gtc_bitfield.cpp 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642
  1. #include <glm/gtc/bitfield.hpp>
  2. #include <glm/gtc/type_precision.hpp>
  3. #include <glm/vector_relational.hpp>
  4. #include <glm/integer.hpp>
  5. #include <ctime>
  6. #include <cstdio>
  7. #include <vector>
  8. namespace mask
  9. {
  10. template <typename genType>
  11. struct type
  12. {
  13. genType Value;
  14. genType Return;
  15. };
  16. inline int mask_zero(int Bits)
  17. {
  18. return ~((~0) << Bits);
  19. }
  20. inline int mask_mix(int Bits)
  21. {
  22. return Bits >= sizeof(int) * 8 ? 0xffffffff : (static_cast<int>(1) << Bits) - static_cast<int>(1);
  23. }
  24. inline int mask_half(int Bits)
  25. {
  26. // We do the shift in two steps because 1 << 32 on an int is undefined.
  27. int const Half = Bits >> 1;
  28. int const Fill = ~0;
  29. int const ShiftHaft = (Fill << Half);
  30. int const Rest = Bits - Half;
  31. int const Reversed = ShiftHaft << Rest;
  32. return ~Reversed;
  33. }
  34. inline int mask_loop(int Bits)
  35. {
  36. int Mask = 0;
  37. for(int Bit = 0; Bit < Bits; ++Bit)
  38. Mask |= (static_cast<int>(1) << Bit);
  39. return Mask;
  40. }
  41. int perf()
  42. {
  43. int const Count = 100000000;
  44. std::clock_t Timestamp1 = std::clock();
  45. {
  46. std::vector<int> Mask;
  47. Mask.resize(Count);
  48. for(int i = 0; i < Count; ++i)
  49. Mask[i] = mask_mix(i % 32);
  50. }
  51. std::clock_t Timestamp2 = std::clock();
  52. {
  53. std::vector<int> Mask;
  54. Mask.resize(Count);
  55. for(int i = 0; i < Count; ++i)
  56. Mask[i] = mask_loop(i % 32);
  57. }
  58. std::clock_t Timestamp3 = std::clock();
  59. {
  60. std::vector<int> Mask;
  61. Mask.resize(Count);
  62. for(int i = 0; i < Count; ++i)
  63. Mask[i] = glm::mask(i % 32);
  64. }
  65. std::clock_t Timestamp4 = std::clock();
  66. {
  67. std::vector<int> Mask;
  68. Mask.resize(Count);
  69. for(int i = 0; i < Count; ++i)
  70. Mask[i] = mask_zero(i % 32);
  71. }
  72. std::clock_t Timestamp5 = std::clock();
  73. {
  74. std::vector<int> Mask;
  75. Mask.resize(Count);
  76. for(int i = 0; i < Count; ++i)
  77. Mask[i] = mask_half(i % 32);
  78. }
  79. std::clock_t Timestamp6 = std::clock();
  80. std::clock_t TimeMix = Timestamp2 - Timestamp1;
  81. std::clock_t TimeLoop = Timestamp3 - Timestamp2;
  82. std::clock_t TimeDefault = Timestamp4 - Timestamp3;
  83. std::clock_t TimeZero = Timestamp5 - Timestamp4;
  84. std::clock_t TimeHalf = Timestamp6 - Timestamp5;
  85. printf("mask[mix]: %d\n", static_cast<unsigned int>(TimeMix));
  86. printf("mask[loop]: %d\n", static_cast<unsigned int>(TimeLoop));
  87. printf("mask[default]: %d\n", static_cast<unsigned int>(TimeDefault));
  88. printf("mask[zero]: %d\n", static_cast<unsigned int>(TimeZero));
  89. printf("mask[half]: %d\n", static_cast<unsigned int>(TimeHalf));
  90. return TimeDefault < TimeLoop ? 0 : 1;
  91. }
  92. int test_uint()
  93. {
  94. type<glm::uint> const Data[] =
  95. {
  96. { 0, 0x00000000},
  97. { 1, 0x00000001},
  98. { 2, 0x00000003},
  99. { 3, 0x00000007},
  100. {31, 0x7fffffff},
  101. {32, 0xffffffff}
  102. };
  103. int Error(0);
  104. /* mask_zero is sadly not a correct code
  105. for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int>); ++i)
  106. {
  107. int Result = mask_zero(Data[i].Value);
  108. Error += Data[i].Return == Result ? 0 : 1;
  109. }
  110. */
  111. for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int>); ++i)
  112. {
  113. int Result = mask_mix(Data[i].Value);
  114. Error += Data[i].Return == Result ? 0 : 1;
  115. }
  116. for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int>); ++i)
  117. {
  118. int Result = mask_half(Data[i].Value);
  119. Error += Data[i].Return == Result ? 0 : 1;
  120. }
  121. for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int>); ++i)
  122. {
  123. int Result = mask_loop(Data[i].Value);
  124. Error += Data[i].Return == Result ? 0 : 1;
  125. }
  126. for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int>); ++i)
  127. {
  128. int Result = glm::mask(Data[i].Value);
  129. Error += Data[i].Return == Result ? 0 : 1;
  130. }
  131. return Error;
  132. }
  133. int test_uvec4()
  134. {
  135. type<glm::ivec4> const Data[] =
  136. {
  137. {glm::ivec4( 0), glm::ivec4(0x00000000)},
  138. {glm::ivec4( 1), glm::ivec4(0x00000001)},
  139. {glm::ivec4( 2), glm::ivec4(0x00000003)},
  140. {glm::ivec4( 3), glm::ivec4(0x00000007)},
  141. {glm::ivec4(31), glm::ivec4(0x7fffffff)},
  142. {glm::ivec4(32), glm::ivec4(0xffffffff)}
  143. };
  144. int Error(0);
  145. for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::ivec4>); i < n; ++i)
  146. {
  147. glm::ivec4 Result = glm::mask(Data[i].Value);
  148. Error += glm::all(glm::equal(Data[i].Return, Result)) ? 0 : 1;
  149. }
  150. return Error;
  151. }
  152. int test()
  153. {
  154. int Error(0);
  155. Error += test_uint();
  156. Error += test_uvec4();
  157. return Error;
  158. }
  159. }//namespace mask
  160. namespace bitfieldInterleave3
  161. {
  162. template <typename PARAM, typename RET>
  163. inline RET refBitfieldInterleave(PARAM x, PARAM y, PARAM z)
  164. {
  165. RET Result = 0;
  166. for(RET i = 0; i < sizeof(PARAM) * 8; ++i)
  167. {
  168. Result |= ((RET(x) & (RET(1U) << i)) << ((i << 1) + 0));
  169. Result |= ((RET(y) & (RET(1U) << i)) << ((i << 1) + 1));
  170. Result |= ((RET(z) & (RET(1U) << i)) << ((i << 1) + 2));
  171. }
  172. return Result;
  173. }
  174. int test()
  175. {
  176. int Error(0);
  177. glm::uint16 x_max = 1 << 11;
  178. glm::uint16 y_max = 1 << 11;
  179. glm::uint16 z_max = 1 << 11;
  180. for(glm::uint16 z = 0; z < z_max; z += 27)
  181. for(glm::uint16 y = 0; y < y_max; y += 27)
  182. for(glm::uint16 x = 0; x < x_max; x += 27)
  183. {
  184. glm::uint64 ResultA = refBitfieldInterleave<glm::uint16, glm::uint64>(x, y, z);
  185. glm::uint64 ResultB = glm::bitfieldInterleave(x, y, z);
  186. Error += ResultA == ResultB ? 0 : 1;
  187. }
  188. return Error;
  189. }
  190. }
  191. namespace bitfieldInterleave4
  192. {
  193. template <typename PARAM, typename RET>
  194. inline RET loopBitfieldInterleave(PARAM x, PARAM y, PARAM z, PARAM w)
  195. {
  196. RET const v[4] = {x, y, z, w};
  197. RET Result = 0;
  198. for(RET i = 0; i < sizeof(PARAM) * 8; i++)
  199. {
  200. Result |= ((((v[0] >> i) & 1U)) << ((i << 2) + 0));
  201. Result |= ((((v[1] >> i) & 1U)) << ((i << 2) + 1));
  202. Result |= ((((v[2] >> i) & 1U)) << ((i << 2) + 2));
  203. Result |= ((((v[3] >> i) & 1U)) << ((i << 2) + 3));
  204. }
  205. return Result;
  206. }
  207. int test()
  208. {
  209. int Error(0);
  210. glm::uint16 x_max = 1 << 11;
  211. glm::uint16 y_max = 1 << 11;
  212. glm::uint16 z_max = 1 << 11;
  213. glm::uint16 w_max = 1 << 11;
  214. for(glm::uint16 w = 0; w < w_max; w += 27)
  215. for(glm::uint16 z = 0; z < z_max; z += 27)
  216. for(glm::uint16 y = 0; y < y_max; y += 27)
  217. for(glm::uint16 x = 0; x < x_max; x += 27)
  218. {
  219. glm::uint64 ResultA = loopBitfieldInterleave<glm::uint16, glm::uint64>(x, y, z, w);
  220. glm::uint64 ResultB = glm::bitfieldInterleave(x, y, z, w);
  221. Error += ResultA == ResultB ? 0 : 1;
  222. }
  223. return Error;
  224. }
  225. }
  226. namespace bitfieldInterleave
  227. {
  228. inline glm::uint64 fastBitfieldInterleave(glm::uint32 x, glm::uint32 y)
  229. {
  230. glm::uint64 REG1;
  231. glm::uint64 REG2;
  232. REG1 = x;
  233. REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF);
  234. REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF);
  235. REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F);
  236. REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333);
  237. REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555);
  238. REG2 = y;
  239. REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF);
  240. REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF);
  241. REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F);
  242. REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333);
  243. REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555);
  244. return REG1 | (REG2 << 1);
  245. }
  246. inline glm::uint64 interleaveBitfieldInterleave(glm::uint32 x, glm::uint32 y)
  247. {
  248. glm::uint64 REG1;
  249. glm::uint64 REG2;
  250. REG1 = x;
  251. REG2 = y;
  252. REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF);
  253. REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF);
  254. REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF);
  255. REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF);
  256. REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F);
  257. REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F);
  258. REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333);
  259. REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333);
  260. REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555);
  261. REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555);
  262. return REG1 | (REG2 << 1);
  263. }
  264. /*
  265. inline glm::uint64 loopBitfieldInterleave(glm::uint32 x, glm::uint32 y)
  266. {
  267. static glm::uint64 const Mask[5] =
  268. {
  269. 0x5555555555555555,
  270. 0x3333333333333333,
  271. 0x0F0F0F0F0F0F0F0F,
  272. 0x00FF00FF00FF00FF,
  273. 0x0000FFFF0000FFFF
  274. };
  275. glm::uint64 REG1 = x;
  276. glm::uint64 REG2 = y;
  277. for(int i = 4; i >= 0; --i)
  278. {
  279. REG1 = ((REG1 << (1 << i)) | REG1) & Mask[i];
  280. REG2 = ((REG2 << (1 << i)) | REG2) & Mask[i];
  281. }
  282. return REG1 | (REG2 << 1);
  283. }
  284. */
  285. #if GLM_ARCH & GLM_ARCH_SSE2_BIT
  286. inline glm::uint64 sseBitfieldInterleave(glm::uint32 x, glm::uint32 y)
  287. {
  288. GLM_ALIGN(16) glm::uint32 const Array[4] = {x, 0, y, 0};
  289. __m128i const Mask4 = _mm_set1_epi32(0x0000FFFF);
  290. __m128i const Mask3 = _mm_set1_epi32(0x00FF00FF);
  291. __m128i const Mask2 = _mm_set1_epi32(0x0F0F0F0F);
  292. __m128i const Mask1 = _mm_set1_epi32(0x33333333);
  293. __m128i const Mask0 = _mm_set1_epi32(0x55555555);
  294. __m128i Reg1;
  295. __m128i Reg2;
  296. // REG1 = x;
  297. // REG2 = y;
  298. Reg1 = _mm_load_si128((__m128i*)Array);
  299. //REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF);
  300. //REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF);
  301. Reg2 = _mm_slli_si128(Reg1, 2);
  302. Reg1 = _mm_or_si128(Reg2, Reg1);
  303. Reg1 = _mm_and_si128(Reg1, Mask4);
  304. //REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF);
  305. //REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF);
  306. Reg2 = _mm_slli_si128(Reg1, 1);
  307. Reg1 = _mm_or_si128(Reg2, Reg1);
  308. Reg1 = _mm_and_si128(Reg1, Mask3);
  309. //REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F);
  310. //REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F);
  311. Reg2 = _mm_slli_epi32(Reg1, 4);
  312. Reg1 = _mm_or_si128(Reg2, Reg1);
  313. Reg1 = _mm_and_si128(Reg1, Mask2);
  314. //REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333);
  315. //REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333);
  316. Reg2 = _mm_slli_epi32(Reg1, 2);
  317. Reg1 = _mm_or_si128(Reg2, Reg1);
  318. Reg1 = _mm_and_si128(Reg1, Mask1);
  319. //REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555);
  320. //REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555);
  321. Reg2 = _mm_slli_epi32(Reg1, 1);
  322. Reg1 = _mm_or_si128(Reg2, Reg1);
  323. Reg1 = _mm_and_si128(Reg1, Mask0);
  324. //return REG1 | (REG2 << 1);
  325. Reg2 = _mm_slli_epi32(Reg1, 1);
  326. Reg2 = _mm_srli_si128(Reg2, 8);
  327. Reg1 = _mm_or_si128(Reg1, Reg2);
  328. GLM_ALIGN(16) glm::uint64 Result[2];
  329. _mm_store_si128((__m128i*)Result, Reg1);
  330. return Result[0];
  331. }
  332. inline glm::uint64 sseUnalignedBitfieldInterleave(glm::uint32 x, glm::uint32 y)
  333. {
  334. glm::uint32 const Array[4] = {x, 0, y, 0};
  335. __m128i const Mask4 = _mm_set1_epi32(0x0000FFFF);
  336. __m128i const Mask3 = _mm_set1_epi32(0x00FF00FF);
  337. __m128i const Mask2 = _mm_set1_epi32(0x0F0F0F0F);
  338. __m128i const Mask1 = _mm_set1_epi32(0x33333333);
  339. __m128i const Mask0 = _mm_set1_epi32(0x55555555);
  340. __m128i Reg1;
  341. __m128i Reg2;
  342. // REG1 = x;
  343. // REG2 = y;
  344. Reg1 = _mm_loadu_si128((__m128i*)Array);
  345. //REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF);
  346. //REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF);
  347. Reg2 = _mm_slli_si128(Reg1, 2);
  348. Reg1 = _mm_or_si128(Reg2, Reg1);
  349. Reg1 = _mm_and_si128(Reg1, Mask4);
  350. //REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF);
  351. //REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF);
  352. Reg2 = _mm_slli_si128(Reg1, 1);
  353. Reg1 = _mm_or_si128(Reg2, Reg1);
  354. Reg1 = _mm_and_si128(Reg1, Mask3);
  355. //REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F);
  356. //REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F);
  357. Reg2 = _mm_slli_epi32(Reg1, 4);
  358. Reg1 = _mm_or_si128(Reg2, Reg1);
  359. Reg1 = _mm_and_si128(Reg1, Mask2);
  360. //REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333);
  361. //REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333);
  362. Reg2 = _mm_slli_epi32(Reg1, 2);
  363. Reg1 = _mm_or_si128(Reg2, Reg1);
  364. Reg1 = _mm_and_si128(Reg1, Mask1);
  365. //REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555);
  366. //REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555);
  367. Reg2 = _mm_slli_epi32(Reg1, 1);
  368. Reg1 = _mm_or_si128(Reg2, Reg1);
  369. Reg1 = _mm_and_si128(Reg1, Mask0);
  370. //return REG1 | (REG2 << 1);
  371. Reg2 = _mm_slli_epi32(Reg1, 1);
  372. Reg2 = _mm_srli_si128(Reg2, 8);
  373. Reg1 = _mm_or_si128(Reg1, Reg2);
  374. glm::uint64 Result[2];
  375. _mm_storeu_si128((__m128i*)Result, Reg1);
  376. return Result[0];
  377. }
  378. #endif//GLM_ARCH & GLM_ARCH_SSE2_BIT
  379. int test()
  380. {
  381. {
  382. for(glm::uint32 y = 0; y < (1 << 10); ++y)
  383. for(glm::uint32 x = 0; x < (1 << 10); ++x)
  384. {
  385. glm::uint64 A = glm::bitfieldInterleave(x, y);
  386. glm::uint64 B = fastBitfieldInterleave(x, y);
  387. //glm::uint64 C = loopBitfieldInterleave(x, y);
  388. glm::uint64 D = interleaveBitfieldInterleave(x, y);
  389. assert(A == B);
  390. //assert(A == C);
  391. assert(A == D);
  392. # if GLM_ARCH & GLM_ARCH_SSE2_BIT
  393. glm::uint64 E = sseBitfieldInterleave(x, y);
  394. glm::uint64 F = sseUnalignedBitfieldInterleave(x, y);
  395. assert(A == E);
  396. assert(A == F);
  397. __m128i G = glm_i128_interleave(_mm_set_epi32(0, y, 0, x));
  398. glm::uint64 Result[2];
  399. _mm_storeu_si128((__m128i*)Result, G);
  400. assert(A == Result[0]);
  401. # endif//GLM_ARCH & GLM_ARCH_SSE2_BIT
  402. }
  403. }
  404. {
  405. for(glm::uint8 y = 0; y < 127; ++y)
  406. for(glm::uint8 x = 0; x < 127; ++x)
  407. {
  408. glm::uint64 A(glm::bitfieldInterleave(glm::uint8(x), glm::uint8(y)));
  409. glm::uint64 B(glm::bitfieldInterleave(glm::uint16(x), glm::uint16(y)));
  410. glm::uint64 C(glm::bitfieldInterleave(glm::uint32(x), glm::uint32(y)));
  411. glm::int64 D(glm::bitfieldInterleave(glm::int8(x), glm::int8(y)));
  412. glm::int64 E(glm::bitfieldInterleave(glm::int16(x), glm::int16(y)));
  413. glm::int64 F(glm::bitfieldInterleave(glm::int32(x), glm::int32(y)));
  414. assert(D == E);
  415. assert(D == F);
  416. }
  417. }
  418. return 0;
  419. }
  420. int perf()
  421. {
  422. glm::uint32 x_max = 1 << 11;
  423. glm::uint32 y_max = 1 << 10;
  424. // ALU
  425. std::vector<glm::uint64> Data(x_max * y_max);
  426. std::vector<glm::u32vec2> Param(x_max * y_max);
  427. for(glm::uint32 i = 0; i < Param.size(); ++i)
  428. Param[i] = glm::u32vec2(i % x_max, i / y_max);
  429. {
  430. std::clock_t LastTime = std::clock();
  431. for(std::size_t i = 0; i < Data.size(); ++i)
  432. Data[i] = glm::bitfieldInterleave(Param[i].x, Param[i].y);
  433. std::clock_t Time = std::clock() - LastTime;
  434. std::printf("glm::bitfieldInterleave Time %d clocks\n", static_cast<unsigned int>(Time));
  435. }
  436. {
  437. std::clock_t LastTime = std::clock();
  438. for(std::size_t i = 0; i < Data.size(); ++i)
  439. Data[i] = fastBitfieldInterleave(Param[i].x, Param[i].y);
  440. std::clock_t Time = std::clock() - LastTime;
  441. std::printf("fastBitfieldInterleave Time %d clocks\n", static_cast<unsigned int>(Time));
  442. }
  443. /*
  444. {
  445. std::clock_t LastTime = std::clock();
  446. for(std::size_t i = 0; i < Data.size(); ++i)
  447. Data[i] = loopBitfieldInterleave(Param[i].x, Param[i].y);
  448. std::clock_t Time = std::clock() - LastTime;
  449. std::printf("loopBitfieldInterleave Time %d clocks\n", static_cast<unsigned int>(Time));
  450. }
  451. */
  452. {
  453. std::clock_t LastTime = std::clock();
  454. for(std::size_t i = 0; i < Data.size(); ++i)
  455. Data[i] = interleaveBitfieldInterleave(Param[i].x, Param[i].y);
  456. std::clock_t Time = std::clock() - LastTime;
  457. std::printf("interleaveBitfieldInterleave Time %d clocks\n", static_cast<unsigned int>(Time));
  458. }
  459. # if GLM_ARCH & GLM_ARCH_SSE2_BIT
  460. {
  461. std::clock_t LastTime = std::clock();
  462. for(std::size_t i = 0; i < Data.size(); ++i)
  463. Data[i] = sseBitfieldInterleave(Param[i].x, Param[i].y);
  464. std::clock_t Time = std::clock() - LastTime;
  465. std::printf("sseBitfieldInterleave Time %d clocks\n", static_cast<unsigned int>(Time));
  466. }
  467. {
  468. std::clock_t LastTime = std::clock();
  469. for(std::size_t i = 0; i < Data.size(); ++i)
  470. Data[i] = sseUnalignedBitfieldInterleave(Param[i].x, Param[i].y);
  471. std::clock_t Time = std::clock() - LastTime;
  472. std::printf("sseUnalignedBitfieldInterleave Time %d clocks\n", static_cast<unsigned int>(Time));
  473. }
  474. # endif//GLM_ARCH & GLM_ARCH_SSE2_BIT
  475. {
  476. std::clock_t LastTime = std::clock();
  477. for(std::size_t i = 0; i < Data.size(); ++i)
  478. Data[i] = glm::bitfieldInterleave(Param[i].x, Param[i].y, Param[i].x);
  479. std::clock_t Time = std::clock() - LastTime;
  480. std::printf("glm::detail::bitfieldInterleave Time %d clocks\n", static_cast<unsigned int>(Time));
  481. }
  482. # if(GLM_ARCH & GLM_ARCH_SSE2_BIT && !(GLM_COMPILER & GLM_COMPILER_GCC))
  483. {
  484. // SIMD
  485. std::vector<__m128i> SimdData;
  486. SimdData.resize(x_max * y_max);
  487. std::vector<__m128i> SimdParam;
  488. SimdParam.resize(x_max * y_max);
  489. for(int i = 0; i < SimdParam.size(); ++i)
  490. SimdParam[i] = _mm_set_epi32(i % x_max, 0, i / y_max, 0);
  491. std::clock_t LastTime = std::clock();
  492. for(std::size_t i = 0; i < SimdData.size(); ++i)
  493. SimdData[i] = glm_i128_interleave(SimdParam[i]);
  494. std::clock_t Time = std::clock() - LastTime;
  495. std::printf("_mm_bit_interleave_si128 Time %d clocks\n", static_cast<unsigned int>(Time));
  496. }
  497. # endif//GLM_ARCH & GLM_ARCH_SSE2_BIT
  498. return 0;
  499. }
  500. }//namespace bitfieldInterleave
  501. int main()
  502. {
  503. int Error(0);
  504. Error += ::mask::test();
  505. Error += ::bitfieldInterleave3::test();
  506. Error += ::bitfieldInterleave4::test();
  507. Error += ::bitfieldInterleave::test();
  508. //Error += ::bitRevert::test();
  509. # ifdef NDEBUG
  510. Error += ::mask::perf();
  511. Error += ::bitfieldInterleave::perf();
  512. # endif//NDEBUG
  513. return Error;
  514. }