Browse Source

Make C++98 compliant

Vincent Aymong 8 years ago
parent
commit
f9962054d9

+ 2 - 3
glm/gtx/matrix_factorisation.hpp

@@ -13,7 +13,6 @@
 #pragma once
 #pragma once
 
 
 // Dependency:
 // Dependency:
-#include <algorithm>
 #include "../glm.hpp"
 #include "../glm.hpp"
 
 
 #ifndef GLM_ENABLE_EXPERIMENTAL
 #ifndef GLM_ENABLE_EXPERIMENTAL
@@ -49,7 +48,7 @@ namespace glm{
 	/// Given an n-by-m input matrix, q has dimensions min(n,m)-by-m, and r has dimensions n-by-min(n,m).
 	/// Given an n-by-m input matrix, q has dimensions min(n,m)-by-m, and r has dimensions n-by-min(n,m).
 	/// From GLM_GTX_matrix_factorisation extension.
 	/// From GLM_GTX_matrix_factorisation extension.
 	template <length_t C, length_t R, typename T, precision P, template<length_t, length_t, typename, precision> class matType>
 	template <length_t C, length_t R, typename T, precision P, template<length_t, length_t, typename, precision> class matType>
-	GLM_FUNC_DECL void qr_decompose(matType<std::min(C, R), R, T, P>& q, matType<C, std::min(C, R), T, P>& r, const matType<C, R, T, P>& in);
+	GLM_FUNC_DECL void qr_decompose(matType<(C < R ? C : R), R, T, P>& q, matType<C, (C < R ? C : R), T, P>& r, const matType<C, R, T, P>& in);
 
 
 	/// Performs RQ factorisation of a matrix.
 	/// Performs RQ factorisation of a matrix.
 	/// Returns 2 matrices, r and q, such that r is an upper triangular matrix, the rows of q are orthonormal and span the same subspace than those of the input matrix, and r*q=in.
 	/// Returns 2 matrices, r and q, such that r is an upper triangular matrix, the rows of q are orthonormal and span the same subspace than those of the input matrix, and r*q=in.
@@ -57,7 +56,7 @@ namespace glm{
 	/// Given an n-by-m input matrix, r has dimensions min(n,m)-by-m, and q has dimensions n-by-min(n,m).
 	/// Given an n-by-m input matrix, r has dimensions min(n,m)-by-m, and q has dimensions n-by-min(n,m).
 	/// From GLM_GTX_matrix_factorisation extension.
 	/// From GLM_GTX_matrix_factorisation extension.
 	template <length_t C, length_t R, typename T, precision P, template<length_t, length_t, typename, precision> class matType>
 	template <length_t C, length_t R, typename T, precision P, template<length_t, length_t, typename, precision> class matType>
-	GLM_FUNC_DECL void rq_decompose(matType<std::min(C, R), R, T, P>& r, matType<C, std::min(C, R), T, P>& q, const matType<C, R, T, P>& in);
+	GLM_FUNC_DECL void rq_decompose(matType<(C < R ? C : R), R, T, P>& r, matType<C, (C < R ? C : R), T, P>& q, const matType<C, R, T, P>& in);
 
 
 	/// @}
 	/// @}
 }
 }

+ 5 - 5
glm/gtx/matrix_factorisation.inl

@@ -24,14 +24,14 @@ namespace glm {
 	}
 	}
 
 
 	template <length_t C, length_t R, typename T, precision P, template<length_t, length_t, typename, precision> class matType>
 	template <length_t C, length_t R, typename T, precision P, template<length_t, length_t, typename, precision> class matType>
-	GLM_FUNC_QUALIFIER void qr_decompose(matType<std::min(C, R), R, T, P>& q, matType<C, std::min(C, R), T, P>& r, const matType<C, R, T, P>& in) {
+	GLM_FUNC_QUALIFIER void qr_decompose(matType<(C < R ? C : R), R, T, P>& q, matType<C, (C < R ? C : R), T, P>& r, const matType<C, R, T, P>& in) {
 		// Uses modified Gram-Schmidt method
 		// Uses modified Gram-Schmidt method
 		// Source: https://en.wikipedia.org/wiki/Gram–Schmidt_process
 		// Source: https://en.wikipedia.org/wiki/Gram–Schmidt_process
 		// And https://en.wikipedia.org/wiki/QR_decomposition
 		// And https://en.wikipedia.org/wiki/QR_decomposition
 
 
 		//For all the linearly independs columns of the input...
 		//For all the linearly independs columns of the input...
 		// (there can be no more linearly independents columns than there are rows.)
 		// (there can be no more linearly independents columns than there are rows.)
-		for (length_t i = 0; i < std::min(R, C); i++) {
+		for (length_t i = 0; i < (C < R ? C : R); i++) {
 			//Copy in Q the input's i-th column.
 			//Copy in Q the input's i-th column.
 			q[i] = in[i];
 			q[i] = in[i];
 
 
@@ -55,7 +55,7 @@ namespace glm {
 	}
 	}
 
 
 	template <length_t C, length_t R, typename T, precision P, template<length_t, length_t, typename, precision> class matType>
 	template <length_t C, length_t R, typename T, precision P, template<length_t, length_t, typename, precision> class matType>
-	GLM_FUNC_QUALIFIER void rq_decompose(matType<std::min(C, R), R, T, P>& r, matType<C, std::min(C, R), T, P>& q, const matType<C, R, T, P>& in) {
+	GLM_FUNC_QUALIFIER void rq_decompose(matType<(C < R ? C : R), R, T, P>& r, matType<C, (C < R ? C : R), T, P>& q, const matType<C, R, T, P>& in) {
 		// From https://en.wikipedia.org/wiki/QR_decomposition:
 		// From https://en.wikipedia.org/wiki/QR_decomposition:
 		// The RQ decomposition transforms a matrix A into the product of an upper triangular matrix R (also known as right-triangular) and an orthogonal matrix Q. The only difference from QR decomposition is the order of these matrices.
 		// The RQ decomposition transforms a matrix A into the product of an upper triangular matrix R (also known as right-triangular) and an orthogonal matrix Q. The only difference from QR decomposition is the order of these matrices.
 		// QR decomposition is Gram–Schmidt orthogonalization of columns of A, started from the first column.
 		// QR decomposition is Gram–Schmidt orthogonalization of columns of A, started from the first column.
@@ -64,8 +64,8 @@ namespace glm {
 		matType<R, C, T, P> tin = transpose(in);
 		matType<R, C, T, P> tin = transpose(in);
 		tin = fliplr(tin);
 		tin = fliplr(tin);
 
 
-		matType<R, std::min(C, R), T, P> tr;
-		matType<std::min(C, R), C, T, P> tq;
+		matType<R, (C < R ? C : R), T, P> tr;
+		matType<(C < R ? C : R), C, T, P> tq;
 		qr_decompose(tq, tr, tin);
 		qr_decompose(tq, tr, tin);
 
 
 		tr = fliplr(tr);
 		tr = fliplr(tr);

+ 10 - 10
test/gtx/gtx_matrix_factorisation.cpp

@@ -5,8 +5,8 @@ const double epsilon = 1e-10f;
 
 
 template <glm::length_t C, glm::length_t R, typename T, glm::precision P, template<glm::length_t, glm::length_t, typename, glm::precision> class matType>
 template <glm::length_t C, glm::length_t R, typename T, glm::precision P, template<glm::length_t, glm::length_t, typename, glm::precision> class matType>
 int test_qr(matType<C, R, T, P> m) {
 int test_qr(matType<C, R, T, P> m) {
-	matType<std::min(C, R), R, T, P> q(-999);
-	matType<C, std::min(C, R), T, P> r(-999);
+	matType<(C < R ? C : R), R, T, P> q(-999);
+	matType<C, (C < R ? C : R), T, P> r(-999);
 
 
 	glm::qr_decompose(q, r, m);
 	glm::qr_decompose(q, r, m);
 
 
@@ -21,7 +21,7 @@ int test_qr(matType<C, R, T, P> m) {
 	}
 	}
 
 
 	//Test if the columns of q are orthonormal
 	//Test if the columns of q are orthonormal
-	for (glm::length_t i = 0; i < std::min(C, R); i++) {
+	for (glm::length_t i = 0; i < (C < R ? C : R); i++) {
 		if ((length(q[i]) - 1) > epsilon) return 2;
 		if ((length(q[i]) - 1) > epsilon) return 2;
 
 
 		for (glm::length_t j = 0; j<i; j++) {
 		for (glm::length_t j = 0; j<i; j++) {
@@ -31,7 +31,7 @@ int test_qr(matType<C, R, T, P> m) {
 
 
 	//Test if the matrix r is upper triangular
 	//Test if the matrix r is upper triangular
 	for (glm::length_t i = 0; i < C; i++) {
 	for (glm::length_t i = 0; i < C; i++) {
-		for (glm::length_t j = i + 1; j < std::min(C, R); j++) {
+		for (glm::length_t j = i + 1; j < (C < R ? C : R); j++) {
 			if (r[i][j] != 0) return 4;
 			if (r[i][j] != 0) return 4;
 		}
 		}
 	}
 	}
@@ -41,8 +41,8 @@ int test_qr(matType<C, R, T, P> m) {
 
 
 template <glm::length_t C, glm::length_t R, typename T, glm::precision P, template<glm::length_t, glm::length_t, typename, glm::precision> class matType>
 template <glm::length_t C, glm::length_t R, typename T, glm::precision P, template<glm::length_t, glm::length_t, typename, glm::precision> class matType>
 int test_rq(matType<C, R, T, P> m) {
 int test_rq(matType<C, R, T, P> m) {
-	matType<C, std::min(C, R), T, P> q(-999);
-	matType<std::min(C, R), R, T, P> r(-999);
+	matType<C, (C < R ? C : R), T, P> q(-999);
+	matType<(C < R ? C : R), R, T, P> r(-999);
 
 
 	glm::rq_decompose(r, q, m);
 	glm::rq_decompose(r, q, m);
 
 
@@ -58,9 +58,9 @@ int test_rq(matType<C, R, T, P> m) {
 	
 	
 	
 	
 	//Test if the rows of q are orthonormal
 	//Test if the rows of q are orthonormal
-	matType<std::min(C, R), C, T, P> tq = transpose(q);
+	matType<(C < R ? C : R), C, T, P> tq = transpose(q);
 
 
-	for (glm::length_t i = 0; i < std::min(C, R); i++) {
+	for (glm::length_t i = 0; i < (C < R ? C : R); i++) {
 		if ((length(tq[i]) - 1) > epsilon) return 2;
 		if ((length(tq[i]) - 1) > epsilon) return 2;
 
 
 		for (glm::length_t j = 0; j<i; j++) {
 		for (glm::length_t j = 0; j<i; j++) {
@@ -69,8 +69,8 @@ int test_rq(matType<C, R, T, P> m) {
 	}
 	}
 	
 	
 	//Test if the matrix r is upper triangular
 	//Test if the matrix r is upper triangular
-	for (glm::length_t i = 0; i < std::min(C, R); i++) {
-		for (glm::length_t j = R - std::min(C, R) + i + 1; j < R; j++) {
+	for (glm::length_t i = 0; i < (C < R ? C : R); i++) {
+		for (glm::length_t j = R - (C < R ? C : R) + i + 1; j < R; j++) {
 			if (r[i][j] != 0) return 4;
 			if (r[i][j] != 0) return 4;
 		}
 		}
 	}
 	}