gtc_quaternion.cpp 6.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230
  1. ///////////////////////////////////////////////////////////////////////////////////////////////////
  2. // OpenGL Mathematics Copyright (c) 2005 - 2013 G-Truc Creation (www.g-truc.net)
  3. ///////////////////////////////////////////////////////////////////////////////////////////////////
  4. // Created : 2010-09-16
  5. // Updated : 2011-05-25
  6. // Licence : This source is under MIT licence
  7. // File : test/gtc/quaternion.cpp
  8. ///////////////////////////////////////////////////////////////////////////////////////////////////
  9. #include <glm/glm.hpp>
  10. #include <glm/gtc/quaternion.hpp>
  11. #include <glm/gtc/epsilon.hpp>
  12. int test_quat_angle()
  13. {
  14. int Error = 0;
  15. {
  16. glm::quat Q = glm::angleAxis(45.0f, glm::vec3(0, 0, 1));
  17. glm::quat N = glm::normalize(Q);
  18. float L = glm::length(N);
  19. Error += glm::epsilonEqual(L, 1.0f, 0.01f) ? 0 : 1;
  20. float A = glm::angle(N);
  21. Error += glm::epsilonEqual(A, 45.0f, 0.01f) ? 0 : 1;
  22. }
  23. {
  24. glm::quat Q = glm::angleAxis(45.0f, glm::normalize(glm::vec3(0, 1, 1)));
  25. glm::quat N = glm::normalize(Q);
  26. float L = glm::length(N);
  27. Error += glm::epsilonEqual(L, 1.0f, 0.01f) ? 0 : 1;
  28. float A = glm::angle(N);
  29. Error += glm::epsilonEqual(A, 45.0f, 0.01f) ? 0 : 1;
  30. }
  31. {
  32. glm::quat Q = glm::angleAxis(45.0f, glm::normalize(glm::vec3(1, 2, 3)));
  33. glm::quat N = glm::normalize(Q);
  34. float L = glm::length(N);
  35. Error += glm::epsilonEqual(L, 1.0f, 0.01f) ? 0 : 1;
  36. float A = glm::angle(N);
  37. Error += glm::epsilonEqual(A, 45.0f, 0.01f) ? 0 : 1;
  38. }
  39. return Error;
  40. }
  41. int test_quat_angleAxis()
  42. {
  43. int Error = 0;
  44. glm::quat A = glm::angleAxis(0.0f, glm::vec3(0, 0, 1));
  45. glm::quat B = glm::angleAxis(90.0f, glm::vec3(0, 0, 1));
  46. glm::quat C = glm::mix(A, B, 0.5f);
  47. glm::quat D = glm::angleAxis(45.0f, glm::vec3(0, 0, 1));
  48. Error += glm::epsilonEqual(C.x, D.x, 0.01f) ? 0 : 1;
  49. Error += glm::epsilonEqual(C.y, D.y, 0.01f) ? 0 : 1;
  50. Error += glm::epsilonEqual(C.z, D.z, 0.01f) ? 0 : 1;
  51. Error += glm::epsilonEqual(C.w, D.w, 0.01f) ? 0 : 1;
  52. return Error;
  53. }
  54. int test_quat_mix()
  55. {
  56. int Error = 0;
  57. glm::quat A = glm::angleAxis(0.0f, glm::vec3(0, 0, 1));
  58. glm::quat B = glm::angleAxis(90.0f, glm::vec3(0, 0, 1));
  59. glm::quat C = glm::mix(A, B, 0.5f);
  60. glm::quat D = glm::angleAxis(45.0f, glm::vec3(0, 0, 1));
  61. Error += glm::epsilonEqual(C.x, D.x, 0.01f) ? 0 : 1;
  62. Error += glm::epsilonEqual(C.y, D.y, 0.01f) ? 0 : 1;
  63. Error += glm::epsilonEqual(C.z, D.z, 0.01f) ? 0 : 1;
  64. Error += glm::epsilonEqual(C.w, D.w, 0.01f) ? 0 : 1;
  65. return Error;
  66. }
  67. int test_quat_precision()
  68. {
  69. int Error = 0;
  70. Error += sizeof(glm::lowp_quat) <= sizeof(glm::mediump_quat) ? 0 : 1;
  71. Error += sizeof(glm::mediump_quat) <= sizeof(glm::highp_quat) ? 0 : 1;
  72. return Error;
  73. }
  74. int test_quat_normalize()
  75. {
  76. int Error(0);
  77. {
  78. glm::quat Q = glm::angleAxis(45.0f, glm::vec3(0, 0, 1));
  79. glm::quat N = glm::normalize(Q);
  80. float L = glm::length(N);
  81. Error += glm::epsilonEqual(L, 1.0f, 0.000001f) ? 0 : 1;
  82. }
  83. {
  84. glm::quat Q = glm::angleAxis(45.0f, glm::vec3(0, 0, 2));
  85. glm::quat N = glm::normalize(Q);
  86. float L = glm::length(N);
  87. Error += glm::epsilonEqual(L, 1.0f, 0.000001f) ? 0 : 1;
  88. }
  89. {
  90. glm::quat Q = glm::angleAxis(45.0f, glm::vec3(1, 2, 3));
  91. glm::quat N = glm::normalize(Q);
  92. float L = glm::length(N);
  93. Error += glm::epsilonEqual(L, 1.0f, 0.000001f) ? 0 : 1;
  94. }
  95. return Error;
  96. }
  97. int test_quat_euler()
  98. {
  99. int Error(0);
  100. {
  101. glm::quat q(1.0f, 0.0f, 0.0f, 1.0f);
  102. float Roll = glm::roll(q);
  103. float Pitch = glm::pitch(q);
  104. float Yaw = glm::yaw(q);
  105. glm::vec3 Angles = glm::eulerAngles(q);
  106. }
  107. {
  108. glm::dquat q(1.0f, 0.0f, 0.0f, 1.0f);
  109. double Roll = glm::roll(q);
  110. double Pitch = glm::pitch(q);
  111. double Yaw = glm::yaw(q);
  112. glm::dvec3 Angles = glm::eulerAngles(q);
  113. }
  114. {
  115. glm::hquat q(glm::half(1.0f), glm::half(0.0f), glm::half(0.0f), glm::half(1.0f));
  116. glm::half Roll = glm::roll(q);
  117. glm::half Pitch = glm::pitch(q);
  118. glm::half Yaw = glm::yaw(q);
  119. glm::hvec3 Angles = glm::eulerAngles(q);
  120. }
  121. return Error;
  122. }
  123. int test_quat_slerp()
  124. {
  125. int Error(0);
  126. float const Epsilon = 0.0001f;//glm::epsilon<float>();
  127. float sqrt2 = sqrt(2.0f)/2.0f;
  128. glm::quat id;
  129. glm::quat Y90rot(sqrt2, 0.0f, sqrt2, 0.0f);
  130. glm::quat Y180rot(0.0f, 0.0f, 1.0f, 0.0f);
  131. // Testing a == 0
  132. // Must be id
  133. glm::quat id2 = glm::slerp(id, Y90rot, 0.0f);
  134. Error += glm::all(glm::epsilonEqual(id, id2, Epsilon)) ? 0 : 1;
  135. // Testing a == 1
  136. // Must be 90° rotation on Y : 0 0.7 0 0.7
  137. glm::quat Y90rot2 = glm::slerp(id, Y90rot, 1.0f);
  138. Error += glm::all(glm::epsilonEqual(Y90rot, Y90rot2, Epsilon)) ? 0 : 1;
  139. // Testing standard, easy case
  140. // Must be 45° rotation on Y : 0 0.38 0 0.92
  141. glm::quat Y45rot1 = glm::slerp(id, Y90rot, 0.5f);
  142. // Testing reverse case
  143. // Must be 45° rotation on Y : 0 0.38 0 0.92
  144. glm::quat Ym45rot2 = glm::slerp(Y90rot, id, 0.5f);
  145. // Testing against full circle around the sphere instead of shortest path
  146. // Must be 45° rotation on Y
  147. // certainly not a 135° rotation
  148. glm::quat Y45rot3 = glm::slerp(id , -Y90rot, 0.5f);
  149. float Y45angle3 = glm::angle(Y45rot3);
  150. Error += glm::epsilonEqual(Y45angle3, 45.f, Epsilon) ? 0 : 1;
  151. Error += glm::all(glm::epsilonEqual(Ym45rot2, Y45rot3, Epsilon)) ? 0 : 1;
  152. // Same, but inverted
  153. // Must also be 45° rotation on Y : 0 0.38 0 0.92
  154. // -0 -0.38 -0 -0.92 is ok too
  155. glm::quat Y45rot4 = glm::slerp(-Y90rot, id, 0.5f);
  156. Error += glm::all(glm::epsilonEqual(Ym45rot2, -Y45rot4, Epsilon)) ? 0 : 1;
  157. // Testing q1 = q2
  158. // Must be 90° rotation on Y : 0 0.7 0 0.7
  159. glm::quat Y90rot3 = glm::slerp(Y90rot, Y90rot, 0.5f);
  160. Error += glm::all(glm::epsilonEqual(Y90rot, Y90rot3, Epsilon)) ? 0 : 1;
  161. // Testing 180° rotation
  162. // Must be 90° rotation on almost any axis that is on the XZ plane
  163. glm::quat XZ90rot = glm::slerp(id, -Y90rot, 0.5f);
  164. float XZ90angle = glm::angle(XZ90rot); // Must be PI/4 = 0.78;
  165. Error += glm::epsilonEqual(XZ90angle, 45.f, Epsilon) ? 0 : 1;
  166. // Testing almost equal quaternions (this test should pass through the linear interpolation)
  167. // Must be 0 0.00X 0 0.99999
  168. glm::quat almostid = glm::slerp(id, glm::angleAxis(0.1f, 0.0f, 1.0f, 0.0f), 0.5f);
  169. return Error;
  170. }
  171. int test_quat_type()
  172. {
  173. glm::quat A;
  174. glm::dquat B;
  175. return 0;
  176. }
  177. int main()
  178. {
  179. int Error(0);
  180. Error += test_quat_precision();
  181. Error += test_quat_type();
  182. Error += test_quat_angle();
  183. Error += test_quat_angleAxis();
  184. Error += test_quat_mix();
  185. Error += test_quat_normalize();
  186. Error += test_quat_euler();
  187. Error += test_quat_slerp();
  188. return Error;
  189. }