_cast<T>(0.5) * rad) / glm::sin(static_cast<T>(0.5) * rad);
+		T const w = h * height / width; ///todo max(width , Height) / min(width , Height)?
+
+		mat<4, 4, T, defaultp> Result(static_cast<T>(0));
+		Result[0][0] = w;
+		Result[1][1] = h;
+		Result[2][2] = zFar / (zNear - zFar);
+		Result[2][3] = - static_cast<T>(1);
+		Result[3][2] = -(zFar * zNear) / (zFar - zNear);
+		return Result;
+	}
+
+	template<typename T>
+	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovRH_NO(T fov, T width, T height, T zNear, T zFar)
+	{
+		assert(width > static_cast<T>(0));
+		assert(height > static_cast<T>(0));
+		assert(fov > static_cast<T>(0));
+
+		T const rad = fov;
+		T const h = glm::cos(static_cast<T>(0.5) * rad) / glm::sin(static_cast<T>(0.5) * rad);
+		T const w = h * height / width; ///todo max(width , Height) / min(width , Height)?
+
+		mat<4, 4, T, defaultp> Result(static_cast<T>(0));
+		Result[0][0] = w;
+		Result[1][1] = h;
+		Result[2][2] = - (zFar + zNear) / (zFar - zNear);
+		Result[2][3] = - static_cast<T>(1);
+		Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear);
+		return Result;
+	}
+
+	template<typename T>
+	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovLH_ZO(T fov, T width, T height, T zNear, T zFar)
+	{
+		assert(width > static_cast<T>(0));
+		assert(height > static_cast<T>(0));
+		assert(fov > static_cast<T>(0));
+
+		T const rad = fov;
+		T const h = glm::cos(static_cast<T>(0.5) * rad) / glm::sin(static_cast<T>(0.5) * rad);
+		T const w = h * height / width; ///todo max(width , Height) / min(width , Height)?
+
+		mat<4, 4, T, defaultp> Result(static_cast<T>(0));
+		Result[0][0] = w;
+		Result[1][1] = h;
+		Result[2][2] = zFar / (zFar - zNear);
+		Result[2][3] = static_cast<T>(1);
+		Result[3][2] = -(zFar * zNear) / (zFar - zNear);
+		return Result;
+	}
+
+	template<typename T>
+	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovLH_NO(T fov, T width, T height, T zNear, T zFar)
+	{
+		assert(width > static_cast<T>(0));
+		assert(height > static_cast<T>(0));
+		assert(fov > static_cast<T>(0));
+
+		T const rad = fov;
+		T const h = glm::cos(static_cast<T>(0.5) * rad) / glm::sin(static_cast<T>(0.5) * rad);
+		T const w = h * height / width; ///todo max(width , Height) / min(width , Height)?
+
+		mat<4, 4, T, defaultp> Result(static_cast<T>(0));
+		Result[0][0] = w;
+		Result[1][1] = h;
+		Result[2][2] = (zFar + zNear) / (zFar - zNear);
+		Result[2][3] = static_cast<T>(1);
+		Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear);
+		return Result;
+	}
+
+	template<typename T>
+	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovZO(T fov, T width, T height, T zNear, T zFar)
+	{
+		if(GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_LH_BIT)
+			return perspectiveFovLH_ZO(fov, width, height, zNear, zFar);
+		else
+			return perspectiveFovRH_ZO(fov, width, height, zNear, zFar);
+	}
+
+	template<typename T>
+	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovNO(T fov, T width, T height, T zNear, T zFar)
+	{
+		if(GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_LH_BIT)
+			return perspectiveFovLH_NO(fov, width, height, zNear, zFar);
+		else
+			return perspectiveFovRH_NO(fov, width, height, zNear, zFar);
+	}
+
+	template<typename T>
+	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovLH(T fov, T width, T height, T zNear, T zFar)
+	{
+		if(GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_ZO_BIT)
+			return perspectiveFovLH_ZO(fov, width, height, zNear, zFar);
+		else
+			return perspectiveFovLH_NO(fov, width, height, zNear, zFar);
+	}
+
+	template<typename T>
+	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovRH(T fov, T width, T height, T zNear, T zFar)
+	{
+		if(GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_ZO_BIT)
+			return perspectiveFovRH_ZO(fov, width, height, zNear, zFar);
+		else
+			return perspectiveFovRH_NO(fov, width, height, zNear, zFar);
+	}
+
+	template<typename T>
+	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFov(T fov, T width, T height, T zNear, T zFar)
+	{
+		if(GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_LH_ZO)
+			return perspectiveFovLH_ZO(fov, width, height, zNear, zFar);
+		else if(GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_LH_NO)
+			return perspectiveFovLH_NO(fov, width, height, zNear, zFar);
+		else if(GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_RH_ZO)
+			return perspectiveFovRH_ZO(fov, width, height, zNear, zFar);
+		else if(GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_RH_NO)
+			return perspectiveFovRH_NO(fov, width, height, zNear, zFar);
+	}
+
+	template<typename T>
+	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> infinitePerspectiveRH(T fovy, T aspect, T zNear)
+	{
+		T const range = tan(fovy / static_cast<T>(2)) * zNear;
+		T const left = -range * aspect;
+		T const right = range * aspect;
+		T const bottom = -range;
+		T const top = range;
+
+		mat<4, 4, T, defaultp> Result(static_cast<T>(0));
+		Result[0][0] = (static_cast<T>(2) * zNear) / (right - left);
+		Result[1][1] = (static_cast<T>(2) * zNear) / (top - bottom);
+		Result[2][2] = - static_cast<T>(1);
+		Result[2][3] = - static_cast<T>(1);
+		Result[3][2] = - static_cast<T>(2) * zNear;
+		return Result;
+	}
+
+	template<typename T>
+	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> infinitePerspectiveLH(T fovy, T aspect, T zNear)
+	{
+		T const range = tan(fovy / static_cast<T>(2)) * zNear;
+		T const left = -range * aspect;
+		T const right = range * aspect;
+		T const bottom = -range;
+		T const top = range;
+
+		mat<4, 4, T, defaultp> Result(T(0));
+		Result[0][0] = (static_cast<T>(2) * zNear) / (right - left);
+		Result[1][1] = (static_cast<T>(2) * zNear) / (top - bottom);
+		Result[2][2] = static_cast<T>(1);
+		Result[2][3] = static_cast<T>(1);
+		Result[3][2] = - static_cast<T>(2) * zNear;
+		return Result;
+	}
+
+	template<typename T>
+	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> infinitePerspective(T fovy, T aspect, T zNear)
+	{
+		if(GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_LH_BIT)
+			return infinitePerspectiveLH(fovy, aspect, zNear);
+		else
+			return infinitePerspectiveRH(fovy, aspect, zNear);
+	}
+
+	// Infinite projection matrix: http://www.terathon.com/gdc07_lengyel.pdf
+	template<typename T>
+	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> tweakedInfinitePerspective(T fovy, T aspect, T zNear, T ep)
+	{
+		T const range = tan(fovy / static_cast<T>(2)) * zNear;
+		T const left = -range * aspect;
+		T const right = range * aspect;
+		T const bottom = -range;
+		T const top = range;
+
+		mat<4, 4, T, defaultp> Result(static_cast<T>(0));
+		Result[0][0] = (static_cast<T>(2) * zNear) / (right - left);
+		Result[1][1] = (static_cast<T>(2) * zNear) / (top - bottom);
+		Result[2][2] = ep - static_cast<T>(1);
+		Result[2][3] = static_cast<T>(-1);
+		Result[3][2] = (ep - static_cast<T>(2)) * zNear;
+		return Result;
+	}
+
+	template<typename T>
+	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> tweakedInfinitePerspective(T fovy, T aspect, T zNear)
+	{
+		return tweakedInfinitePerspective(fovy, aspect, zNear, epsilon<T>());
+	}
+}//namespace glm

+ 148 - 0
glm/ext/matrix_projection.hpp

@@ -0,0 +1,148 @@
+/// @ref ext_matrix_projection
+/// @file glm/ext/matrix_projection.hpp
+///
+/// @see core (dependence)
+///
+/// @defgroup ext_matrix_projection GLM_EXT_matrix_projection
+/// @ingroup ext
+///
+/// Include <glm/ext/matrix_projection.hpp> to use the features of this extension.
+///
+/// Defines functions that generate common transformation matrices.
+///
+/// The matrices generated by this extension use standard OpenGL fixed-function
+/// conventions. For example, the lookAt function generates a transform from world
+/// space into the specific eye space that the projective matrix functions
+/// (perspective, ortho, etc) are designed to expect. The OpenGL compatibility
+/// specifications defines the particular layout of this eye space.
+
+#pragma once
+
+// Dependencies
+#include "../gtc/constants.hpp"
+#include "../geometric.hpp"
+#include "../trigonometric.hpp"
+#include "../matrix.hpp"
+
+#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED)
+#	pragma message("GLM: GLM_EXT_matrix_projection extension included")
+#endif
+
+namespace glm
+{
+	/// @addtogroup ext_matrix_projection
+	/// @{
+
+	/// Map the specified object coordinates (obj.x, obj.y, obj.z) into window coordinates.
+	/// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
+	///
+	/// @param obj Specify the object coordinates.
+	/// @param model Specifies the current modelview matrix
+	/// @param proj Specifies the current projection matrix
+	/// @param viewport Specifies the current viewport
+	/// @return Return the computed window coordinates.
+	/// @tparam T Native type used for the computation. Currently supported: half (not recommended), float or double.
+	/// @tparam U Currently supported: Floating-point types and integer types.
+	/// @see gtc_matrix_transform
+	/// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluProject.xml">gluProject man page</a>
+	template<typename T, typename U, qualifier Q>
+	GLM_FUNC_DECL vec<3, T, Q> projectZO(
+		vec<3, T, Q> const& obj, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport);
+
+	/// Map the specified object coordinates (obj.x, obj.y, obj.z) into window coordinates.
+	/// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
+	///
+	/// @param obj Specify the object coordinates.
+	/// @param model Specifies the current modelview matrix
+	/// @param proj Specifies the current projection matrix
+	/// @param viewport Specifies the current viewport
+	/// @return Return the computed window coordinates.
+	/// @tparam T Native type used for the computation. Currently supported: half (not recommended), float or double.
+	/// @tparam U Currently supported: Floating-point types and integer types.
+	/// @see gtc_matrix_transform
+	/// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluProject.xml">gluProject man page</a>
+	template<typename T, typename U, qualifier Q>
+	GLM_FUNC_DECL vec<3, T, Q> projectNO(
+		vec<3, T, Q> const& obj, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport);
+
+	/// Map the specified object coordinates (obj.x, obj.y, obj.z) into window coordinates using default near and far clip planes definition.
+	/// To change default near and far clip planes definition use GLM_FORCE_DEPTH_ZERO_TO_ONE.
+	///
+	/// @param obj Specify the object coordinates.
+	/// @param model Specifies the current modelview matrix
+	/// @param proj Specifies the current projection matrix
+	/// @param viewport Specifies the current viewport
+	/// @return Return the computed window coordinates.
+	/// @tparam T Native type used for the computation. Currently supported: half (not recommended), float or double.
+	/// @tparam U Currently supported: Floating-point types and integer types.
+	/// @see gtc_matrix_transform
+	/// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluProject.xml">gluProject man page</a>
+	template<typename T, typename U, qualifier Q>
+	GLM_FUNC_DECL vec<3, T, Q> project(
+		vec<3, T, Q> const& obj, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport);
+
+	/// Map the specified window coordinates (win.x, win.y, win.z) into object coordinates.
+	/// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
+	///
+	/// @param win Specify the window coordinates to be mapped.
+	/// @param model Specifies the modelview matrix
+	/// @param proj Specifies the projection matrix
+	/// @param viewport Specifies the viewport
+	/// @return Returns the computed object coordinates.
+	/// @tparam T Native type used for the computation. Currently supported: half (not recommended), float or double.
+	/// @tparam U Currently supported: Floating-point types and integer types.
+	/// @see gtc_matrix_transform
+	/// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluUnProject.xml">gluUnProject man page</a>
+	template<typename T, typename U, qualifier Q>
+	GLM_FUNC_DECL vec<3, T, Q> unProjectZO(
+		vec<3, T, Q> const& win, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport);
+
+	/// Map the specified window coordinates (win.x, win.y, win.z) into object coordinates.
+	/// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
+	///
+	/// @param win Specify the window coordinates to be mapped.
+	/// @param model Specifies the modelview matrix
+	/// @param proj Specifies the projection matrix
+	/// @param viewport Specifies the viewport
+	/// @return Returns the computed object coordinates.
+	/// @tparam T Native type used for the computation. Currently supported: half (not recommended), float or double.
+	/// @tparam U Currently supported: Floating-point types and integer types.
+	/// @see gtc_matrix_transform
+	/// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluUnProject.xml">gluUnProject man page</a>
+	template<typename T, typename U, qualifier Q>
+	GLM_FUNC_DECL vec<3, T, Q> unProjectNO(
+		vec<3, T, Q> const& win, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport);
+
+	/// Map the specified window coordinates (win.x, win.y, win.z) into object coordinates using default near and far clip planes definition.
+	/// To change default near and far clip planes definition use GLM_FORCE_DEPTH_ZERO_TO_ONE.
+	///
+	/// @param win Specify the window coordinates to be mapped.
+	/// @param model Specifies the modelview matrix
+	/// @param proj Specifies the projection matrix
+	/// @param viewport Specifies the viewport
+	/// @return Returns the computed object coordinates.
+	/// @tparam T Native type used for the computation. Currently supported: half (not recommended), float or double.
+	/// @tparam U Currently supported: Floating-point types and integer types.
+	/// @see gtc_matrix_transform
+	/// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluUnProject.xml">gluUnProject man page</a>
+	template<typename T, typename U, qualifier Q>
+	GLM_FUNC_DECL vec<3, T, Q> unProject(
+		vec<3, T, Q> const& win, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport);
+
+	/// Define a picking region
+	///
+	/// @param center Specify the center of a picking region in window coordinates.
+	/// @param delta Specify the width and height, respectively, of the picking region in window coordinates.
+	/// @param viewport Rendering viewport
+	/// @tparam T Native type used for the computation. Currently supported: half (not recommended), float or double.
+	/// @tparam U Currently supported: Floating-point types and integer types.
+	/// @see gtc_matrix_transform
+	/// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluPickMatrix.xml">gluPickMatrix man page</a>
+	template<typename T, qualifier Q, typename U>
+	GLM_FUNC_DECL mat<4, 4, T, Q> pickMatrix(
+		vec<2, T, Q> const& center, vec<2, T, Q> const& delta, vec<4, U, Q> const& viewport);
+
+	/// @}
+}//namespace glm
+
+#include "matrix_projection.inl"

+ 104 - 0
glm/ext/matrix_projection.inl

@@ -0,0 +1,104 @@
+namespace glm
+{
+	template<typename T, typename U, qualifier Q>
+	GLM_FUNC_QUALIFIER vec<3, T, Q> projectZO(vec<3, T, Q> const& obj, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport)
+	{
+		vec<4, T, Q> tmp = vec<4, T, Q>(obj, static_cast<T>(1));
+		tmp = model * tmp;
+		tmp = proj * tmp;
+
+		tmp /= tmp.w;
+		tmp.x = tmp.x * static_cast<T>(0.5) + static_cast<T>(0.5);
+		tmp.y = tmp.y * static_cast<T>(0.5) + static_cast<T>(0.5);
+
+		tmp[0] = tmp[0] * T(viewport[2]) + T(viewport[0]);
+		tmp[1] = tmp[1] * T(viewport[3]) + T(viewport[1]);
+
+		return vec<3, T, Q>(tmp);
+	}
+
+	template<typename T, typename U, qualifier Q>
+	GLM_FUNC_QUALIFIER vec<3, T, Q> projectNO(vec<3, T, Q> const& obj, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport)
+	{
+		vec<4, T, Q> tmp = vec<4, T, Q>(obj, static_cast<T>(1));
+		tmp = model * tmp;
+		tmp = proj * tmp;
+
+		tmp /= tmp.w;
+		tmp = tmp * static_cast<T>(0.5) + static_cast<T>(0.5);
+		tmp[0] = tmp[0] * T(viewport[2]) + T(viewport[0]);
+		tmp[1] = tmp[1] * T(viewport[3]) + T(viewport[1]);
+
+		return vec<3, T, Q>(tmp);
+	}
+
+	template<typename T, typename U, qualifier Q>
+	GLM_FUNC_QUALIFIER vec<3, T, Q> project(vec<3, T, Q> const& obj, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport)
+	{
+		if(GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_ZO_BIT)
+			return projectZO(obj, model, proj, viewport);
+		else
+			return projectNO(obj, model, proj, viewport);
+	}
+
+	template<typename T, typename U, qualifier Q>
+	GLM_FUNC_QUALIFIER vec<3, T, Q> unProjectZO(vec<3, T, Q> const& win, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport)
+	{
+		mat<4, 4, T, Q> Inverse = inverse(proj * model);
+
+		vec<4, T, Q> tmp = vec<4, T, Q>(win, T(1));
+		tmp.x = (tmp.x - T(viewport[0])) / T(viewport[2]);
+		tmp.y = (tmp.y - T(viewport[1])) / T(viewport[3]);
+		tmp.x = tmp.x * static_cast<T>(2) - static_cast<T>(1);
+		tmp.y = tmp.y * static_cast<T>(2) - static_cast<T>(1);
+
+		vec<4, T, Q> obj = Inverse * tmp;
+		obj /= obj.w;
+
+		return vec<3, T, Q>(obj);
+	}
+
+	template<typename T, typename U, qualifier Q>
+	GLM_FUNC_QUALIFIER vec<3, T, Q> unProjectNO(vec<3, T, Q> const& win, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport)
+	{
+		mat<4, 4, T, Q> Inverse = inverse(proj * model);
+
+		vec<4, T, Q> tmp = vec<4, T, Q>(win, T(1));
+		tmp.x = (tmp.x - T(viewport[0])) / T(viewport[2]);
+		tmp.y = (tmp.y - T(viewport[1])) / T(viewport[3]);
+		tmp = tmp * static_cast<T>(2) - static_cast<T>(1);
+
+		vec<4, T, Q> obj = Inverse * tmp;
+		obj /= obj.w;
+
+		return vec<3, T, Q>(obj);
+	}
+
+	template<typename T, typename U, qualifier Q>
+	GLM_FUNC_QUALIFIER vec<3, T, Q> unProject(vec<3, T, Q> const& win, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport)
+	{
+		if(GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_ZO_BIT)
+			return unProjectZO(win, model, proj, viewport);
+		else
+			return unProjectNO(win, model, proj, viewport);
+	}
+
+	template<typename T, qualifier Q, typename U>
+	GLM_FUNC_QUALIFIER mat<4, 4, T, Q> pickMatrix(vec<2, T, Q> const& center, vec<2, T, Q> const& delta, vec<4, U, Q> const& viewport)
+	{
+		assert(delta.x > static_cast<T>(0) && delta.y > static_cast<T>(0));
+		mat<4, 4, T, Q> Result(static_cast<T>(1));
+
+		if(!(delta.x > static_cast<T>(0) && delta.y > static_cast<T>(0)))
+			return Result; // Error
+
+		vec<3, T, Q> Temp(
+			(static_cast<T>(viewport[2]) - static_cast<T>(2) * (center.x - static_cast<T>(viewport[0]))) / delta.x,
+			(static_cast<T>(viewport[3]) - static_cast<T>(2) * (center.y - static_cast<T>(viewport[1]))) / delta.y,
+			static_cast<T>(0));
+
+		// Translate and scale the picked region to the entire window
+		Result = translate(Result, Temp);
+		return scale(Result, vec<3, T, Q>(static_cast<T>(viewport[2]) / delta.x, static_cast<T>(viewport[3]) / delta.y, static_cast<T>(1)));
+	}
+}//namespace glm

+ 0 - 601
glm/ext/matrix_transform.hpp

@@ -87,607 +87,6 @@ namespace glm
 	GLM_FUNC_DECL mat<4, 4, T, Q> scale(
 		mat<4, 4, T, Q> const& m, vec<3, T, Q> const& v);
 
-	/// Creates a matrix for projecting two-dimensional coordinates onto the screen.
-	///
-	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
-	/// @see gtc_matrix_transform
-	/// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top, T const& zNear, T const& zFar)
-	/// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluOrtho2D.xml">gluOrtho2D man page</a>
-	template<typename T>
-	GLM_FUNC_DECL mat<4, 4, T, defaultp> ortho(
-		T left, T right, T bottom, T top);
-
-	/// Creates a matrix for an orthographic parallel viewing volume, using left-handed coordinates.
-	/// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
-	///
-	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
-	/// @see gtc_matrix_transform
-	/// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top)
-	template<typename T>
-	GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoLH_ZO(
-		T left, T right, T bottom, T top, T zNear, T zFar);
-
-	/// Creates a matrix for an orthographic parallel viewing volume using right-handed coordinates.
-	/// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
-	///
-	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
-	/// @see gtc_matrix_transform
-	/// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top)
-	template<typename T>
-	GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoLH_NO(
-		T left, T right, T bottom, T top, T zNear, T zFar);
-
-	/// Creates a matrix for an orthographic parallel viewing volume, using left-handed coordinates.
-	/// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
-	///
-	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
-	/// @see gtc_matrix_transform
-	/// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top)
-	template<typename T>
-	GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoRH_ZO(
-		T left, T right, T bottom, T top, T zNear, T zFar);
-
-	/// Creates a matrix for an orthographic parallel viewing volume, using right-handed coordinates.
-	/// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
-	///
-	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
-	/// @see gtc_matrix_transform
-	/// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top)
-	template<typename T>
-	GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoRH_NO(
-		T left, T right, T bottom, T top, T zNear, T zFar);
-
-	/// Creates a matrix for an orthographic parallel viewing volume, using left-handed coordinates.
-	/// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
-	///
-	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
-	/// @see gtc_matrix_transform
-	/// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top)
-	template<typename T>
-	GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoZO(
-		T left, T right, T bottom, T top, T zNear, T zFar);
-
-	/// Creates a matrix for an orthographic parallel viewing volume, using left-handed coordinates if GLM_FORCE_LEFT_HANDED if defined or right-handed coordinates otherwise.
-	/// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
-	///
-	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
-	/// @see gtc_matrix_transform
-	/// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top)
-	template<typename T>
-	GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoNO(
-		T left, T right, T bottom, T top, T zNear, T zFar);
-
-	/// Creates a matrix for an orthographic parallel viewing volume, using left-handed coordinates.
-	/// If GLM_FORCE_DEPTH_ZERO_TO_ONE is defined, the near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
-	/// Otherwise, the near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
-	///
-	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
-	/// @see gtc_matrix_transform
-	/// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top)
-	template<typename T>
-	GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoLH(
-		T left, T right, T bottom, T top, T zNear, T zFar);
-
-	/// Creates a matrix for an orthographic parallel viewing volume, using right-handed coordinates.
-	/// If GLM_FORCE_DEPTH_ZERO_TO_ONE is defined, the near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
-	/// Otherwise, the near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
-	///
-	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
-	/// @see gtc_matrix_transform
-	/// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top)
-	template<typename T>
-	GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoRH(
-		T left, T right, T bottom, T top, T zNear, T zFar);
-
-	/// Creates a matrix for an orthographic parallel viewing volume, using the default handedness and default near and far clip planes definition.
-	/// To change default handedness use GLM_FORCE_LEFT_HANDED. To change default near and far clip planes definition use GLM_FORCE_DEPTH_ZERO_TO_ONE.
-	///
-	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
-	/// @see gtc_matrix_transform
-	/// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top)
-	/// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glOrtho.xml">glOrtho man page</a>
-	template<typename T>
-	GLM_FUNC_DECL mat<4, 4, T, defaultp> ortho(
-		T left, T right, T bottom, T top, T zNear, T zFar);
-
-	/// Creates a left handed frustum matrix.
-	/// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
-	///
-	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
-	/// @see gtc_matrix_transform
-	template<typename T>
-	GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumLH_ZO(
-		T left, T right, T bottom, T top, T near, T far);
-
-	/// Creates a left handed frustum matrix.
-	/// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
-	///
-	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
-	/// @see gtc_matrix_transform
-	template<typename T>
-	GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumLH_NO(
-		T left, T right, T bottom, T top, T near, T far);
-
-	/// Creates a right handed frustum matrix.
-	/// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
-	///
-	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
-	/// @see gtc_matrix_transform
-	template<typename T>
-	GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumRH_ZO(
-		T left, T right, T bottom, T top, T near, T far);
-
-	/// Creates a right handed frustum matrix.
-	/// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
-	///
-	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
-	/// @see gtc_matrix_transform
-	template<typename T>
-	GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumRH_NO(
-		T left, T right, T bottom, T top, T near, T far);
-
-	/// Creates a frustum matrix using left-handed coordinates if GLM_FORCE_LEFT_HANDED if defined or right-handed coordinates otherwise.
-	/// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
-	///
-	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
-	/// @see gtc_matrix_transform
-	template<typename T>
-	GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumZO(
-		T left, T right, T bottom, T top, T near, T far);
-
-	/// Creates a frustum matrix using left-handed coordinates if GLM_FORCE_LEFT_HANDED if defined or right-handed coordinates otherwise.
-	/// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
-	///
-	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
-	/// @see gtc_matrix_transform
-	template<typename T>
-	GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumNO(
-		T left, T right, T bottom, T top, T near, T far);
-
-	/// Creates a left handed frustum matrix.
-	/// If GLM_FORCE_DEPTH_ZERO_TO_ONE is defined, the near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
-	/// Otherwise, the near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
-	///
-	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
-	/// @see gtc_matrix_transform
-	template<typename T>
-	GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumLH(
-		T left, T right, T bottom, T top, T near, T far);
-
-	/// Creates a right handed frustum matrix.
-	/// If GLM_FORCE_DEPTH_ZERO_TO_ONE is defined, the near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
-	/// Otherwise, the near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
-	///
-	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
-	/// @see gtc_matrix_transform
-	template<typename T>
-	GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumRH(
-		T left, T right, T bottom, T top, T near, T far);
-
-	/// Creates a frustum matrix with default handedness, using the default handedness and default near and far clip planes definition.
-	/// To change default handedness use GLM_FORCE_LEFT_HANDED. To change default near and far clip planes definition use GLM_FORCE_DEPTH_ZERO_TO_ONE.
-	///
-	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
-	/// @see gtc_matrix_transform
-	/// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glFrustum.xml">glFrustum man page</a>
-	template<typename T>
-	GLM_FUNC_DECL mat<4, 4, T, defaultp> frustum(
-		T left, T right, T bottom, T top, T near, T far);
-
-
-	/// Creates a matrix for a right handed, symetric perspective-view frustum.
-	/// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
-	///
-	/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
-	/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
-	/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
-	/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
-	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
-	/// @see gtc_matrix_transform
-	template<typename T>
-	GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveRH_ZO(
-		T fovy, T aspect, T near, T far);
-
-	/// Creates a matrix for a right handed, symetric perspective-view frustum.
-	/// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
-	///
-	/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
-	/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
-	/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
-	/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
-	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
-	/// @see gtc_matrix_transform
-	template<typename T>
-	GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveRH_NO(
-		T fovy, T aspect, T near, T far);
-
-	/// Creates a matrix for a left handed, symetric perspective-view frustum.
-	/// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
-	///
-	/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
-	/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
-	/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
-	/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
-	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
-	/// @see gtc_matrix_transform
-	template<typename T>
-	GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveLH_ZO(
-		T fovy, T aspect, T near, T far);
-
-	/// Creates a matrix for a left handed, symetric perspective-view frustum.
-	/// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
-	///
-	/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
-	/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
-	/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
-	/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
-	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
-	/// @see gtc_matrix_transform
-	template<typename T>
-	GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveLH_NO(
-		T fovy, T aspect, T near, T far);
-
-	/// Creates a matrix for a symetric perspective-view frustum using left-handed coordinates if GLM_FORCE_LEFT_HANDED if defined or right-handed coordinates otherwise.
-	/// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
-	///
-	/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
-	/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
-	/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
-	/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
-	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
-	/// @see gtc_matrix_transform
-	template<typename T>
-	GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveZO(
-		T fovy, T aspect, T near, T far);
-
-	/// Creates a matrix for a symetric perspective-view frustum using left-handed coordinates if GLM_FORCE_LEFT_HANDED if defined or right-handed coordinates otherwise.
-	/// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
-	///
-	/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
-	/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
-	/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
-	/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
-	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
-	/// @see gtc_matrix_transform
-	template<typename T>
-	GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveNO(
-		T fovy, T aspect, T near, T far);
-
-	/// Creates a matrix for a right handed, symetric perspective-view frustum.
-	/// If GLM_FORCE_DEPTH_ZERO_TO_ONE is defined, the near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
-	/// Otherwise, the near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
-	///
-	/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
-	/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
-	/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
-	/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
-	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
-	/// @see gtc_matrix_transform
-	template<typename T>
-	GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveRH(
-		T fovy, T aspect, T near, T far);
-
-	/// Creates a matrix for a left handed, symetric perspective-view frustum.
-	/// If GLM_FORCE_DEPTH_ZERO_TO_ONE is defined, the near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
-	/// Otherwise, the near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
-	///
-	/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
-	/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
-	/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
-	/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
-	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
-	/// @see gtc_matrix_transform
-	template<typename T>
-	GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveLH(
-		T fovy, T aspect, T near, T far);
-
-	/// Creates a matrix for a symetric perspective-view frustum based on the default handedness and default near and far clip planes definition.
-	/// To change default handedness use GLM_FORCE_LEFT_HANDED. To change default near and far clip planes definition use GLM_FORCE_DEPTH_ZERO_TO_ONE.
-	///
-	/// @param fovy Specifies the field of view angle in the y direction. Expressed in radians.
-	/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
-	/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
-	/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
-	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
-	/// @see gtc_matrix_transform
-	/// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluPerspective.xml">gluPerspective man page</a>
-	template<typename T>
-	GLM_FUNC_DECL mat<4, 4, T, defaultp> perspective(
-		T fovy, T aspect, T near, T far);
-
-	/// Builds a perspective projection matrix based on a field of view using right-handed coordinates.
-	/// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
-	///
-	/// @param fov Expressed in radians.
-	/// @param width Width of the viewport
-	/// @param height Height of the viewport
-	/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
-	/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
-	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
-	/// @see gtc_matrix_transform
-	template<typename T>
-	GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovRH_ZO(
-		T fov, T width, T height, T near, T far);
-
-	/// Builds a perspective projection matrix based on a field of view using right-handed coordinates.
-	/// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
-	///
-	/// @param fov Expressed in radians.
-	/// @param width Width of the viewport
-	/// @param height Height of the viewport
-	/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
-	/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
-	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
-	/// @see gtc_matrix_transform
-	template<typename T>
-	GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovRH_NO(
-		T fov, T width, T height, T near, T far);
-
-	/// Builds a perspective projection matrix based on a field of view using left-handed coordinates.
-	/// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
-	///
-	/// @param fov Expressed in radians.
-	/// @param width Width of the viewport
-	/// @param height Height of the viewport
-	/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
-	/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
-	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
-	/// @see gtc_matrix_transform
-	template<typename T>
-	GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovLH_ZO(
-		T fov, T width, T height, T near, T far);
-
-	/// Builds a perspective projection matrix based on a field of view using left-handed coordinates.
-	/// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
-	///
-	/// @param fov Expressed in radians.
-	/// @param width Width of the viewport
-	/// @param height Height of the viewport
-	/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
-	/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
-	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
-	/// @see gtc_matrix_transform
-	template<typename T>
-	GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovLH_NO(
-		T fov, T width, T height, T near, T far);
-
-	/// Builds a perspective projection matrix based on a field of view using left-handed coordinates if GLM_FORCE_LEFT_HANDED if defined or right-handed coordinates otherwise.
-	/// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
-	///
-	/// @param fov Expressed in radians.
-	/// @param width Width of the viewport
-	/// @param height Height of the viewport
-	/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
-	/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
-	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
-	/// @see gtc_matrix_transform
-	template<typename T>
-	GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovZO(
-		T fov, T width, T height, T near, T far);
-
-	/// Builds a perspective projection matrix based on a field of view using left-handed coordinates if GLM_FORCE_LEFT_HANDED if defined or right-handed coordinates otherwise.
-	/// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
-	///
-	/// @param fov Expressed in radians.
-	/// @param width Width of the viewport
-	/// @param height Height of the viewport
-	/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
-	/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
-	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
-	/// @see gtc_matrix_transform
-	template<typename T>
-	GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovNO(
-		T fov, T width, T height, T near, T far);
-
-	/// Builds a right handed perspective projection matrix based on a field of view.
-	/// If GLM_FORCE_DEPTH_ZERO_TO_ONE is defined, the near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
-	/// Otherwise, the near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
-	///
-	/// @param fov Expressed in radians.
-	/// @param width Width of the viewport
-	/// @param height Height of the viewport
-	/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
-	/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
-	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
-	/// @see gtc_matrix_transform
-	template<typename T>
-	GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovRH(
-		T fov, T width, T height, T near, T far);
-
-	/// Builds a left handed perspective projection matrix based on a field of view.
-	/// If GLM_FORCE_DEPTH_ZERO_TO_ONE is defined, the near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
-	/// Otherwise, the near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
-	///
-	/// @param fov Expressed in radians.
-	/// @param width Width of the viewport
-	/// @param height Height of the viewport
-	/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
-	/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
-	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
-	/// @see gtc_matrix_transform
-	template<typename T>
-	GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovLH(
-		T fov, T width, T height, T near, T far);
-
-	/// Builds a perspective projection matrix based on a field of view and the default handedness and default near and far clip planes definition.
-	/// To change default handedness use GLM_FORCE_LEFT_HANDED. To change default near and far clip planes definition use GLM_FORCE_DEPTH_ZERO_TO_ONE.
-	///
-	/// @param fov Expressed in radians.
-	/// @param width Width of the viewport
-	/// @param height Height of the viewport
-	/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
-	/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
-	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
-	/// @see gtc_matrix_transform
-	template<typename T>
-	GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFov(
-		T fov, T width, T height, T near, T far);
-
-	/// Creates a matrix for a left handed, symmetric perspective-view frustum with far plane at infinite.
-	///
-	/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
-	/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
-	/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
-	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
-	/// @see gtc_matrix_transform
-	template<typename T>
-	GLM_FUNC_DECL mat<4, 4, T, defaultp> infinitePerspectiveLH(
-		T fovy, T aspect, T near);
-
-	/// Creates a matrix for a right handed, symmetric perspective-view frustum with far plane at infinite.
-	///
-	/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
-	/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
-	/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
-	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
-	/// @see gtc_matrix_transform
-	template<typename T>
-	GLM_FUNC_DECL mat<4, 4, T, defaultp> infinitePerspectiveRH(
-		T fovy, T aspect, T near);
-
-	/// Creates a matrix for a symmetric perspective-view frustum with far plane at infinite with default handedness.
-	///
-	/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
-	/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
-	/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
-	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
-	/// @see gtc_matrix_transform
-	template<typename T>
-	GLM_FUNC_DECL mat<4, 4, T, defaultp> infinitePerspective(
-		T fovy, T aspect, T near);
-
-	/// Creates a matrix for a symmetric perspective-view frustum with far plane at infinite for graphics hardware that doesn't support depth clamping.
-	///
-	/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
-	/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
-	/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
-	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
-	/// @see gtc_matrix_transform
-	template<typename T>
-	GLM_FUNC_DECL mat<4, 4, T, defaultp> tweakedInfinitePerspective(
-		T fovy, T aspect, T near);
-
-	/// Creates a matrix for a symmetric perspective-view frustum with far plane at infinite for graphics hardware that doesn't support depth clamping.
-	///
-	/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
-	/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
-	/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
-	/// @param ep Epsilon
-	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
-	/// @see gtc_matrix_transform
-	template<typename T>
-	GLM_FUNC_DECL mat<4, 4, T, defaultp> tweakedInfinitePerspective(
-		T fovy, T aspect, T near, T ep);
-
-	/// Map the specified object coordinates (obj.x, obj.y, obj.z) into window coordinates.
-	/// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
-	///
-	/// @param obj Specify the object coordinates.
-	/// @param model Specifies the current modelview matrix
-	/// @param proj Specifies the current projection matrix
-	/// @param viewport Specifies the current viewport
-	/// @return Return the computed window coordinates.
-	/// @tparam T Native type used for the computation. Currently supported: half (not recommended), float or double.
-	/// @tparam U Currently supported: Floating-point types and integer types.
-	/// @see gtc_matrix_transform
-	/// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluProject.xml">gluProject man page</a>
-	template<typename T, typename U, qualifier Q>
-	GLM_FUNC_DECL vec<3, T, Q> projectZO(
-		vec<3, T, Q> const& obj, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport);
-
-	/// Map the specified object coordinates (obj.x, obj.y, obj.z) into window coordinates.
-	/// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
-	///
-	/// @param obj Specify the object coordinates.
-	/// @param model Specifies the current modelview matrix
-	/// @param proj Specifies the current projection matrix
-	/// @param viewport Specifies the current viewport
-	/// @return Return the computed window coordinates.
-	/// @tparam T Native type used for the computation. Currently supported: half (not recommended), float or double.
-	/// @tparam U Currently supported: Floating-point types and integer types.
-	/// @see gtc_matrix_transform
-	/// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluProject.xml">gluProject man page</a>
-	template<typename T, typename U, qualifier Q>
-	GLM_FUNC_DECL vec<3, T, Q> projectNO(
-		vec<3, T, Q> const& obj, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport);
-
-	/// Map the specified object coordinates (obj.x, obj.y, obj.z) into window coordinates using default near and far clip planes definition.
-	/// To change default near and far clip planes definition use GLM_FORCE_DEPTH_ZERO_TO_ONE.
-	///
-	/// @param obj Specify the object coordinates.
-	/// @param model Specifies the current modelview matrix
-	/// @param proj Specifies the current projection matrix
-	/// @param viewport Specifies the current viewport
-	/// @return Return the computed window coordinates.
-	/// @tparam T Native type used for the computation. Currently supported: half (not recommended), float or double.
-	/// @tparam U Currently supported: Floating-point types and integer types.
-	/// @see gtc_matrix_transform
-	/// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluProject.xml">gluProject man page</a>
-	template<typename T, typename U, qualifier Q>
-	GLM_FUNC_DECL vec<3, T, Q> project(
-		vec<3, T, Q> const& obj, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport);
-
-	/// Map the specified window coordinates (win.x, win.y, win.z) into object coordinates.
-	/// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
-	///
-	/// @param win Specify the window coordinates to be mapped.
-	/// @param model Specifies the modelview matrix
-	/// @param proj Specifies the projection matrix
-	/// @param viewport Specifies the viewport
-	/// @return Returns the computed object coordinates.
-	/// @tparam T Native type used for the computation. Currently supported: half (not recommended), float or double.
-	/// @tparam U Currently supported: Floating-point types and integer types.
-	/// @see gtc_matrix_transform
-	/// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluUnProject.xml">gluUnProject man page</a>
-	template<typename T, typename U, qualifier Q>
-	GLM_FUNC_DECL vec<3, T, Q> unProjectZO(
-		vec<3, T, Q> const& win, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport);
-
-	/// Map the specified window coordinates (win.x, win.y, win.z) into object coordinates.
-	/// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
-	///
-	/// @param win Specify the window coordinates to be mapped.
-	/// @param model Specifies the modelview matrix
-	/// @param proj Specifies the projection matrix
-	/// @param viewport Specifies the viewport
-	/// @return Returns the computed object coordinates.
-	/// @tparam T Native type used for the computation. Currently supported: half (not recommended), float or double.
-	/// @tparam U Currently supported: Floating-point types and integer types.
-	/// @see gtc_matrix_transform
-	/// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluUnProject.xml">gluUnProject man page</a>
-	template<typename T, typename U, qualifier Q>
-	GLM_FUNC_DECL vec<3, T, Q> unProjectNO(
-		vec<3, T, Q> const& win, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport);
-
-	/// Map the specified window coordinates (win.x, win.y, win.z) into object coordinates using default near and far clip planes definition.
-	/// To change default near and far clip planes definition use GLM_FORCE_DEPTH_ZERO_TO_ONE.
-	///
-	/// @param win Specify the window coordinates to be mapped.
-	/// @param model Specifies the modelview matrix
-	/// @param proj Specifies the projection matrix
-	/// @param viewport Specifies the viewport
-	/// @return Returns the computed object coordinates.
-	/// @tparam T Native type used for the computation. Currently supported: half (not recommended), float or double.
-	/// @tparam U Currently supported: Floating-point types and integer types.
-	/// @see gtc_matrix_transform
-	/// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluUnProject.xml">gluUnProject man page</a>
-	template<typename T, typename U, qualifier Q>
-	GLM_FUNC_DECL vec<3, T, Q> unProject(
-		vec<3, T, Q> const& win, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport);
-
-	/// Define a picking region
-	///
-	/// @param center Specify the center of a picking region in window coordinates.
-	/// @param delta Specify the width and height, respectively, of the picking region in window coordinates.
-	/// @param viewport Rendering viewport
-	/// @tparam T Native type used for the computation. Currently supported: half (not recommended), float or double.
-	/// @tparam U Currently supported: Floating-point types and integer types.
-	/// @see gtc_matrix_transform
-	/// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluPickMatrix.xml">gluPickMatrix man page</a>
-	template<typename T, qualifier Q, typename U>
-	GLM_FUNC_DECL mat<4, 4, T, Q> pickMatrix(
-		vec<2, T, Q> const& center, vec<2, T, Q> const& delta, vec<4, U, Q> const& viewport);
-
 	/// Build a right handed look at view matrix.
 	///
 	/// @param eye Position of the camera

+ 0 - 634
glm/ext/matrix_transform.inl

@@ -95,640 +95,6 @@ namespace glm
 		return m * Result;
 	}
 
-	template<typename T>
-	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> ortho(T left, T right, T bottom, T top)
-	{
-		mat<4, 4, T, defaultp> Result(static_cast<T>(1));
-		Result[0][0] = static_cast<T>(2) / (right - left);
-		Result[1][1] = static_cast<T>(2) / (top - bottom);
-		Result[2][2] = - static_cast<T>(1);
-		Result[3][0] = - (right + left) / (right - left);
-		Result[3][1] = - (top + bottom) / (top - bottom);
-		return Result;
-	}
-
-	template<typename T>
-	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoLH_ZO(T left, T right, T bottom, T top, T zNear, T zFar)
-	{
-		mat<4, 4, T, defaultp> Result(1);
-		Result[0][0] = static_cast<T>(2) / (right - left);
-		Result[1][1] = static_cast<T>(2) / (top - bottom);
-		Result[2][2] = static_cast<T>(1) / (zFar - zNear);
-		Result[3][0] = - (right + left) / (right - left);
-		Result[3][1] = - (top + bottom) / (top - bottom);
-		Result[3][2] = - zNear / (zFar - zNear);
-		return Result;
-	}
-
-	template<typename T>
-	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoLH_NO(T left, T right, T bottom, T top, T zNear, T zFar)
-	{
-		mat<4, 4, T, defaultp> Result(1);
-		Result[0][0] = static_cast<T>(2) / (right - left);
-		Result[1][1] = static_cast<T>(2) / (top - bottom);
-		Result[2][2] = static_cast<T>(2) / (zFar - zNear);
-		Result[3][0] = - (right + left) / (right - left);
-		Result[3][1] = - (top + bottom) / (top - bottom);
-		Result[3][2] = - (zFar + zNear) / (zFar - zNear);
-		return Result;
-	}
-
-	template<typename T>
-	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoRH_ZO(T left, T right, T bottom, T top, T zNear, T zFar)
-	{
-		mat<4, 4, T, defaultp> Result(1);
-		Result[0][0] = static_cast<T>(2) / (right - left);
-		Result[1][1] = static_cast<T>(2) / (top - bottom);
-		Result[2][2] = - static_cast<T>(1) / (zFar - zNear);
-		Result[3][0] = - (right + left) / (right - left);
-		Result[3][1] = - (top + bottom) / (top - bottom);
-		Result[3][2] = - zNear / (zFar - zNear);
-		return Result;
-	}
-
-	template<typename T>
-	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoRH_NO(T left, T right, T bottom, T top, T zNear, T zFar)
-	{
-		mat<4, 4, T, defaultp> Result(1);
-		Result[0][0] = static_cast<T>(2) / (right - left);
-		Result[1][1] = static_cast<T>(2) / (top - bottom);
-		Result[2][2] = - static_cast<T>(2) / (zFar - zNear);
-		Result[3][0] = - (right + left) / (right - left);
-		Result[3][1] = - (top + bottom) / (top - bottom);
-		Result[3][2] = - (zFar + zNear) / (zFar - zNear);
-		return Result;
-	}
-
-	template<typename T>
-	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoZO(T left, T right, T bottom, T top, T zNear, T zFar)
-	{
-		if(GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_LH_BIT)
-			return orthoLH_ZO(left, right, bottom, top, zNear, zFar);
-		else
-			return orthoRH_ZO(left, right, bottom, top, zNear, zFar);
-	}
-
-	template<typename T>
-	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoNO(T left, T right, T bottom, T top, T zNear, T zFar)
-	{
-		if(GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_LH_BIT)
-			return orthoLH_NO(left, right, bottom, top, zNear, zFar);
-		else
-			return orthoRH_NO(left, right, bottom, top, zNear, zFar);
-	}
-
-	template<typename T>
-	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoLH(T left, T right, T bottom, T top, T zNear, T zFar)
-	{
-		if(GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_ZO_BIT)
-			return orthoLH_ZO(left, right, bottom, top, zNear, zFar);
-		else
-			return orthoLH_NO(left, right, bottom, top, zNear, zFar);
-
-	}
-
-	template<typename T>
-	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoRH(T left, T right, T bottom, T top, T zNear, T zFar)
-	{
-		if(GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_ZO_BIT)
-			return orthoRH_ZO(left, right, bottom, top, zNear, zFar);
-		else
-			return orthoRH_NO(left, right, bottom, top, zNear, zFar);
-	}
-
-	template<typename T>
-	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> ortho(T left, T right, T bottom, T top, T zNear, T zFar)
-	{
-		if(GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_LH_ZO)
-			return orthoLH_ZO(left, right, bottom, top, zNear, zFar);
-		else if(GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_LH_NO)
-			return orthoLH_NO(left, right, bottom, top, zNear, zFar);
-		else if(GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_RH_ZO)
-			return orthoRH_ZO(left, right, bottom, top, zNear, zFar);
-		else if(GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_RH_NO)
-			return orthoRH_NO(left, right, bottom, top, zNear, zFar);
-	}
-
-	template<typename T>
-	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumLH_ZO(T left, T right, T bottom, T top, T nearVal, T farVal)
-	{
-		mat<4, 4, T, defaultp> Result(0);
-		Result[0][0] = (static_cast<T>(2) * nearVal) / (right - left);
-		Result[1][1] = (static_cast<T>(2) * nearVal) / (top - bottom);
-		Result[2][0] = (right + left) / (right - left);
-		Result[2][1] = (top + bottom) / (top - bottom);
-		Result[2][2] = farVal / (farVal - nearVal);
-		Result[2][3] = static_cast<T>(1);
-		Result[3][2] = -(farVal * nearVal) / (farVal - nearVal);
-		return Result;
-	}
-
-	template<typename T>
-	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumLH_NO(T left, T right, T bottom, T top, T nearVal, T farVal)
-	{
-		mat<4, 4, T, defaultp> Result(0);
-		Result[0][0] = (static_cast<T>(2) * nearVal) / (right - left);
-		Result[1][1] = (static_cast<T>(2) * nearVal) / (top - bottom);
-		Result[2][0] = (right + left) / (right - left);
-		Result[2][1] = (top + bottom) / (top - bottom);
-		Result[2][2] = (farVal + nearVal) / (farVal - nearVal);
-		Result[2][3] = static_cast<T>(1);
-		Result[3][2] = - (static_cast<T>(2) * farVal * nearVal) / (farVal - nearVal);
-		return Result;
-	}
-
-	template<typename T>
-	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumRH_ZO(T left, T right, T bottom, T top, T nearVal, T farVal)
-	{
-		mat<4, 4, T, defaultp> Result(0);
-		Result[0][0] = (static_cast<T>(2) * nearVal) / (right - left);
-		Result[1][1] = (static_cast<T>(2) * nearVal) / (top - bottom);
-		Result[2][0] = (right + left) / (right - left);
-		Result[2][1] = (top + bottom) / (top - bottom);
-		Result[2][2] = farVal / (nearVal - farVal);
-		Result[2][3] = static_cast<T>(-1);
-		Result[3][2] = -(farVal * nearVal) / (farVal - nearVal);
-		return Result;
-	}
-
-	template<typename T>
-	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumRH_NO(T left, T right, T bottom, T top, T nearVal, T farVal)
-	{
-		mat<4, 4, T, defaultp> Result(0);
-		Result[0][0] = (static_cast<T>(2) * nearVal) / (right - left);
-		Result[1][1] = (static_cast<T>(2) * nearVal) / (top - bottom);
-		Result[2][0] = (right + left) / (right - left);
-		Result[2][1] = (top + bottom) / (top - bottom);
-		Result[2][2] = - (farVal + nearVal) / (farVal - nearVal);
-		Result[2][3] = static_cast<T>(-1);
-		Result[3][2] = - (static_cast<T>(2) * farVal * nearVal) / (farVal - nearVal);
-		return Result;
-	}
-
-	template<typename T>
-	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumZO(T left, T right, T bottom, T top, T nearVal, T farVal)
-	{
-		if(GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_LH_BIT)
-			return frustumLH_ZO(left, right, bottom, top, nearVal, farVal);
-		else
-			return frustumRH_ZO(left, right, bottom, top, nearVal, farVal);
-	}
-
-	template<typename T>
-	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumNO(T left, T right, T bottom, T top, T nearVal, T farVal)
-	{
-		if(GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_LH_BIT)
-			return frustumLH_NO(left, right, bottom, top, nearVal, farVal);
-		else
-			return frustumRH_NO(left, right, bottom, top, nearVal, farVal);
-	}
-
-	template<typename T>
-	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumLH(T left, T right, T bottom, T top, T nearVal, T farVal)
-	{
-		if(GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_ZO_BIT)
-			return frustumLH_ZO(left, right, bottom, top, nearVal, farVal);
-		else
-			return frustumLH_NO(left, right, bottom, top, nearVal, farVal);
-	}
-
-	template<typename T>
-	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumRH(T left, T right, T bottom, T top, T nearVal, T farVal)
-	{
-		if(GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_ZO_BIT)
-			return frustumRH_ZO(left, right, bottom, top, nearVal, farVal);
-		else
-			return frustumRH_NO(left, right, bottom, top, nearVal, farVal);
-	}
-
-	template<typename T>
-	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustum(T left, T right, T bottom, T top, T nearVal, T farVal)
-	{
-		if(GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_LH_ZO)
-			return frustumLH_ZO(left, right, bottom, top, nearVal, farVal);
-		else if(GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_LH_NO)
-			return frustumLH_NO(left, right, bottom, top, nearVal, farVal);
-		else if(GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_RH_ZO)
-			return frustumRH_ZO(left, right, bottom, top, nearVal, farVal);
-		else if(GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_RH_NO)
-			return frustumRH_NO(left, right, bottom, top, nearVal, farVal);
-	}
-
-	template<typename T>
-	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveRH_ZO(T fovy, T aspect, T zNear, T zFar)
-	{
-		assert(abs(aspect - std::numeric_limits<T>::epsilon()) > static_cast<T>(0));
-
-		T const tanHalfFovy = tan(fovy / static_cast<T>(2));
-
-		mat<4, 4, T, defaultp> Result(static_cast<T>(0));
-		Result[0][0] = static_cast<T>(1) / (aspect * tanHalfFovy);
-		Result[1][1] = static_cast<T>(1) / (tanHalfFovy);
-		Result[2][2] = zFar / (zNear - zFar);
-		Result[2][3] = - static_cast<T>(1);
-		Result[3][2] = -(zFar * zNear) / (zFar - zNear);
-		return Result;
-	}
-
-	template<typename T>
-	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveRH_NO(T fovy, T aspect, T zNear, T zFar)
-	{
-		assert(abs(aspect - std::numeric_limits<T>::epsilon()) > static_cast<T>(0));
-
-		T const tanHalfFovy = tan(fovy / static_cast<T>(2));
-
-		mat<4, 4, T, defaultp> Result(static_cast<T>(0));
-		Result[0][0] = static_cast<T>(1) / (aspect * tanHalfFovy);
-		Result[1][1] = static_cast<T>(1) / (tanHalfFovy);
-		Result[2][2] = - (zFar + zNear) / (zFar - zNear);
-		Result[2][3] = - static_cast<T>(1);
-		Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear);
-		return Result;
-	}
-
-	template<typename T>
-	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveLH_ZO(T fovy, T aspect, T zNear, T zFar)
-	{
-		assert(abs(aspect - std::numeric_limits<T>::epsilon()) > static_cast<T>(0));
-
-		T const tanHalfFovy = tan(fovy / static_cast<T>(2));
-
-		mat<4, 4, T, defaultp> Result(static_cast<T>(0));
-		Result[0][0] = static_cast<T>(1) / (aspect * tanHalfFovy);
-		Result[1][1] = static_cast<T>(1) / (tanHalfFovy);
-		Result[2][2] = zFar / (zFar - zNear);
-		Result[2][3] = static_cast<T>(1);
-		Result[3][2] = -(zFar * zNear) / (zFar - zNear);
-		return Result;
-	}
-
-	template<typename T>
-	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveLH_NO(T fovy, T aspect, T zNear, T zFar)
-	{
-		assert(abs(aspect - std::numeric_limits<T>::epsilon()) > static_cast<T>(0));
-
-		T const tanHalfFovy = tan(fovy / static_cast<T>(2));
-
-		mat<4, 4, T, defaultp> Result(static_cast<T>(0));
-		Result[0][0] = static_cast<T>(1) / (aspect * tanHalfFovy);
-		Result[1][1] = static_cast<T>(1) / (tanHalfFovy);
-		Result[2][2] = (zFar + zNear) / (zFar - zNear);
-		Result[2][3] = static_cast<T>(1);
-		Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear);
-		return Result;
-	}
-
-	template<typename T>
-	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveZO(T fovy, T aspect, T zNear, T zFar)
-	{
-		if(GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_LH_BIT)
-			return perspectiveLH_ZO(fovy, aspect, zNear, zFar);
-		else
-			return perspectiveRH_ZO(fovy, aspect, zNear, zFar);
-	}
-
-	template<typename T>
-	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveNO(T fovy, T aspect, T zNear, T zFar)
-	{
-		if(GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_LH_BIT)
-			return perspectiveLH_NO(fovy, aspect, zNear, zFar);
-		else
-			return perspectiveRH_NO(fovy, aspect, zNear, zFar);
-	}
-
-	template<typename T>
-	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveLH(T fovy, T aspect, T zNear, T zFar)
-	{
-		if(GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_ZO_BIT)
-			return perspectiveLH_ZO(fovy, aspect, zNear, zFar);
-		else
-			return perspectiveLH_NO(fovy, aspect, zNear, zFar);
-
-	}
-
-	template<typename T>
-	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveRH(T fovy, T aspect, T zNear, T zFar)
-	{
-		if(GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_ZO_BIT)
-			return perspectiveRH_ZO(fovy, aspect, zNear, zFar);
-		else
-			return perspectiveRH_NO(fovy, aspect, zNear, zFar);
-	}
-
-	template<typename T>
-	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspective(T fovy, T aspect, T zNear, T zFar)
-	{
-		if(GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_LH_ZO)
-			return perspectiveLH_ZO(fovy, aspect, zNear, zFar);
-		else if(GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_LH_NO)
-			return perspectiveLH_NO(fovy, aspect, zNear, zFar);
-		else if(GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_RH_ZO)
-			return perspectiveRH_ZO(fovy, aspect, zNear, zFar);
-		else if(GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_RH_NO)
-			return perspectiveRH_NO(fovy, aspect, zNear, zFar);
-	}
-
-	template<typename T>
-	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovRH_ZO(T fov, T width, T height, T zNear, T zFar)
-	{
-		assert(width > static_cast<T>(0));
-		assert(height > static_cast<T>(0));
-		assert(fov > static_cast<T>(0));
-
-		T const rad = fov;
-		T const h = glm::cos(static_cast<T>(0.5) * rad) / glm::sin(static_cast<T>(0.5) * rad);
-		T const w = h * height / width; ///todo max(width , Height) / min(width , Height)?
-
-		mat<4, 4, T, defaultp> Result(static_cast<T>(0));
-		Result[0][0] = w;
-		Result[1][1] = h;
-		Result[2][2] = zFar / (zNear - zFar);
-		Result[2][3] = - static_cast<T>(1);
-		Result[3][2] = -(zFar * zNear) / (zFar - zNear);
-		return Result;
-	}
-
-	template<typename T>
-	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovRH_NO(T fov, T width, T height, T zNear, T zFar)
-	{
-		assert(width > static_cast<T>(0));
-		assert(height > static_cast<T>(0));
-		assert(fov > static_cast<T>(0));
-
-		T const rad = fov;
-		T const h = glm::cos(static_cast<T>(0.5) * rad) / glm::sin(static_cast<T>(0.5) * rad);
-		T const w = h * height / width; ///todo max(width , Height) / min(width , Height)?
-
-		mat<4, 4, T, defaultp> Result(static_cast<T>(0));
-		Result[0][0] = w;
-		Result[1][1] = h;
-		Result[2][2] = - (zFar + zNear) / (zFar - zNear);
-		Result[2][3] = - static_cast<T>(1);
-		Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear);
-		return Result;
-	}
-
-	template<typename T>
-	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovLH_ZO(T fov, T width, T height, T zNear, T zFar)
-	{
-		assert(width > static_cast<T>(0));
-		assert(height > static_cast<T>(0));
-		assert(fov > static_cast<T>(0));
-
-		T const rad = fov;
-		T const h = glm::cos(static_cast<T>(0.5) * rad) / glm::sin(static_cast<T>(0.5) * rad);
-		T const w = h * height / width; ///todo max(width , Height) / min(width , Height)?
-
-		mat<4, 4, T, defaultp> Result(static_cast<T>(0));
-		Result[0][0] = w;
-		Result[1][1] = h;
-		Result[2][2] = zFar / (zFar - zNear);
-		Result[2][3] = static_cast<T>(1);
-		Result[3][2] = -(zFar * zNear) / (zFar - zNear);
-		return Result;
-	}
-
-	template<typename T>
-	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovLH_NO(T fov, T width, T height, T zNear, T zFar)
-	{
-		assert(width > static_cast<T>(0));
-		assert(height > static_cast<T>(0));
-		assert(fov > static_cast<T>(0));
-
-		T const rad = fov;
-		T const h = glm::cos(static_cast<T>(0.5) * rad) / glm::sin(static_cast<T>(0.5) * rad);
-		T const w = h * height / width; ///todo max(width , Height) / min(width , Height)?
-
-		mat<4, 4, T, defaultp> Result(static_cast<T>(0));
-		Result[0][0] = w;
-		Result[1][1] = h;
-		Result[2][2] = (zFar + zNear) / (zFar - zNear);
-		Result[2][3] = static_cast<T>(1);
-		Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear);
-		return Result;
-	}
-
-	template<typename T>
-	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovZO(T fov, T width, T height, T zNear, T zFar)
-	{
-		if(GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_LH_BIT)
-			return perspectiveFovLH_ZO(fov, width, height, zNear, zFar);
-		else
-			return perspectiveFovRH_ZO(fov, width, height, zNear, zFar);
-	}
-
-	template<typename T>
-	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovNO(T fov, T width, T height, T zNear, T zFar)
-	{
-		if(GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_LH_BIT)
-			return perspectiveFovLH_NO(fov, width, height, zNear, zFar);
-		else
-			return perspectiveFovRH_NO(fov, width, height, zNear, zFar);
-	}
-
-	template<typename T>
-	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovLH(T fov, T width, T height, T zNear, T zFar)
-	{
-		if(GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_ZO_BIT)
-			return perspectiveFovLH_ZO(fov, width, height, zNear, zFar);
-		else
-			return perspectiveFovLH_NO(fov, width, height, zNear, zFar);
-	}
-
-	template<typename T>
-	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovRH(T fov, T width, T height, T zNear, T zFar)
-	{
-		if(GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_ZO_BIT)
-			return perspectiveFovRH_ZO(fov, width, height, zNear, zFar);
-		else
-			return perspectiveFovRH_NO(fov, width, height, zNear, zFar);
-	}
-
-	template<typename T>
-	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFov(T fov, T width, T height, T zNear, T zFar)
-	{
-		if(GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_LH_ZO)
-			return perspectiveFovLH_ZO(fov, width, height, zNear, zFar);
-		else if(GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_LH_NO)
-			return perspectiveFovLH_NO(fov, width, height, zNear, zFar);
-		else if(GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_RH_ZO)
-			return perspectiveFovRH_ZO(fov, width, height, zNear, zFar);
-		else if(GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_RH_NO)
-			return perspectiveFovRH_NO(fov, width, height, zNear, zFar);
-	}
-
-	template<typename T>
-	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> infinitePerspectiveRH(T fovy, T aspect, T zNear)
-	{
-		T const range = tan(fovy / static_cast<T>(2)) * zNear;
-		T const left = -range * aspect;
-		T const right = range * aspect;
-		T const bottom = -range;
-		T const top = range;
-
-		mat<4, 4, T, defaultp> Result(static_cast<T>(0));
-		Result[0][0] = (static_cast<T>(2) * zNear) / (right - left);
-		Result[1][1] = (static_cast<T>(2) * zNear) / (top - bottom);
-		Result[2][2] = - static_cast<T>(1);
-		Result[2][3] = - static_cast<T>(1);
-		Result[3][2] = - static_cast<T>(2) * zNear;
-		return Result;
-	}
-
-	template<typename T>
-	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> infinitePerspectiveLH(T fovy, T aspect, T zNear)
-	{
-		T const range = tan(fovy / static_cast<T>(2)) * zNear;
-		T const left = -range * aspect;
-		T const right = range * aspect;
-		T const bottom = -range;
-		T const top = range;
-
-		mat<4, 4, T, defaultp> Result(T(0));
-		Result[0][0] = (static_cast<T>(2) * zNear) / (right - left);
-		Result[1][1] = (static_cast<T>(2) * zNear) / (top - bottom);
-		Result[2][2] = static_cast<T>(1);
-		Result[2][3] = static_cast<T>(1);
-		Result[3][2] = - static_cast<T>(2) * zNear;
-		return Result;
-	}
-
-	template<typename T>
-	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> infinitePerspective(T fovy, T aspect, T zNear)
-	{
-		if(GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_LH_BIT)
-			return infinitePerspectiveLH(fovy, aspect, zNear);
-		else
-			return infinitePerspectiveRH(fovy, aspect, zNear);
-	}
-
-	// Infinite projection matrix: http://www.terathon.com/gdc07_lengyel.pdf
-	template<typename T>
-	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> tweakedInfinitePerspective(T fovy, T aspect, T zNear, T ep)
-	{
-		T const range = tan(fovy / static_cast<T>(2)) * zNear;
-		T const left = -range * aspect;
-		T const right = range * aspect;
-		T const bottom = -range;
-		T const top = range;
-
-		mat<4, 4, T, defaultp> Result(static_cast<T>(0));
-		Result[0][0] = (static_cast<T>(2) * zNear) / (right - left);
-		Result[1][1] = (static_cast<T>(2) * zNear) / (top - bottom);
-		Result[2][2] = ep - static_cast<T>(1);
-		Result[2][3] = static_cast<T>(-1);
-		Result[3][2] = (ep - static_cast<T>(2)) * zNear;
-		return Result;
-	}
-
-	template<typename T>
-	GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> tweakedInfinitePerspective(T fovy, T aspect, T zNear)
-	{
-		return tweakedInfinitePerspective(fovy, aspect, zNear, epsilon<T>());
-	}
-
-	template<typename T, typename U, qualifier Q>
-	GLM_FUNC_QUALIFIER vec<3, T, Q> projectZO(vec<3, T, Q> const& obj, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport)
-	{
-		vec<4, T, Q> tmp = vec<4, T, Q>(obj, static_cast<T>(1));
-		tmp = model * tmp;
-		tmp = proj * tmp;
-
-		tmp /= tmp.w;
-		tmp.x = tmp.x * static_cast<T>(0.5) + static_cast<T>(0.5);
-		tmp.y = tmp.y * static_cast<T>(0.5) + static_cast<T>(0.5);
-
-		tmp[0] = tmp[0] * T(viewport[2]) + T(viewport[0]);
-		tmp[1] = tmp[1] * T(viewport[3]) + T(viewport[1]);
-
-		return vec<3, T, Q>(tmp);
-	}
-
-	template<typename T, typename U, qualifier Q>
-	GLM_FUNC_QUALIFIER vec<3, T, Q> projectNO(vec<3, T, Q> const& obj, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport)
-	{
-		vec<4, T, Q> tmp = vec<4, T, Q>(obj, static_cast<T>(1));
-		tmp = model * tmp;
-		tmp = proj * tmp;
-
-		tmp /= tmp.w;
-		tmp = tmp * static_cast<T>(0.5) + static_cast<T>(0.5);
-		tmp[0] = tmp[0] * T(viewport[2]) + T(viewport[0]);
-		tmp[1] = tmp[1] * T(viewport[3]) + T(viewport[1]);
-
-		return vec<3, T, Q>(tmp);
-	}
-
-	template<typename T, typename U, qualifier Q>
-	GLM_FUNC_QUALIFIER vec<3, T, Q> project(vec<3, T, Q> const& obj, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport)
-	{
-		if(GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_ZO_BIT)
-			return projectZO(obj, model, proj, viewport);
-		else
-			return projectNO(obj, model, proj, viewport);
-	}
-
-	template<typename T, typename U, qualifier Q>
-	GLM_FUNC_QUALIFIER vec<3, T, Q> unProjectZO(vec<3, T, Q> const& win, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport)
-	{
-		mat<4, 4, T, Q> Inverse = inverse(proj * model);
-
-		vec<4, T, Q> tmp = vec<4, T, Q>(win, T(1));
-		tmp.x = (tmp.x - T(viewport[0])) / T(viewport[2]);
-		tmp.y = (tmp.y - T(viewport[1])) / T(viewport[3]);
-		tmp.x = tmp.x * static_cast<T>(2) - static_cast<T>(1);
-		tmp.y = tmp.y * static_cast<T>(2) - static_cast<T>(1);
-
-		vec<4, T, Q> obj = Inverse * tmp;
-		obj /= obj.w;
-
-		return vec<3, T, Q>(obj);
-	}
-
-	template<typename T, typename U, qualifier Q>
-	GLM_FUNC_QUALIFIER vec<3, T, Q> unProjectNO(vec<3, T, Q> const& win, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport)
-	{
-		mat<4, 4, T, Q> Inverse = inverse(proj * model);
-
-		vec<4, T, Q> tmp = vec<4, T, Q>(win, T(1));
-		tmp.x = (tmp.x - T(viewport[0])) / T(viewport[2]);
-		tmp.y = (tmp.y - T(viewport[1])) / T(viewport[3]);
-		tmp = tmp * static_cast<T>(2) - static_cast<T>(1);
-
-		vec<4, T, Q> obj = Inverse * tmp;
-		obj /= obj.w;
-
-		return vec<3, T, Q>(obj);
-	}
-
-	template<typename T, typename U, qualifier Q>
-	GLM_FUNC_QUALIFIER vec<3, T, Q> unProject(vec<3, T, Q> const& win, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport)
-	{
-		if(GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_ZO_BIT)
-			return unProjectZO(win, model, proj, viewport);
-		else
-			return unProjectNO(win, model, proj, viewport);
-	}
-
-	template<typename T, qualifier Q, typename U>
-	GLM_FUNC_QUALIFIER mat<4, 4, T, Q> pickMatrix(vec<2, T, Q> const& center, vec<2, T, Q> const& delta, vec<4, U, Q> const& viewport)
-	{
-		assert(delta.x > static_cast<T>(0) && delta.y > static_cast<T>(0));
-		mat<4, 4, T, Q> Result(static_cast<T>(1));
-
-		if(!(delta.x > static_cast<T>(0) && delta.y > static_cast<T>(0)))
-			return Result; // Error
-
-		vec<3, T, Q> Temp(
-			(static_cast<T>(viewport[2]) - static_cast<T>(2) * (center.x - static_cast<T>(viewport[0]))) / delta.x,
-			(static_cast<T>(viewport[3]) - static_cast<T>(2) * (center.y - static_cast<T>(viewport[1]))) / delta.y,
-			static_cast<T>(0));
-
-		// Translate and scale the picked region to the entire window
-		Result = translate(Result, Temp);
-		return scale(Result, vec<3, T, Q>(static_cast<T>(viewport[2]) / delta.x, static_cast<T>(viewport[3]) / delta.y, static_cast<T>(1)));
-	}
-
 	template<typename T, qualifier Q>
 	GLM_FUNC_QUALIFIER mat<4, 4, T, Q> lookAtRH(vec<3, T, Q> const& eye, vec<3, T, Q> const& center, vec<3, T, Q> const& up)
 	{

+ 2 - 0
glm/gtc/matrix_transform.hpp

@@ -25,6 +25,8 @@
 #include "../vec2.hpp"
 #include "../vec3.hpp"
 #include "../vec4.hpp"
+#include "../ext/matrix_projection.hpp"
+#include "../ext/matrix_clip_space.hpp"
 #include "../ext/matrix_transform.hpp"
 
 #if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED)

+ 2 - 4
test/ext/CMakeLists.txt

@@ -13,8 +13,6 @@ glmCreateTestGTC(ext_scalar_uint_sized)
 glmCreateTestGTC(ext_scalar_relational)
 glmCreateTestGTC(ext_vec1)
 glmCreateTestGTC(ext_vector_bool1)
-glmCreateTestGTC(ext_vector_float1)
-glmCreateTestGTC(ext_vector_double1)
-glmCreateTestGTC(ext_vector_int1)
-glmCreateTestGTC(ext_vector_uint1)
+glmCreateTestGTC(ext_vector_iec559)
+glmCreateTestGTC(ext_vector_integer)
 glmCreateTestGTC(ext_vector_relational)

+ 13 - 0
test/ext/ext_matrix_clip_space.cpp

@@ -0,0 +1,13 @@
+#include <glm/ext/matrix_relational.hpp>
+#include <glm/ext/matrix_clip_space.hpp>
+#include <glm/ext/matrix_float4x4.hpp>
+#include <glm/ext/vector_relational.hpp>
+#include <glm/ext/vector_float4.hpp>
+#include <glm/ext/vector_float3.hpp>
+
+int main()
+{
+	int Error = 0;
+
+	return Error;
+}

+ 13 - 0
test/ext/ext_matrix_projection.cpp

@@ -0,0 +1,13 @@
+#include <glm/ext/matrix_relational.hpp>
+#include <glm/ext/matrix_projection.hpp>
+#include <glm/ext/matrix_float4x4.hpp>
+#include <glm/ext/vector_relational.hpp>
+#include <glm/ext/vector_float4.hpp>
+#include <glm/ext/vector_float3.hpp>
+
+int main()
+{
+	int Error = 0;
+
+	return Error;
+}

+ 18 - 0
test/ext/ext_matrix_transform.cpp

@@ -18,12 +18,30 @@ static int test_translate()
 	return Error;
 }
 
+static int test_scale()
+{
+	int Error = 0;
+
+	glm::mat4 const M(1.0f);
+	glm::vec3 const V(2.0f);
+
+	glm::mat4 const S = glm::scale(M, V);
+	glm::mat4 const R = glm::mat4(
+		glm::vec4(2, 0, 0, 0),
+		glm::vec4(0, 2, 0, 0),
+		glm::vec4(0, 0, 2, 0),
+		glm::vec4(0, 0, 0, 1));
+	Error += glm::all(glm::equal(S, R, glm::epsilon<float>())) ? 0 : 1;
+
+	return Error;
+}
 
 int main()
 {
 	int Error = 0;
 
 	Error += test_translate();
+	Error += test_scale();
 
 	return Error;
 }

+ 0 - 128
test/ext/ext_vector_double1.cpp

@@ -1,128 +0,0 @@
-#include <glm/gtc/constants.hpp>
-#include <glm/ext/scalar_relational.hpp>
-#include <glm/ext/vector_relational.hpp>
-#include <glm/ext/vector_double1.hpp>
-#include <glm/ext/vector_double1_precision.hpp>
-#include <glm/ext/vector_double2.hpp>
-#include <glm/ext/vector_double3.hpp>
-#include <glm/ext/vector_double4.hpp>
-
-template <typename genType>
-static int test_operators()
-{
-	int Error = 0;
-
-	{
-		genType const A(1);
-		genType const B(1);
-
-		genType const C = A + B;
-		Error += glm::all(glm::equal(C, genType(2), glm::epsilon<double>())) ? 0 : 1;
-
-		genType const D = A - B;
-		Error += glm::all(glm::equal(D, genType(0), glm::epsilon<double>())) ? 0 : 1;
-
-		genType const E = A * B;
-		Error += glm::all(glm::equal(E, genType(1), glm::epsilon<double>())) ? 0 : 1;
-
-		genType const F = A / B;
-		Error += glm::all(glm::equal(F, genType(1), glm::epsilon<double>())) ? 0 : 1;
-	}
-
-	return Error;
-}
-
-template <typename genType>
-static int test_ctor()
-{
-	int Error = 0;
-
-	glm::dvec1 const A = genType(1);
-
-	glm::dvec1 const E(genType(1));
-	Error += glm::all(glm::equal(A, E, glm::epsilon<double>())) ? 0 : 1;
-
-	glm::dvec1 const F(E);
-	Error += glm::all(glm::equal(A, F, glm::epsilon<double>())) ? 0 : 1;
-
-	genType const B = genType(1);
-	genType const G(glm::dvec2(1));
-	Error += glm::all(glm::equal(B, G, glm::epsilon<double>())) ? 0 : 1;
-
-	genType const H(glm::dvec3(1));
-	Error += glm::all(glm::equal(B, H, glm::epsilon<double>())) ? 0 : 1;
-
-	genType const I(glm::dvec4(1));
-	Error += glm::all(glm::equal(B, I, glm::epsilon<double>())) ? 0 : 1;
-
-	return Error;
-}
-
-template <typename genType>
-static int test_size()
-{
-	int Error = 0;
-
-	Error += sizeof(glm::dvec1) == sizeof(genType) ? 0 : 1;
-	Error += genType().length() == 1 ? 0 : 1;
-	Error += genType::length() == 1 ? 0 : 1;
-
-	return Error;
-}
-
-template <typename genType>
-static int test_relational()
-{
-	int Error = 0;
-
-	genType const A(1);
-	genType const B(1);
-	genType const C(0);
-
-	Error += all(equal(A, B, glm::epsilon<double>())) ? 0 : 1;
-	Error += any(notEqual(A, C, glm::epsilon<double>())) ? 0 : 1;
-
-	return Error;
-}
-
-template <typename genType>
-static int test_constexpr()
-{
-#	if GLM_CONFIG_CONSTEXP == GLM_ENABLE
-		static_assert(genType::length() == 1, "GLM: Failed constexpr");
-#	endif
-
-	return 0;
-}
-
-int main()
-{
-	int Error = 0;
-
-	Error += test_operators<glm::dvec1>();
-	Error += test_operators<glm::lowp_dvec1>();
-	Error += test_operators<glm::mediump_dvec1>();
-	Error += test_operators<glm::highp_dvec1>();
-
-	Error += test_ctor<glm::dvec1>();
-	Error += test_ctor<glm::lowp_dvec1>();
-	Error += test_ctor<glm::mediump_dvec1>();
-	Error += test_ctor<glm::highp_dvec1>();
-
-	Error += test_size<glm::dvec1>();
-	Error += test_size<glm::lowp_dvec1>();
-	Error += test_size<glm::mediump_dvec1>();
-	Error += test_size<glm::highp_dvec1>();
-
-	Error += test_relational<glm::dvec1>();
-	Error += test_relational<glm::lowp_dvec1>();
-	Error += test_relational<glm::mediump_dvec1>();
-	Error += test_relational<glm::highp_dvec1>();
-
-	Error += test_constexpr<glm::dvec1>();
-	Error += test_constexpr<glm::lowp_dvec1>();
-	Error += test_constexpr<glm::mediump_dvec1>();
-	Error += test_constexpr<glm::highp_dvec1>();
-
-	return Error;
-}

+ 0 - 127
test/ext/ext_vector_float1.cpp

@@ -1,127 +0,0 @@
-#include <glm/gtc/constants.hpp>
-#include <glm/ext/vector_relational.hpp>
-#include <glm/ext/vector_float1.hpp>
-#include <glm/ext/vector_float1_precision.hpp>
-#include <glm/ext/vector_float2.hpp>
-#include <glm/ext/vector_float3.hpp>
-#include <glm/ext/vector_float4.hpp>
-
-template <typename genType>
-static int test_operators()
-{
-	int Error = 0;
-
-	{
-		genType const A(1);
-		genType const B(1);
-
-		genType const C = A + B;
-		Error += glm::all(glm::equal(C, genType(2), glm::epsilon<float>())) ? 0 : 1;
-
-		genType const D = A - B;
-		Error += glm::all(glm::equal(D, genType(0), glm::epsilon<float>())) ? 0 : 1;
-
-		genType const E = A * B;
-		Error += glm::all(glm::equal(E, genType(1), glm::epsilon<float>())) ? 0 : 1;
-
-		genType const F = A / B;
-		Error += glm::all(glm::equal(F, genType(1), glm::epsilon<float>())) ? 0 : 1;
-	}
-
-	return Error;
-}
-
-template <typename genType>
-static int test_ctor()
-{
-	int Error = 0;
-
-	glm::vec1 const A = genType(1);
-
-	glm::vec1 const E(genType(1));
-	Error += glm::all(glm::equal(A, E, glm::epsilon<float>())) ? 0 : 1;
-
-	glm::vec1 const F(E);
-	Error += glm::all(glm::equal(A, F, glm::epsilon<float>())) ? 0 : 1;
-
-	genType const B = genType(1);
-	genType const G(glm::vec2(1));
-	Error += glm::all(glm::equal(B, G, glm::epsilon<float>())) ? 0 : 1;
-
-	genType const H(glm::vec3(1));
-	Error += glm::all(glm::equal(B, H, glm::epsilon<float>())) ? 0 : 1;
-
-	genType const I(glm::vec4(1));
-	Error += glm::all(glm::equal(B, I, glm::epsilon<float>())) ? 0 : 1;
-
-	return Error;
-}
-
-template <typename genType>
-static int test_size()
-{
-	int Error = 0;
-
-	Error += sizeof(glm::vec1) == sizeof(genType) ? 0 : 1;
-	Error += genType().length() == 1 ? 0 : 1;
-	Error += genType::length() == 1 ? 0 : 1;
-
-	return Error;
-}
-
-template <typename genType>
-static int test_relational()
-{
-	int Error = 0;
-
-	genType const A(1);
-	genType const B(1);
-	genType const C(0);
-
-	Error += all(equal(A, B, glm::epsilon<float>())) ? 0 : 1;
-	Error += any(notEqual(A, C, glm::epsilon<float>())) ? 0 : 1;
-
-	return Error;
-}
-
-template <typename genType>
-static int test_constexpr()
-{
-#	if GLM_CONFIG_CONSTEXP == GLM_ENABLE
-		static_assert(genType::length() == 1, "GLM: Failed constexpr");
-#	endif
-
-	return 0;
-}
-
-int main()
-{
-	int Error = 0;
-
-	Error += test_operators<glm::vec1>();
-	Error += test_operators<glm::lowp_vec1>();
-	Error += test_operators<glm::mediump_vec1>();
-	Error += test_operators<glm::highp_vec1>();
-
-	Error += test_ctor<glm::vec1>();
-	Error += test_ctor<glm::lowp_vec1>();
-	Error += test_ctor<glm::mediump_vec1>();
-	Error += test_ctor<glm::highp_vec1>();
-
-	Error += test_size<glm::vec1>();
-	Error += test_size<glm::lowp_vec1>();
-	Error += test_size<glm::mediump_vec1>();
-	Error += test_size<glm::highp_vec1>();
-
-	Error += test_relational<glm::vec1>();
-	Error += test_relational<glm::lowp_vec1>();
-	Error += test_relational<glm::mediump_vec1>();
-	Error += test_relational<glm::highp_vec1>();
-
-	Error += test_constexpr<glm::vec1>();
-	Error += test_constexpr<glm::lowp_vec1>();
-	Error += test_constexpr<glm::mediump_vec1>();
-	Error += test_constexpr<glm::highp_vec1>();
-
-	return Error;
-}

+ 166 - 0
test/ext/ext_vector_iec559.cpp

@@ -0,0 +1,166 @@
+#include <glm/gtc/constants.hpp>
+#include <glm/ext/scalar_relational.hpp>
+#include <glm/ext/vector_relational.hpp>
+#include <glm/ext/vector_double1.hpp>
+#include <glm/ext/vector_double1_precision.hpp>
+#include <glm/ext/vector_double2.hpp>
+#include <glm/ext/vector_double3.hpp>
+#include <glm/ext/vector_double4.hpp>
+#include <glm/ext/vector_float1.hpp>
+#include <glm/ext/vector_float1_precision.hpp>
+#include <glm/ext/vector_float2.hpp>
+#include <glm/ext/vector_float3.hpp>
+#include <glm/ext/vector_float4.hpp>
+
+template <typename genType>
+static int test_operators()
+{
+	typedef typename genType::value_type valType;
+	
+	int Error = 0;
+
+	{
+		genType const A(1);
+		genType const B(1);
+
+		genType const C = A + B;
+		Error += glm::all(glm::equal(C, genType(2), glm::epsilon<valType>())) ? 0 : 1;
+
+		genType const D = A - B;
+		Error += glm::all(glm::equal(D, genType(0), glm::epsilon<valType>())) ? 0 : 1;
+
+		genType const E = A * B;
+		Error += glm::all(glm::equal(E, genType(1), glm::epsilon<valType>())) ? 0 : 1;
+
+		genType const F = A / B;
+		Error += glm::all(glm::equal(F, genType(1), glm::epsilon<valType>())) ? 0 : 1;
+	}
+
+	return Error;
+}
+
+template <typename genType>
+static int test_ctor()
+{
+	typedef typename genType::value_type T;
+	
+	int Error = 0;
+
+	glm::vec<1, T> const A = genType(1);
+
+	glm::vec<1, T> const E(genType(1));
+	Error += glm::all(glm::equal(A, E, glm::epsilon<T>())) ? 0 : 1;
+
+	glm::vec<1, T> const F(E);
+	Error += glm::all(glm::equal(A, F, glm::epsilon<T>())) ? 0 : 1;
+
+	genType const B = genType(1);
+	genType const G(glm::vec<2, T>(1));
+	Error += glm::all(glm::equal(B, G, glm::epsilon<T>())) ? 0 : 1;
+
+	genType const H(glm::vec<3, T>(1));
+	Error += glm::all(glm::equal(B, H, glm::epsilon<T>())) ? 0 : 1;
+
+	genType const I(glm::vec<4, T>(1));
+	Error += glm::all(glm::equal(B, I, glm::epsilon<T>())) ? 0 : 1;
+
+	return Error;
+}
+
+template <typename genType>
+static int test_size()
+{
+	typedef typename genType::value_type T;
+	
+	int Error = 0;
+
+	Error += sizeof(glm::vec<1, T>) == sizeof(genType) ? 0 : 1;
+	Error += genType().length() == 1 ? 0 : 1;
+	Error += genType::length() == 1 ? 0 : 1;
+
+	return Error;
+}
+
+template <typename genType>
+static int test_relational()
+{
+	typedef typename genType::value_type valType;
+	
+	int Error = 0;
+
+	genType const A(1);
+	genType const B(1);
+	genType const C(0);
+
+	Error += all(equal(A, B, glm::epsilon<valType>())) ? 0 : 1;
+	Error += any(notEqual(A, C, glm::epsilon<valType>())) ? 0 : 1;
+
+	return Error;
+}
+
+template <typename genType>
+static int test_constexpr()
+{
+#	if GLM_CONFIG_CONSTEXP == GLM_ENABLE
+		static_assert(genType::length() == 1, "GLM: Failed constexpr");
+#	endif
+
+	return 0;
+}
+
+int main()
+{
+	int Error = 0;
+
+	Error += test_operators<glm::dvec1>();
+	Error += test_operators<glm::lowp_dvec1>();
+	Error += test_operators<glm::mediump_dvec1>();
+	Error += test_operators<glm::highp_dvec1>();
+
+	Error += test_ctor<glm::dvec1>();
+	Error += test_ctor<glm::lowp_dvec1>();
+	Error += test_ctor<glm::mediump_dvec1>();
+	Error += test_ctor<glm::highp_dvec1>();
+
+	Error += test_size<glm::dvec1>();
+	Error += test_size<glm::lowp_dvec1>();
+	Error += test_size<glm::mediump_dvec1>();
+	Error += test_size<glm::highp_dvec1>();
+
+	Error += test_relational<glm::dvec1>();
+	Error += test_relational<glm::lowp_dvec1>();
+	Error += test_relational<glm::mediump_dvec1>();
+	Error += test_relational<glm::highp_dvec1>();
+
+	Error += test_constexpr<glm::dvec1>();
+	Error += test_constexpr<glm::lowp_dvec1>();
+	Error += test_constexpr<glm::mediump_dvec1>();
+	Error += test_constexpr<glm::highp_dvec1>();
+
+	Error += test_operators<glm::vec1>();
+	Error += test_operators<glm::lowp_vec1>();
+	Error += test_operators<glm::mediump_vec1>();
+	Error += test_operators<glm::highp_vec1>();
+	
+	Error += test_ctor<glm::vec1>();
+	Error += test_ctor<glm::lowp_vec1>();
+	Error += test_ctor<glm::mediump_vec1>();
+	Error += test_ctor<glm::highp_vec1>();
+	
+	Error += test_size<glm::vec1>();
+	Error += test_size<glm::lowp_vec1>();
+	Error += test_size<glm::mediump_vec1>();
+	Error += test_size<glm::highp_vec1>();
+	
+	Error += test_relational<glm::vec1>();
+	Error += test_relational<glm::lowp_vec1>();
+	Error += test_relational<glm::mediump_vec1>();
+	Error += test_relational<glm::highp_vec1>();
+	
+	Error += test_constexpr<glm::vec1>();
+	Error += test_constexpr<glm::lowp_vec1>();
+	Error += test_constexpr<glm::mediump_vec1>();
+	Error += test_constexpr<glm::highp_vec1>();
+	
+	return Error;
+}

+ 40 - 8
test/ext/ext_vector_int1.cpp → test/ext/ext_vector_integer.cpp

@@ -3,6 +3,11 @@
 #include <glm/ext/vector_int2.hpp>
 #include <glm/ext/vector_int3.hpp>
 #include <glm/ext/vector_int4.hpp>
+#include <glm/ext/vector_uint1.hpp>
+#include <glm/ext/vector_uint1_precision.hpp>
+#include <glm/ext/vector_uint2.hpp>
+#include <glm/ext/vector_uint3.hpp>
+#include <glm/ext/vector_uint4.hpp>
 #include <glm/vector_relational.hpp>
 
 template <typename genType>
@@ -82,24 +87,26 @@ static int test_operators()
 template <typename genType>
 static int test_ctor()
 {
+	typedef typename genType::value_type T;
+	
 	int Error = 0;
 
-	glm::ivec1 const A = genType(1);
+	genType const A = genType(1);
 
-	glm::ivec1 const E(genType(1));
+	genType const E(genType(1));
 	Error += A == E ? 0 : 1;
 
-	glm::ivec1 const F(E);
+	genType const F(E);
 	Error += A == F ? 0 : 1;
 
 	genType const B = genType(1);
-	genType const G(glm::ivec2(1));
+	genType const G(glm::vec<2, T>(1));
 	Error += B == G ? 0 : 1;
 
-	genType const H(glm::ivec3(1));
+	genType const H(glm::vec<3, T>(1));
 	Error += B == H ? 0 : 1;
 
-	genType const I(glm::ivec4(1));
+	genType const I(glm::vec<4, T>(1));
 	Error += B == I ? 0 : 1;
 
 	return Error;
@@ -110,7 +117,7 @@ static int test_size()
 {
 	int Error = 0;
 
-	Error += sizeof(glm::ivec1) == sizeof(genType) ? 0 : 1;
+	Error += sizeof(typename genType::value_type) == sizeof(genType) ? 0 : 1;
 	Error += genType().length() == 1 ? 0 : 1;
 	Error += genType::length() == 1 ? 0 : 1;
 
@@ -140,7 +147,7 @@ static int test_constexpr()
 #	if GLM_CONFIG_CONSTEXP == GLM_ENABLE
 		static_assert(genType::length() == 1, "GLM: Failed constexpr");
 		static_assert(genType(1)[0] == 1, "GLM: Failed constexpr");
-		static_assert(genType(1) == genType(glm::ivec1(1)), "GLM: Failed constexpr");
+		static_assert(genType(1) == genType(1), "GLM: Failed constexpr");
 		static_assert(genType(1) != genType(0), "GLM: Failed constexpr");
 #	endif
 
@@ -176,5 +183,30 @@ int main()
 	Error += test_constexpr<glm::mediump_ivec1>();
 	Error += test_constexpr<glm::highp_ivec1>();
 
+	Error += test_operators<glm::uvec1>();
+	Error += test_operators<glm::lowp_uvec1>();
+	Error += test_operators<glm::mediump_uvec1>();
+	Error += test_operators<glm::highp_uvec1>();
+	
+	Error += test_ctor<glm::uvec1>();
+	Error += test_ctor<glm::lowp_uvec1>();
+	Error += test_ctor<glm::mediump_uvec1>();
+	Error += test_ctor<glm::highp_uvec1>();
+	
+	Error += test_size<glm::uvec1>();
+	Error += test_size<glm::lowp_uvec1>();
+	Error += test_size<glm::mediump_uvec1>();
+	Error += test_size<glm::highp_uvec1>();
+	
+	Error += test_relational<glm::uvec1>();
+	Error += test_relational<glm::lowp_uvec1>();
+	Error += test_relational<glm::mediump_uvec1>();
+	Error += test_relational<glm::highp_uvec1>();
+	
+	Error += test_constexpr<glm::uvec1>();
+	Error += test_constexpr<glm::lowp_uvec1>();
+	Error += test_constexpr<glm::mediump_uvec1>();
+	Error += test_constexpr<glm::highp_uvec1>();
+	
 	return Error;
 }

+ 0 - 180
test/ext/ext_vector_uint1.cpp

@@ -1,180 +0,0 @@
-#include <glm/ext/vector_uint1.hpp>
-#include <glm/ext/vector_uint1_precision.hpp>
-#include <glm/ext/vector_uint2.hpp>
-#include <glm/ext/vector_uint3.hpp>
-#include <glm/ext/vector_uint4.hpp>
-#include <glm/ext/vector_relational.hpp>
-
-template <typename genType>
-static int test_operators()
-{
-	int Error = 0;
-
-	{
-		genType const A(1);
-		genType const B(1);
-
-		bool const R = A != B;
-		bool const S = A == B;
-		Error += (S && !R) ? 0 : 1;
-	}
-
-	{
-		genType const A(1);
-		genType const B(1);
-
-		genType const C = A + B;
-		Error += C == genType(2) ? 0 : 1;
-
-		genType const D = A - B;
-		Error += D == genType(0) ? 0 : 1;
-
-		genType const E = A * B;
-		Error += E == genType(1) ? 0 : 1;
-
-		genType const F = A / B;
-		Error += F == genType(1) ? 0 : 1;
-	}
-
-	{
-		genType const A(3);
-		genType const B(2);
-
-		genType const C = A % B;
-		Error += C == genType(1) ? 0 : 1;
-	}
-
-	{
-		genType const A(1);
-		genType const B(1);
-		genType const C(0);
-
-		genType const I = A & B;
-		Error += I == genType(1) ? 0 : 1;
-		genType const D = A & C;
-		Error += D == genType(0) ? 0 : 1;
-
-		genType const E = A | B;
-		Error += E == genType(1) ? 0 : 1;
-		genType const F = A | C;
-		Error += F == genType(1) ? 0 : 1;
-
-		genType const G = A ^ B;
-		Error += G == genType(0) ? 0 : 1;
-		genType const H = A ^ C;
-		Error += H == genType(1) ? 0 : 1;
-	}
-
-	{
-		genType const A(0);
-		genType const B(1);
-		genType const C(2);
-
-		genType const D = B << B;
-		Error += D == genType(2) ? 0 : 1;
-		genType const E = C >> B;
-		Error += E == genType(1) ? 0 : 1;
-	}
-
-	return Error;
-}
-
-template <typename genType>
-static int test_ctor()
-{
-	int Error = 0;
-
-	glm::uvec1 const A = genType(1);
-
-	glm::uvec1 const E(genType(1));
-	Error += A == E ? 0 : 1;
-
-	glm::uvec1 const F(E);
-	Error += A == F ? 0 : 1;
-
-	genType const B = genType(1);
-	genType const G(glm::uvec2(1));
-	Error += B == G ? 0 : 1;
-
-	genType const H(glm::uvec3(1));
-	Error += B == H ? 0 : 1;
-
-	genType const I(glm::uvec4(1));
-	Error += B == I ? 0 : 1;
-
-	return Error;
-}
-
-template <typename genType>
-static int test_size()
-{
-	int Error = 0;
-
-	Error += sizeof(glm::uvec1) == sizeof(genType) ? 0 : 1;
-	Error += genType().length() == 1 ? 0 : 1;
-	Error += genType::length() == 1 ? 0 : 1;
-
-	return Error;
-}
-
-template <typename genType>
-static int test_relational()
-{
-	int Error = 0;
-
-	genType const A(1);
-	genType const B(1);
-	genType const C(0);
-
-	Error += A == B ? 0 : 1;
-	Error += A != C ? 0 : 1;
-	Error += all(equal(A, B)) ? 0 : 1;
-	Error += any(notEqual(A, C)) ? 0 : 1;
-
-	return Error;
-}
-
-template <typename genType>
-static int test_constexpr()
-{
-#	if GLM_CONFIG_CONSTEXP == GLM_ENABLE
-		static_assert(genType::length() == 1, "GLM: Failed constexpr");
-		static_assert(genType(1)[0] == 1, "GLM: Failed constexpr");
-		static_assert(genType(1) == genType(glm::uvec1(1)), "GLM: Failed constexpr");
-		static_assert(genType(1) != genType(0), "GLM: Failed constexpr");
-#	endif
-
-	return 0;
-}
-
-int main()
-{
-	int Error = 0;
-
-	Error += test_operators<glm::uvec1>();
-	Error += test_operators<glm::lowp_uvec1>();
-	Error += test_operators<glm::mediump_uvec1>();
-	Error += test_operators<glm::highp_uvec1>();
-
-	Error += test_ctor<glm::uvec1>();
-	Error += test_ctor<glm::lowp_uvec1>();
-	Error += test_ctor<glm::mediump_uvec1>();
-	Error += test_ctor<glm::highp_uvec1>();
-
-	Error += test_size<glm::uvec1>();
-	Error += test_size<glm::lowp_uvec1>();
-	Error += test_size<glm::mediump_uvec1>();
-	Error += test_size<glm::highp_uvec1>();
-
-	Error += test_relational<glm::uvec1>();
-	Error += test_relational<glm::lowp_uvec1>();
-	Error += test_relational<glm::mediump_uvec1>();
-	Error += test_relational<glm::highp_uvec1>();
-
-	Error += test_constexpr<glm::uvec1>();
-	Error += test_constexpr<glm::lowp_uvec1>();
-	Error += test_constexpr<glm::mediump_uvec1>();
-	Error += test_constexpr<glm::highp_uvec1>();
-
-	return Error;
-}